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Abstract

Temporal textures are textures with motion. Ex-
amples include wavy water, rising steam and fire.
We model image sequences of temporal textures using
the spatio-temporal autoregressive model (STAR). This
model expresses each pixel as a linear combination of
surrounding pixels lagged both in space and in time.
The model provides a base for both recognition and
synthesis. We show how the least squares method can
accurately estimate model parameters for large, causal
neighborhoods with more than 1000 parameters. Syn-
thesis results show that the model can adequately cap-
ture the spatial and temporal characteristics of many
temporal textures. A 95% recognition rate is achieved
for a 135 element database with 15 texture classes.

1 Introduction

Temporal textures are textures with motion. Good ex-
amples are fire, wavy water and leaves fluttering in the
wind. They are characterized by an indeterminate ex-
tent both in space and time [1]. This class of motions
can be contrasted with two others: activities are tempo-
rally periodic but spatially restricted (such as a person
walking or swimming). Motion events are single events
that do not repeat in space or time (such as opening a
door or throwing a ball).

Temporal textures have previously been studied for
recognition applications (e.g. detecting forest fires) [1]
and for synthesis in computer graphics (e.g. artificial
fire and smoke). Unlike previous work, we focus on a
representation that can be acquired directly from image
sequences, and that is effective both for recognition and
synthesis.

Our representation is the linear spatio-temporal au-
toregressive model (STAR) [2]. Tt is a three-dimensional
extension of autoregressive models (AR), which are
among the best models for recognition and synthesis
of image textures [3, 4]. Autoregressive models are also
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widely used in speech modeling and time series analysis.

The STAR model has the form

P
s(z,y,t) = Z dis(x+ Axi, y+ Ay, t+ Aty) +alz, y, t).

i=1

We model the signal s(z,y,t) as a linear combination
of lagged values of itself plus a Gaussian white noise
process a(z,y,t). The lags Ax;, Ay; and At; specify
the neighborhood structure of the model. We have used
causal neighborhoods, since parameter estimation and
synthesis are easier to perform. Examples of causal
neighborhoods include nonsymmetric half-spaces, such
as the (z,y,t) subset defined by t < 0V (t = 0Ay <
OV(E=0Ay=0A2z<0).

The STAR model makes several assumptions. The
data should have a multivariate Gaussian distribution
and be wide-sense stationary (constant mean and co-
variance). Only first and second-order statistics are ex-
ploited, hence curved lines cannot be modeled. The
noise process is assumed to be uncorrelated (if it is
not, use a STARMA model which has moving-average
terms). Fortunately, many temporal textures satisfy
these conditions approximately.

The neighborhood causality constraint is another re-
striction that 1s somewhat unnatural for spatial pro-
cesses. It introduces an arbitrary directional bias, which
depends on the orientation of the nonsymmetric half-
space neighborhood (or any other causal neighborhood
used). For spatio-temporal processes, the spatial asym-
metry is not as severe as for purely spatial process.
The spatial asymmetry arises only from restrictions for
neighbors at ¢ = 0, whereas neighbors at ¢ < 0 can be
symmetric. In fact, the spatial asymmetry can be com-
pletely eliminated by conditioning only on neighbors at
t < 0. Thus, we can trade off spatial asymmetry against
temporal asymmetry. Since time has a clear direction,
and the physical world is believed to be causal, temporal
asymmetry is easily justified.
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Figure 1: Autocorrelation function for river sequence
(x-t slice, y=0). Note periodicity in time.

2 Model selection

Before parameter estimation, we must select neighbor-
hood size and topology and ensure that the data is wide
sense stationary.

The autocorrelation function (ACF) is a useful tool
for analyzing the correlation structure of autoregressive
processes and for model identification [2]. Direct com-
putation of the ACF in the spatio-temporal domain is
not feasible due to the large amount of data in an image
sequence. Instead, the ACF is computed as the inverse
Fourier transform of the power spectrum. Fig. 1 shows
the ACF of wavy water for an x-t slice at y = 0. Note
that there is structure along both the spatial and tempo-
ral dimensions. Along the time axis, correlation peaks
occur for subsequent waves. Translation along the x-
axis1s also evident. Thus, full spatio-temporal modeling
is necessary to capture all aspects of the signal; purely
temporal or purely spatial analysis is not sufficient.

Image data is often nonstationary due to nonuniform
illumination of the image. These nonstationarities can
be removed using unsharp masking. One approach is to
median-filter each frame and subtract the filter output
from the frame [3]. We used a purely spatial 21 x 21
median filter for all image sequences. The illumination
gradients were reduced and the ACF decayed to zero
exponentially instead of linearly (which indicated non-
stationarity).

Finding a good neighborhood size and topology is a
difficult task for STAR models. In traditional time se-
ries analysis, model selection is done by examining the
patterns of the ACF and PACF (partial autocorrelation
function). STAR models have large, three-dimensional
neighborhoods which generate very complex patterns

that cannot be identified easily [2]. Instead, we begin by
fitting a large STAR model to the texture. We got the
best synthesis results from causal half-sphere neighbor-
hoods with radius between 4 and 7 (with between 128
and 709 parameters). Other attempts included cubic
neighborhoods with side length 11 (1270 parameters),
and rays of length 21 radiating from the origin in 12
different directions. Such long rays could capture long
distance correlations, but produced poor synthesis re-
sults.

The large number of parameters is a consequence of
modeling three dimensions, as opposed to one or two.
Fortunately, our data sets have extents 170 x 115 x 120.
Thus, there are at least 2000 data points per parameter,
reducing the risk for overfitting.

The large models are already useful, and can be im-
proved by pruning insignificant parameters. The prun-
ing algorithm [3] iteratively discards the least significant
parameters as long as the Schwartz’s Bayesian Criterion
(SBC) decreases. Let || be the data set size, p be the
number of parameters, and 62 be the estimated innova-
tion variance. Then

SBC = |Q|Iné2 4 pIn |Q|.

The significance of a parameter is determined by the
t-test (the parameter value divided by its standard devi-
ation). For static image textures, the pruning algorithm
typically reduces 80 parameter models to 50 parameters
while maintaining the visual quality of the simulated
texture [3].

3 Parameter estimation

Parameters of the STAR model are determined by min-
imizing the mean square prediction error. We have used
the conditional least squares estimator (CLS). The esti-
mate is conditioned on the unknown values outside the
boundary. One can assume that the missing boundary
values are equal to the mean of the data (the correlation
method). Alternatively, one can use only the inner por-
tion of the data, so that all neighborhoods are contained
in the data (the covariance method). The methods give
significantly different results, probably because most vi-
sual textures are close to nonstationarity and hence are
sensitive to initial conditions. The covariance method
gives more accurate estimates [5].

The system of normal equations is then solved using
Cholesky decomposition. The accuracy of the estima-
tion can be determined by first estimating parameters
from an image sequence, then synthesizing a texture
based on them, and finally estimating the parameters
of the synthesized texture. The two sets of estimates
should be similar. When this test is performed for the



1270 parameter model on a wavy water sequence, the
majority of the statistically significant parameters have
relative errors less than 20%.

4 Synthesis

To examine how well the STAR model can capture tem-
poral textures, we synthesize textures based on param-
eters estimated from real sequences. The initial condi-
tions for the synthesis are Gaussian random noise, and
new values are recursively computed as a linear combi-
nation of past values plus Gaussian random noise. The
synthesized sequence is histogram-matched to the origi-
nal to get the same grey-level distribution. The percep-
tual quality of some textures is very good (Fig. 2). The
raw and synthesized image sequences are available on-
line at http://www-white.media.mit.edu/" szummer/
icip-96/. The examples of steam and boiling water
are convincing, and river is also fairly realistic. How-
ever, rotational motion (e.g. spiraling water flow of a
toilet) cannot be captured by the STAR model, because
it violates the stationarity assumption. The specularity
of water is also difficult to model.

The STAR model offers a very compact repre-
sentation of temporal textures. For comparison,
the sequences were compressed by taking the three-
dimensional DCT and discarding the smallest mag-
nitude coefficients. Then the sequences were recon-
structed by the inverse DCT. The DCT reconstruction
looks like a blurry version of the original. In contrast,
the STAR model looks like a somewhat noisy version
of the original. When the same number of coefficients
are used in both representations (for a 2000:1 compres-
sion ratio), the STAR synthesis subjectively looks sig-
nificantly better.

5 Recognition

We tested recognition of temporal textures in a database
with 15 classes and 9 examples from each class, taken
at different times. We used still images of the textures
and applied a purely spatial autoregressive model (SAR)
at three different scales [4]. Thus, the recognition is
motion-invariant, which is desirable in many applica-
tions. For a given texture, we find other examples with
the most similar autoregressive parameters, according
to the Mahalanobis distance metric.

The recognition performance is very good. 95% of
the top 8 matches belong to the correct texture class.
In other words, we usually manage to retrieve all the
other 8 examples of a texture class when querying on any
instance of it. In addition to recognizing images from
the same class, the algorithm is also good at finding
other perceptually similar textures. Given water with

big waves, it also returns wavy water with smaller waves.
Similarly, for boiling water, it gets other boiling water
filmed from a different angle and illumination. A query
on steam first retrieves other steam and then the next
closest matches are smoke.

6 Conclusion and Future Work

The STAR model can successfully represent several tem-
poral textures, and enables good synthesis and compres-
sion. A subset of STAR (SAR) achieves excellent recog-
nition. As a general three-dimensional texture model,
STAR has a wealth of other applications, such as seg-
mentation of medical MRI imagery.

In future work, we hope to build a multi-scale STAR
model. The neighborhood would be hierarchically de-
composed, achieving the effect of very large neighbor-
hoods but with fewer parameters and less computation.
However, the different scales are not necessarily inde-
pendent. Hence, estimation and synthesis must be co-
ordinated across scales.

For recognition applications, we must design features
invariant to motion direction and magnitude. One pos-
sibility is to use features of STAR parameters, e.g. av-
erages of parameters at the same distance from the ori-
gin [4].

A challenging problem is to model nonstationary
temporal textures. For this task, nonlinear models are
likely to be needed.
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Figure 2: Synthesis results displayed as xyt-volumes. Originals (left column) and synthesized (right). The sequences and
the size of neighborhoods are river (1270), boiling water (128), steam (1270) and spiraling water (128) (number of
parameters in parentheses).



