TR#571: Fully Automatic Upper Facial Action Recognition

Ashish Kapoor, Yuan Qi and Rosalind W. Picard

Appears in IEEE International Workshop on Analysis and Modeling of Faces and Gestures , Oct 2003

This paper provides a new fully automatic framework to analyze facial action units, the fundamental building blocks of facial expression enumerated in Paul Ekman's Facial Action Coding System (FACS). The action units examined in this paper include upper facial muscle movements such as inner eyebrow raise, eye widening, and so forth, which combine to form facial expressions. Although prior methods have obtained high recognition rates for recognizing facial action units, these methods either use manually pre-processed image sequences or require human specification of facial features; thus, they have exploited substantial human intervention. This paper presents a fully automatic method, requiring no such human specification. The system first robustly detects the pupils using an infrared sensitive camera equipped with infrared LEDs. For each frame, the pupil positions are used to localize and normalize eye and eyebrow regions, which are analyzed using PCA to recover parameters that relate to the shape of the facial features. These parameters are used as input to classifiers based on Support Vector Machines to recognize upper facial action units and all their possible combinations. On a completely natural dataset with lots of head movements, pose changes and occlusions, the new framework achieved a recognition accuracy of 69.3% for each individual AU and an accuracy of 62.5% for all possible AU combinations. This framework achieves a higher recognition accuracy on the Cohn-Kanade AU-coded facial expression database, which has been previously used to evaluate other facial action recognition system.}

Postscript . PDF . Full list of tech reports