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ABSTRACT
We mount eight pressure sensors on a computer mouse and
collect mouse pressure signals from subjects who fill out web
forms containing usability bugs. This approach is based on
a hypothesis that subjects tend to apply excess pressure to
the mouse after encountering frustrating events. We then
train a Bayes Point Machine in an attempt to classify two
regions of each user’s behavior: mouse pressure where the
form-filling process is proceeding smoothly, and mouse pres-
sure following a usability bug. Different from current popu-
lar classifiers such as the Support Vector Machine, the Bayes
Point Machine is a new classification technique rooted in the
Bayesian theory. Trained with a new efficient Bayesian ap-
proximation algorithm, Expectation Propagation, the Bayes
Point Machine achieves a person-dependent classification ac-
curacy rate of 88%, which outperforms the Support Vector
Machine in our experiments. The resulting system can be
used for many applications in human-computer interaction
including adaptive interface design.

1. INTRODUCTION
The Bayes Point Machine is a Bayesian linear classifier

that can be converted to a nonlinear classifier by using fea-
ture expansions or kernel methods as the Support Vector
Machine (SVM). By approximating the Bayesian average, it
achieves good generalization performance [2, 4].

In this paper, we apply the Bayes Point Machine in an at-
tempt to detect computer-users’ frustration, by classifying
pressure signals collected from a computer mouse specifi-
cally designed for this purpose, namely, PressureMouse [5].
The PressureMouse has eight pressure sensors so that it can
collect a pattern of information related to how the user han-
dles the mouse. In our experiment, every subject is asked to
fill out a multiple-page web form using a normal keyboard
and a PressureMouse. From the standpoint of the user, the
PressureMouse works just like a normal mouse, requiring
no training or special effort to use. Subjects are not told
anything about the purpose of the mouse until after the ex-
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periment is concluded; thus, we expect that subjects used
the PressureMouse as an ordinary mouse. We hypothesize
that events that are frustrating will show up in patterns of
use of the mouse.

To intentionally invoke a subject’s frustration, the infor-
mation entered on a web form was erased following a fic-
titious problem. Subjects were forced to re-enter all of the
data on the web page before being allowed to continue. This
data loss event, coupled with time pressure placed on the
subjects, is likely to induce mild frustration.

Post-test questionnaires and interviews suggest that the
data-loss event invokes the subject’s frustration. Further-
more, the data sets suggest that the frustration can affect
the way the subject handles the mouse. By applying the
Bayes Point Machine, we were able to reliably distinguish
between mouse pressure signals gathered during the first
time filling out the page (before the error notice) and the
second time filling out the same page (after the error notice).

2. A NEW APPROACH FOR CLASSIFICA-
TION: THE BAYES POINT MACHINE

2.1 Bayes Point
A linear classifier classifies a point x according to

t = sign(wTφ(x)) (1)

for some parameter vector w (the two classes are t = ±1).
The basis function φ(xi) allows the classification boundary
to be nonlinear in the original features. This is the same
likelihood used in logistic regression and in Gaussian process
classifiers.

Given a training set D = {(x1, t1), ..., (xN , tN )}, the like-
lihood for w can be written as

p(t|w, X) =
∏

i

p(ti|xi,w) =
∏

i

Ψ(tiw
Tφ(xi)) (2)

where t = {ti}N
i=1, X = {xi}N

i=1, Ψ(·) is the cumulative
distribution function for a Gaussian. We can also use the
step function or logistic function as Ψ(·).

What distinguishes the Bayes Point Machine is how we
train the weights. Given a new input xN+1, we approximate
the predictive distribution:

p(tN+1|xN+1, t) =

∫
p(tN+1|xN+1,w)p(w|t)dw (3)

≈ P (tN+1|xN+1, 〈w〉) (4)



where 〈w〉 denotes the posterior mean of the weights, called
the Bayes Point. This approach does not require voting
a large number of classifiers nor does it assume that the
posterior is adequately captured by its mode, as in logistic
regression.

2.2 Expectation Propagation
Expectation Propagation(EP) [4] exploits the fact that

the likelihood is a product of simple terms. If we approxi-
mate each of these terms well, we can get a good approxi-
mation to the posterior. Expectation Propagation chooses
each approximation such that the posterior using the term
exactly and the posterior using the term approximately are
close in KL-divergence. This gives a system of coupled equa-
tions for the approximations which are iterated to reach a
fixed point.

Expectation Propagation can also be viewed as a power-
ful extension of assumed-density filtering (ADF) [1, 3]. The
ADF method is a sequential technique for approximating a
posterior distribution that can be used in stochastic process
modeling and online learning. Expectation Propagation ex-
tends ADF by using iterative batch-version refinements; this
enables EP to utilize the information from the whole data
sequence and to greatly improve the approximation quality.

First, a Gaussian prior distribution is assigned for w

p(w|α) =
∏

i

N (wi|0, α−1
i ) (5)

where α = {αi} is a hyperparameter vector. Later, we
assign αi = 1 for all i.

Denote the exact terms by gi(w) and the approximate
terms by g̃i(w):

p(w|t, α) ∝ p(w|α)
∏

i

p(ti|w) = p(w|α)
∏

i

gi(w) (6)

≈ p(w|α)
∏

i

g̃i(w) (7)

For the Bayes Point Machine, the approximate terms are
chosen to be Gaussian, parameterized by (mi, vi, si):

g̃i = si exp(− 1

2vi
(tiφ

T (xi)w −mi)
2). (8)

This makes the approximate posterior distribution also Gaus-
sian:

p(w|t, α) ≈ q(w) = N (mw,Vw). (9)

To find the best term approximations we proceed as fol-
lows: (to save notation, tiφ(xi) is written as φi)

1. Initialization Step:

Set g̃i = 1: vi = ∞, mi = 0, and si = 1.

Also, set the prior: mw = 0, Vw = diag(α), αi = 1
for all i.

2. Loop until all (mi, vi, si) converge:

Loop i = 1, . . . , N :

(a) Remove the approximation g̃i from q(w) to get

the ‘leave-one-out’ posterior q\i(w), which is also

Gaussian: N (m
\i
w ,V

\i
w ). From q\i(w) ∝ q(w)/g̃i,

this implies

V\i
w = Vw +

(Vwφi)(Vwφi)
T

vi − φT
i Vwφi

(10)

m\i
w = mw + (V\i

w φi)v
−1
i (φT

i mw −mi) (11)

(b) Putting the posterior without i together with term

i gives p̂(w) ∝ gi(w)q\i(w). Choose q(w) to min-
imize KL(p̂(w) || q(w)). Let Zi be the normaliz-
ing factor.

mw = m\i
w + V\i

w ρiφi (12)

Vw = V\i
w − (V\i

w φi)
( ρiφ

T
i mw

φT
i V

\i
w φi

)
(V\i

w φi)
T

(13)

Zi =

∫
w

gi(w)q\i(w)dw = Ψ(zi) (14)

where

zi =
(m

\i
w )T φi√

φT
i V

\i
w φi + 1

(15)

ρi =
1√

φT
i V

\i
w φi + 1

N (zi; 0, 1)

Ψ(zi)
(16)

(c) From g̃i = Zi
q(w)

q\i(w)
, update the term approxima-

tion:

vi = φT
i V\i

w φi

( 1

ρiφ
T
i mw

− 1
)

(17)

mi = φT
i m\i

w + (vi + φT
i V\i

w φi)ρi (18)

si = Zi

√
1 + v−1

i φT
i V

\i
w φi exp(

ρi

2

φT
i V

\i
w φi

φT
i mw

)

(19)

3. Finally, compute the normalizing constant and the ev-
idence:

B = (mw)T Vw(mw)−
∑

i

m2
i

vi
(20)

p(D|α) ≈
∫ ∏

i

g̃i(w)dw (21)

= |Vw|1/2 exp(B/2)
∏

i

si (22)

Denote the dimensionality of a training data point after fea-
ture expansion as d. The computational time of this algo-
rithm is O(d2) for processing each data point, and therefore
O(Nd2) per iteration. Only 5–6 iterations are needed to
make the algorithm converge in our experiments.

In sum, we train a Bayes Point Machine through step 1 to
step 3 of EP as described in the above. After the convergence
of the algorithm, we obtain the posterior mean mw of the
weigths w as the Bayes Point. Note that mw is the same
as 〈w〉 defined in equation (4). After obtaining the Bayes
Point mw, we can classify a new test data point by letting
w = mw in equation (1).



3. A NEW TOOL FOR HUMAN-COMPUTER
INTERACTION: PRESSUREMOUSE

In this section, we present a new unobtrusive tool for
human-computer interaction, the PressureMouse [5]. The
PressureMouse (figure 1) is a special mouse that is equipped
with eight pressure sensors so that it can collect pressure sig-
nals from computer users. Since a computer user may hold
the mouse tighter or looser under different situations, the
PressureMouse provides an opportunity to passively sense
some aspects of muscle tension from the user. To design the

Figure 1: PressureMouse: four foam sensors at the
back of the mouse and two on each side.

PressureMouse, we briefly considered the use of Indium-Tin
Oxide and other materials as the sensing material, but shied
away from their use because of toxic properties or the high
temperatures required to cure them.

After a literature review, we learned that force sensitive
resistors are composed of a conductive elastomer of some
sort and electrodes. As force is applied to the elastomer
or foam, it becomes more dense and thus more conductive.
As a result, to make more sensitive force-sensitive material,
what is needed is a conductive foam that compresses under
light loads.

The anti-static foam that is used to package electronic
components works well as a conductive elastomer for light
loads. The new pressure sensors for the PressureMouse are
constructed based this kind of foam (figure 2).

Figure 2: PressureMouse tactile sensors.

These sensors have a greater dynamic range because the
foam compresses under light loads. Unfortunately, they are
not very elastic, meaning that after being loaded, they take
a small amount of time to decompress. The unprocessed
mouse data is 8 dimensions of 8-bit analog data captured at
60 Hz.

These sensors, applied to several points of a mouse, allow
us to determine if the user is touching the mouse or not, and

how hard the user is touching the mouse. This construction
was designed to test the hypothesis that users would apply
different patterns of pressure to the mouse under episodes of
frustration or stress vs. under normal use. If this hypothesis
is true, then the mouse may potentially provide a form of
passive frustration sensing, without requiring conscious ma-
nipulation from the user. Here we assume a user will change
the way he or she holds the mouse when encountering a frus-
trating situation, which is confirmed in our experiments as
shown in Section 5.

4. EXPERIMENT DESIGN: FRUSTRATING
COMPUTER-USERS

In our experiments, a subject is asked to fill out a multiple-
page web form to put their resume online at a job site. They
are told that we will be asking them some questions about
usability of the site after the task. A page of the web form
is shown in figure 3.

Figure 3: One page of the web form used in our
experiments

In laboratory experiments or usability tests, subjects may
not care enough about the task for it to matter to them if
there is a problem with it. In order to increase the likelihood
that usability bugs would induce frustration, time was made
salient to the subjects by emphasizing that their time is very
important, and that ”most people completed the form in 15
minutes, and most MIT students completed it in 10 min-
utes.” A timer set to 15 minutes was placed in view. Thus,
anything that caused a delay might be more likely to frus-
trate the user. After filling out the second page of the web
forms, which asks for the date of the user’s degree, school
where it was obtained, technical computer skills of the user,
GPA, and (optional) standardized test scores, the user clicks
to the next page. At that point an error message alerts the
user that the date format is wrong. (Whatever format the
user entered we can tell them they should have used another
format). When the user goes back to the page to re-enter
the date correctly, he or she sees that the page lost all of the
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Figure 4: Mouse pressure signals of a subject. The
unit of the horizontal axis is one minute. Blue de-
notes the first time filling out the web page with
the date; red denotes the second time filling out the
same page after the data loss. Black denotes other
time periods, which are not used in this paper’s anal-
ysis.

data just entered. We expect that this event should mildly
increase the user’s frustration level, and we hypothesize that
this would affect how they handle the mouse.

5. DATA ANALYSIS
We apply the Bayes Point Machine trained with Expecta-

tion Propagation to the classification of the pressure signals.
We use two features, the mean and the variance of the pres-
sure signals over a half-second window (i.e., 30 data points
because the signals are sampled at 60 Hz as mentioned be-
fore).

As shown in figures 4 and 5, refilling the web form is
strongly correlated with a pattern change in the pressure
signals. Additionally, when we compare figures 4 and 5 we
can see that different subjects exhibit different patterns of
mouse use. For instance, the second channel shows no ac-
tivity for the subject in figure 4, but the subject in figure 5
exerts pressure on this channel. Unfortunately, our proto-
type sensors do not perform well all the time. If we examine
figure 5, we see the 7th sensor does not work correctly; it
’flatlines’ for the first part initial part of the data collection.

For the Bayes Point Machine, we choose the nonlinear
basis expansion φ(x) in equation (2) over the data points as
follows:

φ(x) = [K(x,x1), · · · , K(x,xi), · · · , K(x,xN )]T

where K(x,xi) is a basis function, which is chosen to be a
Gaussian with variance being 0.1. Using the above feature
expansion, we actually have O(N3) as the training time of
Expectation Propagation, because here the feature dimen-
sionality d equals the size of a training set N . The data
is labeled as -1 during the first time filling the forms, and
1 during the second time filling the forms. The labeling
is reasonably correlated with the subjects’ frustration level,
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Figure 5: Mouse pressure signals of another subject,
with red/blue/black coding as above.

though it is not completely accurate. The data set for each
subject is randomly split into a training set and a test set,
in the ratio 55% : 45%. We test the Bayes Point Machine
on five subjects. For comparison, we also test the Support
Vector Machine on these data sets [6]. The Gaussian kernel
with variance of 0.1 is used for SVM. The classification re-
sults are summarized in table 1. Running on a Pentium 3
computer, the average time for classifying a test data point
in our matlab implementation is around 8 ms, which is fast
enough to be used for real-time applications.

6. CONCLUSION AND FUTURE WORK
Trained with Expectation Propagation, the Bayes Point

Machine achieves an average 11.87% person-dependent clas-
sification error rate, which outperforms the Support Vector
Machine in our experiments. By combining the Bayes Point
Machine with a PressureMouse, this frustration-detection
system can be used for many real-time applications in human-
computer interaction, for example:

1. Adaptive Interface Design: This PressureMouse sensor
and detection algorithm can be used as a design tool
for guiding the development of user interfaces, helping
find and eliminate events that invoke users’ frustration.

2. Building Reinforcement Learner: The device can be
used to provide the reward function in a reinforcement
learning process, associating punishment with exces-
sive pressure applied to the mouse.

As to the future work, we aim to build person-independent
classifiers for the mouse pressure signals. Also, we are work-
ing on additional algorithms and sensors that integrate mul-
tiple modes of data in an effort to provide increasingly con-
fident and robust estimates of users’ expressions.
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