TR#381: Temporal Texture Modeling

Martin Szummer and Rosalind W. Picard

IEEE International Conference on Image Processing (ICIP 96)
Lausanne, Switzerland

Temporal textures are textures with motion. Examples include wavy water, rising steam and fire. We model image sequences of temporal textures using the spatio-temporal autoregressive model (STAR). This model expresses each pixel as a linear combination of surrounding pixels lagged both in space and in time. The model provides a base for both recognition and synthesis. We show how the least squares method can accurately estimate model parameters for large, causal neighborhoods with more than 1000 parameters. Synthesis results show that the model can adequately capture the spatial and temporal characteristics of many temporal textures. A 95% recognition rate is achieved for a 135 element database with 15 texture classes.


Martin Szummer, szummer.NOSPAM@media.mit.edu (remove .NOSPAM suffix before sending)

Compressed Postscript . PDF . Full list of tech reports