
Representation and Recognition of
Action in Interactive Spaces

Claudio Santos Pinhanez

Bachelor on Mathematics, University of São Paulo, 1985
Master on Applied Mathematics, University of São Paulo, 1989

Submitted to the Program in Media Arts and Sciences, School of
Architecture and Planning, in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Media Arts and Sciences

at the Massachusetts Institute of Technology

June 1999

© Massachusetts Institute of Technology, 1999. All rights reserved.

Author _________ __

Program in Media Arts and Sciences

Certified by ___________

Aaron F. Bobick
Associate Professor of Computational Vision, MIT Media Laboratory

Accepted by _________ _

Stephen A. Benton
Chair, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

Representation and Recognition of
Action in Interactive Spaces

Claudio Santos Pinhanez

Submitted to the Program in Media Arts and Sciences, School of Architecture
and Planning on April 30th, 1999, in partial fulfillment of the requirements

 for the degree of Doctor of Philosophy in Media Arts and Sciences
at the Massachusetts Institute of Technology

Abstract

This thesis presents new theory and technology for the representation and recognition of complex,
context-sensitive human actions in interactive spaces. To represent action and interaction a symbolic
framework has been developed based on Roger Schank’s conceptualizations, augmented by a
mechanism to represent the temporal structure of the sub-actions based on Allen’s interval algebra
networks. To overcome the exponential nature of temporal constraint propagation in such networks, we
have developed the PNF propagation algorithm based on the projection of IA-networks into simplified,
3-valued (past, now, future) constraint networks called PNF-networks.

The PNF propagation algorithm has been applied to an action recognition vision system that handles
actions composed of multiple, parallel threads of sub-actions, in situations that can not be efficiently
dealt by the commonly used temporal representation schemes such as finite-state machines and HMMs.
The PNF propagation algorithm is also the basis of interval scripts, a scripting paradigm for interactive
systems that represents interaction as a set of temporal constraints between the individual components of
the interaction. Unlike previously proposed non-procedural scripting methods, we use a strong temporal
representation (allowing, for example, mutually exclusive actions) and perform control by propagating
the temporal constraints in real-time.

These concepts have been tested in the context of four projects involving story-driven interactive
spaces. The action representation framework has been used in the Intelligent Studio project to enhance
the control of automatic cameras in a TV studio. Interval scripts have been extensively employed in the
development of “SingSong”, a short interactive performance that introduced the idea of live interaction
with computer graphics characters; in “It / I”, a full-length computer theater play; and in “It” , an
interactive art installation based on the play “It / I” that realizes our concept of immersive stages, that is,
interactive spaces that can be used both by performers and public.

Thesis Advisor

Aaron F. Bobick
Associate Professor of Computational Vision, MIT Media Laboratory

Thesis Committee

Thesis Reader ____ _______

Rodney A. Brooks
Fujitsu Professor of Computer Science and Engineering, MIT

Director, MIT Artificial Intelligence Laboratory

Thesis Reader ___________

Joseph Bates
Professor (Research), Computer Science Department, Carnegie Mellon University

President, Zoesis, Inc.

Thesis Reader __ ________

Ken Perlin
Associate Professor, Dept. of Computer Science, New York University

Director, NYU Center of Advanced Technology

Table of Contents

1. Introduction ...17

1.1 Motivations ...18

1.2 Problems and Proposed Solutions...20

1.3 The Projects...26

1.4 Summary of Contributions..28

1.5 Structure of the Thesis...28

2. Representing Action..30

2.1 A Definition for Action...32

2.2 Methods for Representing Actions..33

2.3 Action Frames...37

2.4 Reasoning Using Action Frames...44

2.5 Formalizing the Language: ACTSCRIPT...50

2.6 Problem: Actions Have Complex Temporal Structures..51

2.7 Summary ...53

3. Representing Temporal Structure Using PNF-Networks...54

3.1 Reasoning with Temporal Constraints ..56

3.2 IA-Networks..59

3.3 Past, Now, and Future ...66

3.4 A Better Representation: PNF-Networks..69

3.5 Computing an Approximation of the PNF-Restriction ...81

3.6 PNF Propagation ...86

3.7 Future Directions...92

3.8 Summary ...93

4. Action Recognition using PNF-Networks...95

4.1 Limitations of Current Methods for Action Recognition..96

4.2 Representing the Temporal Structure..97

4.3 Recognition Using PNF-Networks..101

4.4 Temporal Constraints vs. Detection Power...103

4.5 Detector Instances and Detectors ..106

4.6 Other Examples of Results..108

4.7 Recovery From Errors...110

4.8 Experiments in the “It” Scenario..114

4.9 Future Directions...118

4.10 Summary ...121

5. Interval Scripts ..122

5.1 Problems with current Scripting Techniques ..124

5.2 A Proposal: Interval Scripts ..127

5.3 Basic structures of Interval Scripts..128

5.4 The Interval Script Engine ..135

5.5 Handling More Complex Structures ...143

5.6 Future directions..150

5.7 Summary ...152

6. An Architecture and a New Domain for Story-Driven Interactive Spaces153

6.1 Interactive Spaces..154

6.2 The Story-Character-Device Architecture ..158

6.3 Computer Theater..162

6.4 Summary ...169

7. Building Interactive Spaces...171

7.1 The Intelligent Studio Project..172

7.2 “SingSong”..184

7.3 “It / I” ...192

7.4 “It” ..211

7.5 Summary ...218

8. Conclusion...219

8.1 Results and Contributions ...220

8.2 Directions to Explore ..222

8.3 A Final Word...224

Appendices ..226

A. Script and Inferences in the Cooking Show Example...227

Action Frame Script ..227

List of All Inferences for Each Action ..228

B. Grammar of ACTSCRIPT..234

C. Action Frames for “Mix” and “Wrap” ..237

Action Frame Representation for “Mixing Ingredients” ..237

Action Frame Representation for “Wrapping Chicken”...240

D. Grammar of Interval Scripts..244

References ...246

Acknowledgements

All the work described in this thesis in one way or another benefited from the ideas, sharp
criticisms, and support from my thesis advisor, Prof. Aaron Bobick. As detailed in the text, we
share the intellectual credit of many of the concepts and proposals. Aaron has been an
admirable supporter of some of my craziest ideas (starting with my coming to the Media
Laboratory) and boldest projects, including here his courage to back up my interest in computer
theater. Aaron, it has been great working with you for the last six years and I thank you deeply
for all I have learned from you.

I have to thank a lot of people, starting with my thesis committee, Rod Brooks, Ken Perlin, and
Joe Bates, for all the insightful comments and for the needed criticisms. Rod, Ken, Joe, thank
you for all the ideas and for your time, and I hope we can work together in the future.

Many great teachers were essential in indirectly shaping the ideas presented here, and, more
generally, in my Ph.D. formation. I want especially to thank David McAllister, Roz Picard,
Mitch Kapor, Ted Adelson, Bruce Blumberg, and Jae Lim for all the thoughts you gave and
provoked.

A pivotal presence during my MIT years was Prof. Janet Sonenberg from the MIT Music and
Theater Arts Department. Thank you for believing in me, for all the questioning and
challenging, and for the support in pushing theater and drama into the Media Laboratory
agenda. Prof. Claire Mallardi, from Radcliffe College, taught me how to look to my body, and
attending her two courses gave a very much-needed air to my artistic aspirations. Later, Beth
Soll and Joan Jonas were responsible for bringing dance and visual (performing) arts to my
soul. Thank you very much, from the rejuvenated left side of my brain.

Each project that I was part of at the Media Lab brought me a wealth of knowledge, mostly
from the people I worked with. The SmartCam project happened with the support of Frank Kao
and Michael Bove, who helped me with the digitizing of the cooking sequences. Later, Andrew
Wilson was essential in the process of digitizing the Alan Alda show. Also, very special thanks
to Alan Alda, Graham Chedd, and all the crew of Scientific American Frontiers for the great
help in recording the Alan Alda cooking show.

Going to Japan in the summer of 1996 marked a deep change in my career directions and
moved computer theater from the drawing board to the stage. Thanks to the MIT Japan
program and the Starr Foundation, and the support of Patricia Gercik, I spent an incredible
summer at the ATR Laboratory, in the heart of oldest capital of Japan. First, I have to thank
Kenji Mase and Ryohei Nakatsu for believing that I could materialize “SingSong” in 10 weeks,
and for the support they gave me. Kenji also shares the credit for the first development of
interval scripts, later to become a central piece of my work. At ATR I want to especially thank

Naoko Tosa for all the great discussions about interactive art, and the help of Sydney Fells,
Kazushi Nishimoto, Armin Bruderlin, and all the other friends there. Domo arigato gozaimasu.

For all who participated in “The KidsRoom” project (which is not described here) I want to
thank you for the opportunity of making me part of something really amazing. Our interactive
bedroom was one of the finest moments of the Media Laboratory, and I learned immensely
from all of you: Aaron Bobick, Stephen Intille, Freedom Baird, Jim Davis, Lee Campbell, Yuri
Ivanov, Andrew Wilson, Arjan Schutte, Jon Klein, Alex Weissman, and my UROP working on
the lighting control, Hugo Barra.

My full gratitude to the whole crew of “It / I” , for all of you who contributed their ideas and
hard work to materialize my dream. First of all, thanks to Aaron Bobick, transformed into a
theater producer, and to Janet Sonenberg for all the key insights and criticisms. John Liu and
Chris Bentzel shared most of the hard-working, sleepless nights needed to make the play run,
and without their commitment the play would have never happened. Raquel Coelho, thank you
for not allowing me ever to forget my duty to beauty and for your incredible work as the art
director of the play. Nathalie van Bockstaele volunteered ideas and heart to shape and deepen
the script. Freedom Baird and Richard Marcus, thanks for the great music/sound and for the
strength of the light design, respectively. Joshua Pritchard came from nowhere to become the
perfect actor for the play, less than two weeks before opening. Leslie Boundaryk worked very
hard to make the dream and the designs concrete. Monica Pinhanez faced the biggest piano she
has ever played and provided the musical presence I needed in the performances. Thanks also
to Andrew Wilson, Jim Davis, Maria Redin, Alice Cavallo, the HLV crew, Greg Tucker,
Dennis Irving, Kate Mongiat, Erik Trims, Michal Hlavac, Sabrina de Carlo, and my two brave
UROPS, Alicia Volpicelli and Nick Feamster. Finally, thanks to James Brown’s music, who
kept us awake in the middle of the long nights in the Cube (with our great, ping-pong-“playing”
neighbors, Craig Wisneski and Julian Orbanes). Thank you all for making the idea of computer
actors in a theatrical performance into a reality and a success.

This six years at the Media Laboratory have been a great experience, mostly due to friends and
colleagues with whom I shared the best and the worst of my moments. Stephen Intille has been
the perfect officemate, and our exchanges of ideas throughout these years have been incredibly
rewarding. Thanks also to the rest of the HLV gang, Jim Davis, Andrew Wilson, Yuri Ivanov,
Lee Campbell, Martin Szummer. And the friends from all the different regions of the Media
Lab forest, now spread all over the world: Marina Umaschi, Tomoko Koda, Greg Kimberley,
Linda Peterson, Laurie Ward, Kate Mongiat, Amy Bruckman, David Cavallo, Deb Roy, Sumit
Basu, Teresa Marrin, Baback Moghadan, Sara Elo, Michal Hlavac, Tony Jebara, Dave Becker,
Nuria Oliver, Warren Sack, Thad Starner, Fernanda Viegas, Adriana Vivacqua, Janet Cahn,
Irfan Essa, Martin Hadis, Steve Mann, Kris Popat, David Tames, Ali Azarbayejani, and Martin
Friedman. Also, thanks to all the people who I met in the Narrative Intelligence group, which
was my true introduction to life at the ML and in the new information age. Too bad it ended.
Thanks also to all students who are or have gone through the Vision and Modeling group, for
the occasional and fundamental exchange of ideas. It has been awesome.

Thanks to all friends, at MIT, Boston, US, Japan, and Brazil who contributed their ideas and
challenges, but specially their support and love throughout these years. Agnaldo Valentim,

Livia Pedallini, the fofomac crew (Dilma Menezes, Carlos E. Ferreira, Jose Coelho, Kunio
Okuda, and all the others), Ellen Nakamizu, Tom Harsanyi, Linda Carrubba, Vinit Mukhija and
all other friends from DUSP. A special thanks to my parents-in-law, who keep reminding me
that Brazil need some severe fixing and who prayed so much for my success. And for the
always-caring presence of my mother, whose example of surviving the worst always inspired
me when things were difficult. Love to you all.

My last and deepest thanks go to Monica, my wife, who I owe the opportunity of being at MIT.
Without her support I would not have applied, neither survived the many crisis and bumps of
the last six years. Without your smile, your laughs, your support, and, most of all, your love,
there would be no SmartCams, no PNF, no “SingSong”, absolutely no “It / I” . I hope I can be
as supportive to you, in your quest at MIT, as you have been to me. Thank you, from the very
bottom of my heart. I love you.

Thank you all for the most incredible years of my life.

My father, Roberto Santos, a movie director in
Brazil, used to tell me about his dream of the day

when his characters would become holograms and
follow him around the town. The day when they

would talk to him on the streets, cry while telling
their stories inside a bus, and argue to each other at

a party. The day when cinema would leave behind
the darkness of the movie theater

and the flatness of the screen.

My dream is to make his dream come true.

To my father.
(I miss you)

Chapter 1 Introduction 17

1. Introduction

The conjunction of real-time computer graphics, body-position sensors, fast computer vision
and speech processing, and synthesized music and voice is creating a new medium where
people are physically immersed in an environment by a world of images, sounds, and objects
that react to their actions. We call these environments interactive spaces, where the world
“space” is used to emphasize the difference to the non-materiality of virtual reality.

A central assumption of this thesis is that action is the fundamental building block of
interactive spaces. This assumption creates a need for powerful methods to deal with the
different aspects of actions and particularly with their temporal structure. In our work we
employ the term “action” referring to both the human and the computer activities, and
“interaction” as a coordinated set of multi-agent actions where the goal of each agent’s action
is to induce change in the other agents.

Throughout this thesis we propose solutions for the use, representation, and communication of
actions and for the scripting of interaction in interactive spaces. A major emphasis is placed on
the development of models for representing the complex temporal structures associated to
human actions and on fast algorithms to perform basic reasoning on such structures. We also
focus on interactive spaces that possess some form of narrative structure — story-driven
interactive spaces — since the amount of coordination required by a narrative dramatically
increases the need for the representation and recognition of actions.

Previous work on interactive spaces has mostly focused on either low-level issues as, for
instance, user tracking, character motor systems, or process communication [2, 125, 186]; or
meta-story level problems such as the automatic generation of interactive narratives [30, 52].
Our research addresses mostly middle-level issues involving the relationship between users and
characters and the story, including the understanding of users’ actions, the control of computer
characters, and the development of the story in the context of an interactive space.

An important component of our work is an effort to test our ideas by building real, complex
interactive environments. We chose this path firstly because it is often necessary to ground the
development of novel concepts into real systems. But our main reason to build actual spaces is
our belief that as important as to develop technology for interactive environments is to

Chapter 1 Introduction 18

understand how users act in such spaces, how their disbelief can be suspended, and how stories
can be told — or, maybe we should say, lived — in this new medium.

1.1 Motivations
Our research is the result of the convergence of some trends observed in different areas. A first
trend is the growing interest of the computer vision community in the analysis of video streams
depicting human beings and their activities. Although tracking of body parts is still a problem
attracting considerable amount of attention, there has been increasing interest on the
recognition of human actions [20].

Recognition of human actions is important for many different applications. A traditional
domain is surveillance, which is evolving from the automatic recognition of static images such
as satellite pictures towards the detection of human activity in stores, airports, parking lots, and
walkways (see, for example, [57, 72, 118]). It is also envisioned that action recognition can be
used in systems for helping people with disabilities [165], and general, in human-machine
interaction [122].

However, it is debatable if the pattern recognition-based approaches in use today (for example
[26, 43, 181, 182]) are appropriate to handle the recognition of human actions. Recent work in
vision has stressed the necessity of adequate symbolic representations for action [97, 111, 159].
The framework presented in this thesis supports this view and extends the previous research by
proposing more expressive methods of representing the temporal structure of actions.

A second direction followed by our research aligns with recent developments in the field of
artificial intelligence concerning methods for representing and controlling action. While there is
still considerable controversy between employing deep reasoning [50, 101, 149] or reactive
models in the design of intelligent creatures [16, 33, 37, 99], recent works have tried to find
specific domains where middle-term solutions can be applied [39, 130]. Our work on action
representation is based on the use of a small number of symbolic primitives (based on [149])
and on a simple reasoning system (inspired by [144]) that compensates for the weaknesses of
the inference methods with extensive sensing and actuation in the real world.

A third trend is the increasing interest in the construction of interactive, immersive systems for
entertainment [42, 44, 94, 121, 172], workplace [98], and simulation of real world
conditions [77]. After the initial surge of interest in virtual reality (VR) applications (see [79]),
a current research trend points towards the creation of full-body immersive worlds that have
narrative structure [18, 41, 84]. Our research has been focused on such story-driven systems
and especially on the representation of interaction through paradigms that enable the sensing
system to exploit the knowledge about the user’s actions by using the constraints coming from
the story or narrative.

We can trace the human interest in full-body, immersive experiences as far as the history of
ritual goes. However, it is in the 19th century that we start to see the creation of immersive
illusions based on technology. The most notable example is the panorama, whose aim was
“…to reproduce the real world so skillfully that spectators could believe what they are seeing
was genuine.” ([117], pg. 49). As shown in fig. 1.1, a panorama consists of an observation

Chapter 1 Introduction 19

platform surrounded by a painted canvas. To create the illusion of reality, the edges of the
canvas are not visible, hidden by an umbrella-shaped roof that covers the platform and by a
“false terrain” projecting from the observation platform. Panoramas were extremely popular
throughout the 19th century, depicting landscapes, battle scenes, and journeys (see [117] for a
history of panoramas).

From panoramas, the quest for an immersive experience has evolved through world fairs, zoos,
and more recently, theme parks, and adventure rides (see [183] for a history of leisure centers).
With the advent of computer technology, video games brought to life the possibility of
interactive experience, though restricted to the world behind the screen. Virtual reality
technology (3D stereo goggles, data gloves) tried to increase the immersion by erasing the
contact of the user’s body, as much as possible, with the real world. Our interest runs in the
opposite direction, that is, to create a real space that is augmented by images, sounds, and
interaction controlled by computers.

Finally, the fourth trend corresponds to the increasing interest in fusing art and electronic
technology that is observed in the last half of the 20th century. Starting with the pioneering work
in music by Stockhausen [91] and John Cage, electronic and computer technology have become
an essential part of music [153], including automatic, interactive music systems [147], in what
is commonly known as computer music. Similarly, computers are increasingly being used in
dance, film, and visual arts.

Interestingly, the presence of computers in theater is surprisingly timid (for one of the few
examples, see [142]). Many reasons contribute to this, but, according to our view, a major
difficulty is the lack of standard computer representations for the fundamental element of
theater: action. In this thesis we contribute to computer theater in two different ways: firstly, by

Figure 1.1 Cross section of the Panorama Français (reprinted from [117], pg. 142, from an original of the
Bibliotèque Française).

Chapter 1 Introduction 20

investigating computer mechanisms to represent and reason about action and interaction; and
secondly, most importantly, by creating and producing theater pieces that actively employ
computers.

1.2 Problems and Proposed Solutions
The main goal of this thesis is to investigate how human action and human-computer
interaction can be represented in a computer to allow the control of an interactive space.
Although we pay some attention to representational issues in the traditional AI sense, that is, by
exploring their inference power, our focus in this thesis is on a more specific problem, the
mechanisms for representing and reasoning about the temporal structure of action.

A common belief we challenge is that finite-state machines are good representations for the
temporal structure of human action. Finite-state machines are embedded in the commonly used
models for gesture and action recognition (especially in the probabilistic versions, using
dynamic programming [40] or HMMs [26, 165, 181]). The drawback of such models is that
they can not efficiently handle parallel actions or events. In particular, the number of nodes
necessary to represent parallel actions increases exponentially with the number of actions.

Our research proposes temporal models based on networks of temporal constraints, where a
particular instance of an action is not a path through the network (like in finite-state machines)
but a collection of time intervals corresponding to the occurrence of each sub-action and world
states. In our work we have used such models for both action recognition and interaction
control.

Besides this main theme, this thesis also discusses other aspects that are more specific to the
realm of interactive spaces. To facilitate the understanding of the scope of our contribution, we
can divide our ideas and results as related to six basic problems, as described below.

1.2.1 How to represent human action?
The first problem we address in this thesis is how to represent human action in a computer in
order to make recognition possible. We see action as movement happening in a context
(according to Bobick [20]) and as such, representing an action comprises of both methods to
describe movements (and their evolution through time) and the context where the action
happens. Also, representing an action involves the definition of mechanisms by which the
movements and context are integrated to characterize a particular action.

This thesis does not explore how to represent and recognize movements (see [20] for references
of relevant work). Instead, our focus has been on methods to associate a movement and context
to a specific high-level description. The goal is to have systems that, for example, given the
information that X is doing a cyclic, left-right movement of the hand and that there is another
person Y looking in the direction of the moving hand of X, could conclude that the action
corresponding to the hand movement is “X is waving to Y”.

Most attempts at logical formalization of action and, particularly, the effects of an action or
movement in a context, appeared in research in either philosophy and linguistics (e.g. [68, 69,

Chapter 1 Introduction 21

138, 149]) or formal logic [50, 55, 148]. The linguistic approaches were in general aimed at the
processing of natural language and are normally cluttered with semantic problems. Logic
approaches have been basically aimed to develop formalisms to infer logical consequences of
actions through deep reasoning mechanisms.

Logical systems typically experience difficulties when connected to real-world perceptual data,
(typically present in movement detection). As an answer to this problem, procedural
representations for actions have been proposed in different ways by Brooks [31, 32],
Rosenchein and Kaelbling [146], and Chapman [37]. Actions in these systems are represented
by the connections between actuators and sensors directly, but these representations present
difficulties for the exploration of any kind of symbolic knowledge, making them vulnerable to
context change.

Our work has been taking a middle ground between the approaches described above. We have
proposed a paradigm called action frames based on Schank’s conceptualizations [149] as a
formalism to represent action. According to this formalism, actions are represented by the
composition of smaller units that represent the sub-actions that are part of the main action and
particular states of the agent, objects, and the world (see [115, 171] for psychophysical
evidence). Action frames is a classic frame-based representation [105], where each unit belongs
to one of 11 basic categories of primitive actions.

This framework for representation possesses a very desirable feature. It is possible in specific
domains to implement inference systems that can infer from a high-level description of an
action its component sub-actions and some of the world states that are changed by the sub-
actions. This decomposition can ultimately lead to the generation of the movements and states
that can be perceptually detected by a recognition system. As we introduce in the next sub-
sections, it is possible to connect such sub-actions and states to real sensors and, together with
information about temporal structure, assign a high-level action to a specific period of time
given the pattern of occurrence of the sub-actions and states.

Our answer to the problem of how to represent action is quite biased towards our intended
application: action recognition. In this sense, we are less interested in the inference system that
produces the low-level representation of sub-actions than in the feasibility of the representation
method as a model for recognition. Nevertheless, we have implemented a simple version of an
inference system for a specific domain.

Action frames were initially developed as a way to represent context for vision routines in an
application involving automatic cameras — SmartCams — framing a cooking show, as
explained below. Action frames have been developed further into the definition of a multi-
purpose language, called ACTSCRIPT, that has been used mostly to communicate actions, action
requests, queries, and goals in interactive spaces.

Chapter 1 Introduction 22

1.2.2 How to represent the temporal structure of human action?
 How to efficiently handle complex temporal structures?
Assuming that an action is decomposable into sub-actions and states of the agent, objects, and
the world, and that there is a method of representing them, there is still one missing element:
time, that is, how these sub-actions and states happen through time. Such temporal structure
can define the difference between two actions. For instance, a system that only detects whether
or not a person’s mouth is open can distinguish between the actions “opening the mouth” and
“closing the mouth” just by considering the order in which the two states happen.

Most of the systems used in recognition of actions assume that the basic temporal structure of
every action is a sequence of sub-actions or states and represent time evolution through finite-
state machines (or probabilistic equivalents such as HMMs). However, our analysis of the data
obtained in the SmartCam project showed that, in fact, single-agent actions involving three or
more parallel threads of sub-actions are very common. Also, the number of parallel actions
tends to increase in the case of multi-agent activity. Since finite-state machines have to
exponentially increase the number of states as the number of parallel actions increase, we
started to look for more compact representations for the temporal structure of an action.

As the underlying structure for the construction of characters, representations of users, and
interaction scripts, we have been using a method for representing the temporal structure of an
action as an interval algebra network, or simply an IA-network, as defined by Allen [3]. An IA-
network is a constraint satisfaction network where the nodes correspond to variables on time
intervals and the arcs correspond to binary temporal constraints between the intervals —
expressed using disjunctions of Allen’s primitive temporal relationships [3].

An interval algebra network is one of the most expressive methods to represent time devised by
the AI research community. Besides making simple the representation of parallel threads, even
when they have multiple synchronization points, the interval algebra allows the representation
of mutually exclusive actions and states, unlike weaker methods such as point-based temporal
algebras [177]. However, there are difficulties in doing temporal constraint propagation in an
IA-network. For instance, to determine the occurrence of actions we have developed an
approach based on the computation of the minimal domain of the IA-network, the set of all
time intervals that belong to at least one solution. The problem is that most problems in
temporal constraint propagation in interval algebra networks are computationally difficult [177]
and, in particular, the computation of the minimum domain is NP-hard [176].

A central theoretical result of the thesis is the development of a method that circumvents the
computational complexity of the computation of the minimal domain by projecting of the IA-
network onto a specialized, 3-valued (past, now, future) constraint network called a PNF-
network. Although computing the minimal domain in finite constraint satisfaction networks is
also, in general, an NP-hard problem, in our experiments we have been employing an arc-
consistency algorithm (based on [90]) to compute an approximation of the minimal domain of
the PNF-network in time linearly proportional to the number of constraints. The approximation
is shown in this thesis to be conservative, that is, it always contains the minimal domain and,
moreover, also contains the projection of all the solutions of the original IA-network.

Chapter 1 Introduction 23

We have been applying the approximation method for recognition of actions and for the control
of interactive spaces. In practice, we have found no situation where the difference between the
approximation and the actual value would have had a negative impact either in the recognition
of an action or in the activation of a control structure.

1.2.3 How to recognize actions with complex temporal structures?
Given an action represented as a set of sub-actions, some of which are directly detectable by
perceptual routines, and the corresponding temporal structure, our goal is to determine whether
the action — and/or each of its component sub-actions — is currently happening given the
input from perceptual sensors and, if necessary, the previous state of the world.

Kuniyoshi and Inoue [81] used finite automata to recognize human manipulations of blocks.
Probabilistic methods for visual action recognition have been proposed in the computer vision
community using HMMs [24, 26, 165] and stochastic grammars [22]. However, as noted above,
such approaches are not able to represent efficiently parallel threads of actions that occur in
many everyday actions.

Moreover, we believe that it is important to exploit the fact that logical impossibilities prevent
the occurrence of some sequences of sub-actions, and that it is necessary to incorporate such
constraints into vision systems designed to recognize human action. Some work in the vision
community (e.g.[65, 111, 159]) has attempted to incorporate logical definitions of action into
perceptual mechanisms. However, these systems are unable to cope with most of the complex
temporal patterns of everyday actions that include external events, simultaneous activities,
multiple sequencing possibilities, and mutually exclusive intervals [6].

Using the IA-network representation for temporal structure described in the last section, we
have developed an effective method for using that representation to detect the occurrence of
actions. In our approach, we project the IA-networks into PNF-networks and the state of the
main action and of each sub-action is determined by computing the minimal domain of the
network, considering as input the state of the nodes corresponding to perceptual routines.

This process is the basis of our PNF propagation algorithm that determines the current state of
the sub-actions and states of a PNF-network considering not only information from perceptual
sensors but also the previous state of the sub-actions. PNF propagation represents sensor values
and previous states as unary constraints on the PNF-network and, by computing the minimal
domain, is able to rapidly determine whether the nodes in the action are happening or not. In
this thesis, we prove that the PNF propagation method is conservative, that is, its result always
contains the true state of the IA-network.

A problem with the PNF approach is the common brittleness associated with constraint
satisfaction systems. Although it is not clear how to integrate probability without losing the
linear complexity, we have experimented with some methods for recovery from sensor errors.
The basic idea is to keep track of the multiple threads of possible, non-contradictory
configurations of states that correspond to the different error conditions in each time step.
Surprisingly, we have found that the potential explosion in the number of different threads is
prevented by the occurrence of frequent contradictions between the error conditions through

Chapter 1 Introduction 24

time. This thesis presents experiments with manually extracted data and with real sensor
values, showing that actions are detected by this method in spite of noisy sensors.

1.2.4 How to represent the temporal structure of human-machine interaction?
In an interactive system, complex temporal structures exist not only in the actions performed by
the user but also due to the interaction among the multiple output modules and the characters.
The management of how the multiple, parallel events unfold can become difficult because it is
necessary to follow the story or interaction scheme considering response delays and generation
constraints from the input and output devices (for example, when only one sound file can be
played a time). Successful story development also requires precise timing among the actions of
different characters.

The objective of our research in this area is to create an interaction scripting language that
handles such complex temporal structures. This work extends the work on action representation
for recognition by using the same underlying structure, PNF-networks, and by applying a
variation of the PNF propagation method in the run-time control engine of the interactive
system.

Previous work on scripting languages for systems with narrative structure has focused on
different aspects. Bates [14], Perlin [125] and Blumberg [16] experimented with different ideas
for behavior design, using traditional AI planning and behavior-based approaches. There has
also been interest in languages for description of multimedia interaction as for example
Director [1] and the works of Buchanan and Zelllweger [34] and Hamakawa and
Rekimoto [59]. Those languages, however, lack appropriate ways to represent the duration and
complexity of human action in immersive environments: hidden in the structure is the
assumption that actions are pinpoint-like events in time (coming from the typical point-and-
click interfaces for which those languages are designed) or a simple sequence of basic
commands.

Moreover, most of the work referred above assumes either that device response is immediate
and reliable or that duration of human actions is very short. Those assumptions are almost
never true in an actual interactive space. To overcome these limitations we propose in the thesis
the interval script paradigm that associates a temporal interval without pre-fixed duration to
every action and sensed state of the world.

An interval script is a computer file containing the description of each action and statements
about how the intervals are related temporally. The paradigm introduces many improvements
over previous languages for scripting interactions. First, interval scripts de-couple the desire or
need for an action and its actual occurrence. This is a major difference to other languages for
handling device-level events like Isis [2]. Interval scripts allow the designer to forget the details
involved in managing delays and device failures. Second, it is easy in the interval script
language to compose actions from previously defined sub-actions and, at the same time, to
automatically control the activation and scope of the occurrence of the sub-actions.

Third, interval scripts also allow subjecting actions to explicit temporal constraints declared by
the designer of the system, including the declaration of mutually exclusive actions. Unlike in

Chapter 1 Introduction 25

André and Rist’s work [9], with PNF propagation it is possible to employ strong temporal
algebras and still handle high levels of interactivity in real-time.

The temporal constraints in an interval script file define an IA-network that is automatically
projected onto a PNF-network prior to run-time. In our implementation, the file defining the
interaction is translated into C++ code that describes both the associated PNF-network and the
functions used to start, stop and compute the actual state of intervals. The methods and
functions defined in the C++ code are used by the interval script run-time engine. During run-
time, the engine first computes the current state of each node of the PNF-network
(corresponding to the occurrence of sub-action and states) and then compares it to the desired
state of that node in the next instant of time, as determined by a variation of the PNF
propagation method. In the case that the desired state of a node is different from its current
value, an action of starting or stopping the corresponding sub-action is taken accordingly. A
major advantage of employing PNF-based temporal constraint propagation is that it is possible
to compute simultaneously desired states for all the nodes so they satisfy every constraint.

The validation of our scripting method comes from its use in three complex projects of
interactive spaces that involved IA-networks of up to 300 nodes in situations where fast design
and development of the interactive space and high reliability were crucial.

1.2.5 How to build physical, story-driven interactive spaces?
There has been an increasing interest in creating interactive spaces for entertainment with a
strong narrative structure or with an underlying story [18, 71, 112, 174]. These systems have
employed different control architectures, each of them with several shortcomings. In this thesis,
we are also interested in determining what would be a good architecture for a story-driven
interactive space.

In our view, centralized story control is essential for an interactive system to achieve successful
story development. However, such a claim is clearly contentious. Perlin and Goldberg [125] as
well as Bates et al. [14] built (semi-) autonomous computer-actors where the story was
distributed among characters or seen as the natural result of the interaction between the
characters and the user. However, as noted by Langer [83] and Murray [109], well constructed
stories require coordination and synchronicity of events and coincidences; also, dramatic
actions have to forecast the future, especially in the context of theatrical stories.

To answer these concerns, we have proposed a three-level architecture for story-driven
interactive systems called story-character-device architecture, or SCD. The defining
characteristic of the SCD architecture is the separation between character and story control. In
the SCD architecture the characters are semi-autonomous, receiving commands from the story
control module although possessing the ability to sense the on-going action and to coordinate
the accomplishment of their goals according to the reality of the stage. Also, as in other
approaches [16, 125], characters are separated from device specific concerns.

Evaluating the usefulness of a system’s architecture is quite difficult. In our case we have
implemented two similar stories firstly without and later with the SCD approach and have
found the implementation considerably simpler in the second situation.

Chapter 1 Introduction 26

1.2.6 How can computers be incorporated to theater?
Instigated by the realization that theater is the performing art with the most inexpressive use of
computers (compared to music, dance, and even visual arts), we have started to ask why
theatrical performances involving active use of the computers — baptized by us as computer
theater [129] — are so rare (with few exceptions, among them the work of George Coates in
San Francisco, Reaney’s “The Adding Machine” [142], and a recent experiment of Bob
Wilson, “Monsters of Grace”).

We have answered this question in two different ways. First, we analyzed what fundamental
elements of theater must be represented in a computer and concluded that a major obstacle for
computer theater performances is simple and powerful representations for human action. In this
sense, this thesis is also a contribution for the technology of computer theater. Second, we have
been actively experimenting with computers in theater plays, particularly in the case where the
computer plays one of the characters in the play. Our conclusion is that there is an amazing
space in theater to be creatively explored by play-writers, actors, and directors.

1.3 The Projects
Our proposals have been tested in four different projects that involved the design and
implementation of an interactive space. The four projects have many elements in common:
first, all of them have a narrative structure, that is, they are story-driven interactive spaces.
Also, in all projects the script of the story is available in some format for the computer
controlling the space. Second, they all employ cameras as their main sensing device. Third, the
projects, not surprisingly, involve people performing actions. And fourth, in all projects but the
last one the interactive space is used for a performance.

The first project we developed was the Intelligent Studio, a TV studio where cameras
automatically frame TV shows under the direction of a human director. The main goal was to
implement a SmartCam, a “robotic” camera that could answer, through video processing,
requests for specific shots such as “medium shot of X” or “close-up of object Y” — the normal
commands used by TV directors. In particular, we selected a cooking show as the domain of
our experiments because of the difficulty normally associated in framing cooking actions and
the variety of types of actions that are performed in such shows. So far, the Intelligent Studio
project has been the major testbed for the action frames formalism proposed above, and it was
the particular domain where we have developed our inference system for determining the sub-
actions of an action.

Starting in the fall of 1994, and in parallel to the development of the Intelligent Studio, we have
grown increasingly interested in exploring dramatic performance with computers. In the spring
of 1996 we realized that computer theater could be a very good domain for action recognition
for many reasons: the basic element of drama is action; what happens in a play is described in
the script; and gestures and movements in theater are explicitly and purposefully performed.
Also, if a computer plays one of the characters, we have a situation where the recognition of
actions is critically important and in which the results are clearly visible.

Chapter 1 Introduction 27

The first opportunity for a project combining our scientific interests in action recognition with
our desire to bring computers to the realm of theater came during a summer spent at the ATR
Laboratories in Kyoto, Japan. There we conceived, designed, implemented, and presented
“SingSong”, a short performance where a human clown interacts with four computer graphics
characters projected on a large screen. The characters are automatically controlled by a system
using both vision processing and a loose, non-timed representation of the script.

In “SingSong” we started developing our work in paradigms for scripting languages. To
develop the paradigm further, as well as to expand our work with computer theater, we decided
to embark in a more ambitious computer theater project that culminated with live performances
of the play “It / I” in November of 1997.

“It / I” is a pantomime where a human character — called I — struggles against a machine-like
character controlling his environment — It . The machine character is played automatically by a
computer monitoring the stage with a three-camera system. The character It appears on stage in
the form of animated computer graphics objects projected on two stage screens. The play is
composed of four scenes telling the journey of I in his interaction with It , exploring different
interaction modalities such as the human actor’s position on the stage, his gestures, and
manipulation of props.

The project “It / I” posed enormous technical challenges. First, the control system had to run
smoothly for a long period of time while progressing through the different scenes of the play.
The implementation of the automatic character had to be flexible enough to be improved after
each rehearsal, and thus, the play became the major test for our concepts and proposals about
scripting paradigms.

After each performance of “It / I” we invited the public to go up on stage and re-enact one of
the scenes of the play. This follows our concept of immersive stages where we envision spaces
that contain an interactive story that can be both explored by a performer or experienced
directly for a user or member of the public. Although the experience was very interesting, we
found that it was necessary to refine further the control system in order to really achieve user
immersion.

The project “It” aimed exactly on building an interactive space that recreates the basic story of
the play “It / I” for a user without previous exposure to the material of the play. Unlike the
other three projects, “It” is not a performance space but a story-driven interactive space for a
user. Although we employed a physical structure similar to the one used in the play, with “It”
we had the opportunity to correct some problems in the interval script paradigm that were
observed during the production of “It / I”. In fact, in this thesis we present interval scripts
following the syntax of this last implementation.

Chapter 1 Introduction 28

1.4 Summary of Contributions
The contributions of this thesis are:

 i. The action frames formalism to represent actions that is an augmentation of Schank’s
conceptualizations [150] by the inclusion of IA-networks [3] to represent the temporal
structure of the sub-actions.

 ii. PNF-networks, a specialization of IA-networks that allows the computation of a good
approximation of the minimal domain in linear time;

 iii. the PNF propagation method that combines sensor input, past information, and the
temporal structure of actions to enhance recognition;

 iv. the interval scripts paradigm for describing interaction that allows the use of strong
temporal constraints between actions and events in a script;

 v. the story-character-device architecture (SCD) for interactive story-driven systems that
separates story from characters and devices into different levels, allowing centralized
story-control of semi-autonomous characters;

 vi. the definition and classification of computer theater;

 vii. “SingSong” and “It / I” , the first public performances of autonomous computer
characters in theater.

1.5 Structure of the Thesis
The structure of the thesis roughly follows the sequence of problems and solutions described in
section 1.2. In chapter 2 we discuss methods for representing actions and present the idea of
action frames. In that chapter we also examine a particular inference system we have built for
the Intelligent Studio application. It is important to notice that the main goal of chapter 2 is to
introduce the framework that we assume for the rest of our discussion: actions are characterized
both by specific movements and changes and by contextual information and can be
decomposed into smaller units that are related to each other by a complex temporal structure.

Within that framework, we focus chapter 3 on the discussion of temporal representation and
reasoning. That chapter reviews the most common formalisms for time representation and
examines in depth interval-algebra networks. Following we define PNF-networks, investigate
the properties that link the two networks, and demonstrate that the minimal domain of a PNF-
network can be approximately computed in linear time (in the number of constraints). We end
the chapter formally defining the PNF propagation method and by proving that it preserves all
the solutions of an IA-network. This chapter is essentially theoretical and aims to define
formally the methods and ideas used in the rest of the thesis.

The goal of chapter 4 is to present our results in using IA-networks to represent actions and
PNF propagation to detect their occurrence. We first review the literature in the area and
follow by examining an example of representation and recognition of a simple action using our
method, assuming perfect sensors. After examining two, more complex examples, we propose a

Chapter 1 Introduction 29

method to accommodate a limited amount of error in the sensor information and demonstrate
its adequacy in an experiment using real sensor data from the project “It” .

In chapter 5 we introduce through simple examples the concept of interval scripts. The core of
the chapter is the description of the run-time engine that reads the interval script file, monitors
sensors, and takes actions to assure that the sensed state of the world remains compatible with
the structure described in the script. Additional structures allowed by the language are
examined afterwards in an example describing one of the scenes from “It” .

Story-driven interactive spaces constitute the theme of chapter 6. The basic goal of this chapter
is to analyze the concept of interactive spaces and to propose the SCD architecture for story-
driven spaces. We also include in this chapter our analysis of computer theater, composed of a
review of theatrical experiences involving computers, a proposal for a classification, and a
report of our involvement with computer theater.

Chapter 7 presents the four projects used to evaluate the ideas of the thesis. Besides examining
the impact of the different proposals in each project, the chapter also describes the technology,
design, and final results of each project. A reader interested in building actual spaces will find
an enormous amount of practical information in the descriptions of these projects.

We conclude the thesis with chapter 8, which summarizes the contributions, evaluates the
results, and comments on directions to be explored. The thesis also includes a list of references
and four appendices containing extra information on the inference results (appendix A), the
language ACTSCRIPT (appendix B), the representation of two actions in action frames
(appendix C), and the syntax of the interval script language (appendix D).

Most of the ideas presented in this thesis are the result of joint work with my advisor at the
MIT Media Laboratory, Prof. Aaron Bobick. The initial work on interval scripts included
researcher Kenji Mase from the ATR Laboratories (Kyoto, Japan). The writing and directing of
“It / I” was advised by Prof. Janet Sonenberg from the MIT Music and Theater Arts
Department. Because of this joint work, but mostly for stylistic reasons, we opted to have the
thesis written in the first person of the plural (“we”). However, all the opinions expressed in the
thesis should be attributed solely to the author unless explicitly noted.

Chapter 2 Representing Action 30

2. Representing Action

The goal of this chapter is to introduce the basic concepts on representation of actions that
frame our work in action recognition described in the next chapters. We also introduce one of
the basic assumptions that permeates this thesis, that actions are discrete units of change where
the object of change is either the state of the actions’ agents, other agents, or the environment.

We differentiate action from body and object movement and from gestures and activities. This
is addressed in section 2.1 of this chapter where we adopt Bobick’s definition of action [20]
that views action as a movement happening in a context. In this view the consequences of an
action and the intention of the agent are intrinsic components of what an action is. Empirical
evidence for this comes from Newtson et al. [115] and Thibadeau [171], based on experiments
where people perceived actions as discrete units of time where agents accomplish goals.

The main issue discussed in this chapter is how to represent an action, particularly in a form
that is suitable for action recognition. From the different methods proposed in the past (as
described in section 2.2) we adopted a symbolic representation paradigm based on Schank’s
conceptualizations [150]. Our representation, called action frames, is a simplification of the
original proposal and aims to create a framework suitable for automatic recognition of human
action. In section 2.3 we describe, through examples, the basic ideas behind the translation of
linguistic descriptions of actions into the action frames formalism. Later, in chapter 4, we
propose the augmentation of conceptualizations with a mechanism to represent temporal
structures based on Allen’s interval algebra networks [3].

Throughout this chapter we present examples drawn from the script of a TV cooking show
where a chef demonstrates how to make a dish with chicken fillets. The choice of this particular
example and domain comes from our project to create an Intelligent Studio. As described in
chapter 7, this project focused on developing a space where automatic cameras frame elements
of a TV show under the command of a TV director. During the development of the project we
found that the script of a TV show contains a great deal of information about the actions
happening in the studio. In the Intelligent Studio project we developed an architecture in which
the action frames corresponding to the actions in a script provide critical information for the
control of the automatic cameras [130].

Chapter 2 Representing Action 31

In the definition of the action frame representation we paid particular attention on how the
formalism entails easy decomposition of the action into its component sub-actions and how it is
possible to automatically identify some state changes implied by an action. Section 2.4 explains
how the information in an action frame can be detailed by simple common sense reasoning
inference procedures based on Rieger’s work [144]. As an example we describe the
implementation of the inference system for visual attributes used in the Intelligent Studio
project.

The action frame paradigm has been developed further into a formal language we call
ACTSCRIPT, which we briefly describe in section 2.5 In ACTSCRIPT the action frames are
expressed in plain ASCII text strings that can be interpreted into C++ objects. Although the
basic mechanisms for inference have been implemented, we have not used ACTSCRIPT in
situations where inference is necessary. Instead, ACTSCRIPT has been primarily used as a
communication language between high-level modules in interactive spaces.

However, as pointed above, the aim of our representation is automatic recognition of actions.
We conceive recognition systems using a representation scheme where perceptual features can
be associated with the sub-actions and states that correspond to an action. During recognition
these features are matched to the output of sensor routines. However, an action is characterized
not only by its sub-components, but also by the order in which they occur. In section 2.6 we
argue that the sub-actions of an action often occur across multiple threads subject to mutual
temporal constraints. However, most of the currently used schemes for representing temporal
structure of actions, based on finite-state machines, implicitly assume a sequential structure of
the occurrence of the sub-actions.

This incompatibility between the temporal mechanisms adopted by most computer vision
recognition systems and the reality of everyday actions is the main motivation for most of the
work developed in this thesis. In many aspects, the main goal of this chapter is to establish the
need for more elaborate temporal structures. The next chapter will discuss this issue in detail
and propose the use of Allen’s time interval algebras [3] to model the temporal structure. As we
will show throughout the rest of the thesis, it is possible to develop fast mechanisms to
recognize human actions and to control human-machine interaction based on this formalism.

Finally, we present here a framework where actions are not in the exclusive realm of human
beings. When machines move bits or atoms in a context and with a perceived intention, it
makes sense to talk about recognition of machine actions. Since action is a movement in a
context, even if a machine has complete access to its own state the recognition of the actions it
executes also depends on determining the context in which the machine is immersed. For
example, when a computer displays on the screen a message about a printer error, we can say
that the action “warning the user about a printer error” is happening only if the user is there to
actually read the message. Although the movement corresponding to the action had happened
(the message was displayed), the context (the user reading it) might not be occurring.

Finally, there are actions that involve multiple agents, such as “arguing” or “negotiating” .
Their representation can be accomplished by considering sub-actions performed by different

Chapter 2 Representing Action 32

agents. In particular, the considerations in this chapter about representation of human action
can be applied to the problem of representing human-machine interaction.

2.1 A Definition for Action
The first issue to be considered is to define the term action, particularly in the case of how we
perceive the occurrence of an action. First, it seems that every action is associated with a
change or movement. Miller and Johnson-Laird [104] argue that human perception of action
happens at least in four different categories: objects, attributes, states, and events where
“Events are perceived when changes occur; not all changes are perceived as events, of course,
but all events involve changes of some kind… The generic term for the thing that changes is
‘state’.” ([104], pg. 85). Movements, following this definition, can be seen as events that have
duration. However, not all movements are associated with actions: as pointed by Newtson et
al. [115] and Thibadeau [171], actions are perceived as discrete units with a clear begining and
end. These discrete events are termed behavior units in Newtson et al. [115].

Moreover, as discussed by Thibadeau [171], “The perception of causality is important in the
perception of many actions, but it may not be involved in the perception of all actions.” ([171],
pg. 118). Bobick [20] advocates this distinction between discrete units of behavior that have
causality and contextual components and those that do not. His classification is suggested in the
context of computer vision and distinguishes three categories of problems in recognizing
human motion, according to an increasing use of knowledge: movements, activities, and
actions. Basically, a movement is “... a space-time trajectory in some configuration space.”
([20], pg. 1258), whose recognition is independent of contextual information, except for
viewing conditions. An activity is a sequence of movements that can be recognized based on
the statistical properties of their temporal relationships. Finally, an action is defined to
“…include semantic primitives relating to the context of the motion.” ([20], pg. 1258) By
defining action as a movement or set of movements in a context, its recognition requires the
inclusion of knowledge about the context and the domain, and the hypothesizing and
verification of goal achievement.

Similarly, Israel et al. define action as “…the content properties of agents that agents have in
virtue of performing [those] movements in certain circumstances” ([65], pg. 1060). The
interesting point brought by their discussion is the fact an action must be always associated
with an agent and does not exist as a temporal entity but, instead, it is a temporal property. In
other words, actions are always executed by agents, and are interesting “… insofar as they are
done purposively, intentionally, vindictively, and the like.” ([65], pg. 1061).

We adopt here Bobick’s definition for an action [20], implicitly assuming the discreteness
advocated by Newtson et al. [115] and the agency of Israel et al. [65]. That is, for the scope of
this thesis, an action is a discrete unit of behavior that involves a movement in a given context,

action = movement + context

Chapter 2 Representing Action 33

In a general sense, context is the situation where the movement happened. In the case of
machine recognition of action, we can define context more precisely to be all the information
about the situation that the perceiving system has besides the movement itself (see also [19]).

Of course a change in context produces a change in the associated action. For example, the
same movement of the fingers is perceived as “typing” if it happens on a computer keyboard,
and as “playing music” if it happens on a music keyboard. Recognizing an action is, thus, the
process of attaching a symbolic label to a movement. This requires both the detection of the
movement and an assessment of the current state of its agent and of the world.

Notice that our definition includes as actions the movements of machines and objects in a
context: “copying part of the memory to a disk” is, after all, a movement — a “behavioral” unit
with duration. In the context where the chunk of memory is a self-contained unit (as perceived
by the user), the movement can be labeled as the action “saving a file to disk”. Even in the case
where a machine can access every bit of their memory and state, determining the machine’s
action also involves determining the current context that, for practical purposes, normally will
require some assessment of the state of the environment or, in human-machine interaction, the
state of the user.

Moreover, actions are discrete segments of time they can be perceived in different granularities.
The action “picking-up a glass from a table” can be regarded as a unit, but also as composed of
the sub-actions “approaching the glass”, “grasping the glass”, and “lifting the glass”. Actions
can be sub-divided but the smaller sub-actions respect the boundaries of the original action
(see [115]).

Another situation is when different agents perform different sub-actions. For instance, when we
say that two persons are arguing, we are describing an action that involves sub-actions from
two different agents. We use the term interaction for the special case of a multi-agent action
where the objective of each agent’s actions is to cause change in the other agents. For instance,
when two people argue, each is trying to produce a change in the other person’s mental state.
When a user types in a keyboard, his intention is to produce a change in the machine’s memory
state that is usually answered by a change in the screen to produce a change in the user’s visual
field. Therefore, according to our definition, action and interaction are considered similar
concepts, and applicable both to people, machines, and human-machine interaction.

2.2 Methods for Representing Actions
Having defined the meaning of the terms action and interaction, we can go back to the main
theme of this chapter: how to represent action in a computational form. First, we assume the
fundamental hypothesis of Newtson et al. and Thibadeau [115, 171], that is, that actions are
discrete units. Our second assumption is that an action can be decomposed into smaller actions,
or sub-actions. Finally, we assume that the result of an action changes the state of the agent, of
another agent, or the environment.

Since action is movement in a context, it is essential that any computational representation for
action provide a mechanism to store context. While a representation for movements can mostly
rely on describing functions on features spaces, representing an action must include the

Chapter 2 Representing Action 34

contextual elements that differentiate that action from any another action with the same
associated movement. Consider the examples of “typing” and “playing piano” : in order to
distinguish the two actions, the representation of each action must differ from each other about
the place where the identical pattern of movement of the fingers is happening.

2.2.1 Representation and Recognition
Although representations for actions have multiple uses, we examine here primarily
representations suitable to be used by a perceptual recognition system. This imposes some
requirements in the representation method. First, it must provide means for the description of
the movement and its different qualities, speed, shape, appearance, and flow, in a format that
enables machine recognition. As discussed below, the majority of the work in visual
recognition of actions is, in fact, concentrated in the recognition of movements in a fixed
context.

However a full action recognition system needs to identify both movement and context. While
movement must be perceived by sensory systems, context can be obtained not only by
perceptual mechanisms but also by accessing information from other sources. For instance, a
vision system that knows that there are no pianos in a room can automatically rule out that a
“playing piano” action is happening when movement of fingers is detected over a surface in
that room.

Given a representation of an action and information about the occurrence of movements and
about the context, how can the action be determined to be happening — that is, in our
terminology, detected? In general, a recognition system compares the temporal evolution of the
sensory data and of the context with the representation and, according to some metric, decides
if the two are similar or not. Notice that the similarity metric has to consider two aspects:
whether the sub-actions and states of the representation correspond to the sensory and
contextual data, and whether the temporal sequence of movements and states is compatible
with the temporal structure of the action.

We postpone until the next chapter the consideration of the methods to represent the temporal
structure. Here, our intention is to discuss representations for the sub-actions and states and,
particularly, how a representation of an action can be used to infer its composition and its
effects in an environment.

2.2.2 Representing Movement
First, let us examine briefly the ideas used to represent the movement component of an action.
Many different computational representations of movement have been used in computer
graphics. In most commercial software, movements are represented as temporal trajectories in a
space of variables, normally associated with joint angles and translational changes of the center
of coordinates (see [8, 10, 170]).

Such representations pose many problems for the inverse problem, that is, to recognize and
classify observed movement. Rohr [145] used 3D cylindrical models to recognize walking
movements. Polana and Nelson [139] used the distribution of motion in the area of the action to

Chapter 2 Representing Action 35

recognize among seven types of activities such as running and jogging. Gavrila and Davis [53]
used 3D models to track upper body movements. Recent work by Bregler and Malik [29]
proposes exponential maps and twist motions to simplify the recognition of movements of
articulated structures such as the human body. Bobick and Wilson [24] proposed the use of
sequences of states of eigen-vector projection coefficients in a configuration space, allowing
the direct use of imagery in the representation of movement. Davis and Bobick [43] proposed
the use of view-dependent temporal templates for the representation of full-body movements
and a recognition mechanism based on Hu moments.

2.2.3 Representing Change and Causality
A great deal of work in artificial intelligence has been concerned with how to represent change
and causality. Starting with the pioneering work of Nilsson [50], McCarthy [101], and
Sacerdoti [148], action representation has gone into increasingly levels of sophistication. A
good survey, exploring in detail the temporal structure, is given by Allen and Ferguson in [6];
see also [166]. More recently there has been much interest in the concept of fluents, particularly
in the work of Gelfond and Lifschitz [55], later extended by Lobo et al. [85].

The general problem of logic approaches is that the representations are very computationally
expensive, making unfeasible their use in practical situations of recognition or control. Also,
most of the formalisms can not cope with the noise of sensory systems and typically have not
been used in conjunction with real data. Exceptions are the works of Maddox and
Pustejovsky [92], Kuniyoshi and Inoue [81], and Siskind [159].

Robotic systems have used normally simplifications of full first-order logics where each action
of a robot is represented in terms of pre-conditions and post-effects [116]. Normally these
systems assume that when an action is being executed no other action happens, allowing the
use of simple search methods for planning. Another popular scheme employs AND/OR trees
(see [116]) to represent actions and goals as alternate layers, as described in [38], where an
action accomplishes a conjunction of goals, and to achieve a goal there are multiple possible
actions. A limitation of this approach is that the behavior of an agent can only be represented as
a sequence of actions that accomplishes a sequence of goals, therefore excluding actions that
involve parallel, coordinated execution of sub-actions. As we will see later, human actions tend
to include multiple threads of sub-actions and states that are concurrent, making this
representation inadequate.

2.2.4 Representing Sub-Actions
As mentioned above, actions can often be decomposed into simpler sub-actions. A variety of
methods have been employed to represent the sub-actions and their temporal structure. We
defer the review of different temporal formalisms to the next chapter and briefly summarize
here how the sub-actions themselves are represented.

Decomposition of problems into smaller parts have always attracted the interest of researchers
in artificial intelligence, and in 1963 Slagle introduced the use of AND/OR trees to decompose
problems [160], in the context of solving symbolic calculus integration. At AND nodes, the
sequence of sub-actions necessary to achieve the action is represented as the node’s children.

Chapter 2 Representing Action 36

At OR nodes, actions that have identical effect are encapsulated in the children nodes.
Therefore, an instance of an action is represented by any sub-tree of the original tree with at
most one OR node per level, and consists of a particular sequence of sub-actions. As in the case
described above, AND/OR trees are hardly adequate to represent parallel actions. In fact, using
a more generic definition of AND/OR trees, it is possible to prove that they are equivalent to
context-free grammars [58].

Minsky’s idea of frames [105] have been adapted by some authors to represent actions and sub-
actions. In particular, Roger Schank has proposed conceptualizations [149] where all verbs are
represented by a composition of 11 primitives. In the next sections we discuss how to adapt his
model for the representation of actions in machine recognition systems and for communication
among modules in an interactive system. Notice that although Schank’s original formulation
does not allow the expression of more complicated temporal structures, it does not exclude
them like some of the other proposed representations for action. Frames were also used by
Neumann [113, 114] to represent actions in the domain of traffic understanding.

A very popular model for an action composed of sequential sub-actions is a finite-state
machine. In one common approach, each state of the machine represents a state of the system
(as defined by Miller and Johnson-Laird [104]) and the transitions correspond to actions.
Alternatively, each state of the finite-state machine can correspond to an individual sub-action
and the transitions correspond to the boundaries between actions. Notice that it is implicit in
these definitions that any instance of a particular action is composed of a sequence of sub-
actions, with no parallel threads of sub-actions or states.

Following the success of Hidden Markov Models (HMMs) in speech recognition, there has been
a great deal of research in representing sub-action structure using these probabilistic finite-state
machines (for example, in [182], and in an application for recognition of American Sign
Language, [165]). An important feature of HMMs is that the transition probabilities can be
learned by repetitive training. Examples, in the realm of visual recognition, are the works of
Starner and Pentland [165], Wilson and Bobick [181], and Brand et al. [27]. Recently there has
been some work with HMMs to represent human interaction [118], and human-machine
interaction [70].

Intille and Bobick [63] have employed a combination of a frame-based language and Bayesian
networks to represent and recognize American football plays. This is one of the few recognition
methods that explicitly acknowledges the need for and investigates the issue of considering
both context and movement in the recognition of an action. The most interesting feature of this
work is that the large Bayesian networks are automatically assembled based on the description
of the play, using a frame-based language that also includes some temporal representation.

Finally, context-free grammars have been used to represent actions with recursive sub-
structure. In particular, Nagel has done extensive work in the representation of traffic actions
using grammars [111]. Recently Bobick and Ivanov [22] proposed the use of probabilistic
grammars in a formalism where training is still possible and that supercedes HMMs.

Chapter 2 Representing Action 37

2.2.5 Representing Context
Efficient ways to represent the context of an action have eluded for many years the researchers
in artificial intelligence. The difficulties are basically related to two issues: first, the frame
problem, that is, what parts of a true state remain true in the next instant of time [101]; and
second, common-sense reasoning, or the ability to extract the basic, “trivial” knowledge about
the context by inference.

Even though reasoning about the state of the environment can be difficult, it is necessary that
an action representation formalism have at least ways to specify them. Schank’s
conceptualizations [150] offer some convenient ways to represent the different elements of a
scene, and basic inference has proved to be possible in specific domains [144]. Although there
are many shortcomings and criticisms to Schank’s ideas [180], we decided to adapt the idea of
conceptualizations for the problem of action representation and recognition in an interactive
space. In particular, as we will describe in the next chapters, we augmented the language with a
mechanism to represent the temporal structure of the sub-actions based on Allen’s interval
algebra [3].

2.3 Action Frames
The choice of a representation depends not only on its intrinsic expressive capabilities but
mostly on the intended use. Our initial objective is to have a computational mechanism in
which high-level descriptions of the main actions in an interactive space could generate low-
level, basic perceptual relations between objects and body parts that could simplify the working
of a computer vision system. Later we expand our goals to design a good representation for
visual recognition purposes that is also adequate for the scripting of interaction and to be a
protocol for the communication between modules in an interactive space.

Our chosen method is an adaptation of Roger Schank’s conceptualizations [150] that we call
action frames. Our representation method, introduced in [130], is a simplification of the
original idea where Schank’s memory model is not implemented. Although there are many
criticisms to Schank’s work (for example, [180]), we find his treatment of verbs (especially
verbs of action) extremely elegant and powerful. In fact, we believe that conceptualizations are
more appropriate as an action representation scheme than as a general representation paradigm
for natural language.

Action frames is a frame-based representation where each action is represented by a frame
whose header is one of Schank’s primitive actions:

� propel: the agent produces a movement in an object;

� grasp: an object is secured to the agent’s “body”;

� move: the agent moves one of its component parts;

� ingest: an object is moved to the inside of the agent;

� expel: an objects is removed from the inside of the agent;

� speak: the agent produces a sound, image, or any other non-material phenomenon;

Chapter 2 Representing Action 38

� attend: one of the sensor systems of the agent is directed to an object;

� ptrans: an agent or object physically moves;

� atrans: an attribute of an object is transferred;

� mtrans: a mental concept is transferred from one agent to another;

� mbuild: a mental concept is built in the agent;

� do-something: the agent performs some unspecified action (usually towards an
intended goal).

In the following subsections we clarify the meaning of the different primitives through
examples. Before doing so, it is convenient to examine briefly other elements of action frames.
Besides verbs, we can also represent states of agents or objects using the primitives have , and
attribute .

In our implementation, each action frame begins with a primitive action or the primitive have
(in the case of states) and contains different slots that supply the essential elements of the
action. Undetermined symbols begin with a question mark (?); those symbols are defined only
by the relationships they have with other objects. Some of the most commonly used slots are:

� actor: determines the performer of the action;

� object: contains the object of an action or the owner of an attribute;

� result: establishes the result of the action (a change in attributes or another action);

� change: indicates that an action produces a change in attributes of the object of the
action or a change in some state of the world.

� to,from: determine the direction of a change

� instrument: describes another action or attribute that happens as part of the action.

The following subsections present examples to illustrate the use and meaning of the different
action primitives and frame slots. For a more detailed discussion about how to represent
generic actions, covering more complex cases, refer to Schank’s description of his theory [149].

2.3.1 Representing the Script of a Cooking Show
To understand how an action is translated into an action frame, we will present a series of
examples drawn from one of our projects in interactive spaces, the Intelligent Studio. The
project is detailed in the last chapter of the thesis, consisting of a TV studio with automatic
cameras that frame, upon request, specific elements of the scene (see also [133]).

Chapter 2 Representing Action 39

We have experimented the Intelligent Studio in the situation of shooting TV cooking shows.
Throughout the rest of this chapter, we will examine our methods for representation and
reasoning about actions using as example the segment of a cooking show whose script is
depicted in fig. 2.1. The example is interesting not only because it has been implemented in a
real system but also because cooking actions involve different types of transformation, and, in
the TV show case, it also includes the communication of ideas.

Let us start by examining the simplest type of action in the script of fig. 2.1, when the chef
turns his head towards a camera. Figure 2.2 shows the action frame corresponding to the action
“chef turns to side camera”. The action is characterized by the movement of the chef toward
the “side” camera, what is translated into a ptrans primitive. The agent (actor) of the action
is the chef himself as well as the object being physically moved. The result of the action is a
change in the direction of the chef, as stated by the last three lines of the example. Notice that

Cooking-show scenario with a table on which there are bowls,
ingredients, and different kitchen utensils. A microwave oven is in
the back. Camera 1 is a centered camera, camera 2 is a left-sided
camera, camera 3 is a camera mounted in the ceiling. Chef is
behind the table, facing camera 1.

Chef, facing camera 1, greets the public.

“Welcome to the Vismod Cooking Show where we explore the
wonderful world of research-oriented cuisine.”

Chef turns to camera 2 and talks about today’s recipe.

“Today’s recipe is basil chicken. A delicious recipe with that special
touch that only basil can give to a dish.”

Chef turns back to camera 1 and mixes bread-crumbs, parsley,
paprika, and basil in a bowl.

“Stir together 3 tablespoons of fine dry bread crumbs, 2 teaspoons
snipped parsley, 1/4 teaspoon paprika, and 1/8 teaspoon dried
basil, crushed. Set aside.”

Chef wraps chicken with a plastic bag.

“Place one piece of chicken, boned side up, between two pieces of
clear plastic wrap.”

Chef puts the chicken on the chopping-board and shows how to
pound the chicken.

“Working from the center to the edges, pound lightly with a meat
mallet, forming a rectangle with this thickness. Be gentle, meat
become as soft as you treat it.”

Chef pounds the chicken with a meat-mallet.

Figure 2.1 Part of the script of a TV cooking show.

Chapter 2 Representing Action 40

the representation of the action talks not only about the physical movement of the chef but also
about the consequences of the action, that is, the final direction of the head of the chef.

2.3.2 Representing “Mixing Ingredients”
To describe the action “chef mixes bread-crumbs, parsley, paprika, and basil in a bowl” from
the script of the cooking show, a different primitive action is used. In the mixing case, the way
the mixture is accomplished is less important than the fact that ingredients are mixed. In fig. 2.3
we show a translation for mixing based solely on the results of the action. The primitive action
is do-something , that is, there is no mention of what is actually done to achieve the intended
result. The mixing action of fig. 2.3 uses the group header to cluster the different ingredients
into a single object. Literally, the translation of the mixing action becomes “chef does
something that makes the group of ingredients (bread-crumbs, parsley, paprika, basil) to be
contained in a bowl and in physical-contact to each other”.

By now it should be clear that there is no unique representation for an action in action frames
(as well as in Schank’s conceptualizations). According to the focus, the inference needs, and
the degree of detail, the same action can be represented in different forms. We choose to
represent mixing only by its results and certainly some details are missing. For instance, we do

“chef turns to side camera ”

(ptrans
(actor chef)
(object chef)
(result

(change (object chef)
(to (direction :side)))))

Figure 2.2 Action frame corresponding to the action of
turning to a camera.

“chef mixes bread-crumbs, parsley, paprika, and basil in a bowl”

(do-something (actor chef)
(result

(change
(object

(group bread-crumbs parsley
paprika basil))

(to (contained bowl))
(to (phys-cont

(group bread-crumbs parsley
paprika basil))))))

Figure 2.3 Action frame corresponding to the action of mixing ingredients in a bowl.

Chapter 2 Representing Action 41

not specify how mixing is achieved: through a blender, by rotating a spoon in the mixture, etc.
In other words, we did not specify the instrument of the action in this particular case.

2.3.3 Representing a “Talking” Action
Instrument actions are exemplified in fig. 2.4 that contains the description of the action “chef
talks about today’s recipe (to side camera)”. Talking involves two ideas, the first that there is a
transfer of mental concepts from the agent to the listener and, secondly, that the communication
happens through speech. In the representation shown in fig. 2.4 we employed a mtrans
primitive to represent the communication act, which has as its instrument a speak action.
Notice that speak is a general primitive for production of communication acts that encompass
sound, gesture, mime, drawing, etc. Therefore it is necessary to typify the action by stating that
its object is sound .

Figure 2.4 also displays a more elaborate structure — marked by the headers description
and concept — that is used to include information about the elements in the scene. In this
case, the information is that the sound is coming from the mouth of the chef. This is in fact a
combination of statements: sound is coming from the object mouth, and mouth is part of the
object chef. This is precisely the effect of the description structure: it allows linking the two
concepts.

2.3.4 Representing a “Pounding Chicken” Action
To represent adequately a complex action such as “chef pounds the chicken with a meat-
mallet” we have to resort to a combination of the structures defined above. In fig. 2.5
“pounding” is represented as an action where the chef propels a meat-mallet from a place
which is not in contact with the chicken to a place which is in contact, and whose result is an

“chef talks about today's recipe (to side camera) ”

(mtrans (actor chef)
(to public)
(object text2)

(instrument
(speak (actor chef)

(object sound)
(to (direction :side))
(from (location

(description (object mouth)
(concept
(have

(object mouth)
(attribute (part chef)))))))))

Figure 2.4 Action frame corresponding to the action of talking to a camera.

Chapter 2 Representing Action 42

increase in the flatness of the chicken on the chopping-board. To describe that the meat-mallet
contacts the piece of chicken we employ an undetermined location, represented by ?in-
contact , which, although unspecified, has the attribute of being in contact with the chicken.
Similarly, we define ?not-in-contact to describe locations that are not in contact with the
chicken.

The result of the propelling action is an increase in the flatness attribute of the object
chicken . Using the description mechanism explained above, we also included the
information that while this is happening, the chicken is on the chopping-board (through the less
specific attribute of being in physical contact, phys-cont).

2.3.5 Representing a “Showing How to Do” Action
Our final example is the description of the action “chef shows how to pound the chicken”. The
main element of the action is a mtrans primitive that corresponds to the transfer of the idea of
how-to-pound to the public . The main action has two instrument actions: one
corresponding to the talking and another that defines the gestures used to describe the way to
pound. In particular, it is also stated that the gestures are performed by the chef’s hands in the
vicinity of the chopping-board.

“chef pounds the chicken with a meat-mallet”

(propel (actor chef)
(object meat-mallet)

(from (location
(description (object ?in-contact)

(concept (have (object ?in-contact)
(attribute (phys-cont chicken))))))

(to (location
(description (object ?not-in-contact)

(concept (have (tense negation)
(object ?not-in-contact)
(attribute (phys-cont chicken)))))))

(result
(change

(object
(description (object chicken)

(concept (have (object chicken)
(attribute
 (phys-cont chopping-board))))))

(from (flatness ?X))
(to (flatness (greater ?X))))))

Figure 2.5 Action frame corresponding to the action of pounding a chicken with a meat-mallet.

Chapter 2 Representing Action 43

The complete translation to action frames of the cooking show script depicted in fig. 2.1 can be
found in appendix A. The listing is the actual input used in some of our experiments in the
Intelligent Studio as described in chapter 7. It is also the representation used in the inference
procedure detailed in the next section.

Currently we manually translate the sentences of the script into action frames statements.
Building an automatic translator able to handle more generic scripts seems to be a natural
language processing (NLP) problem and, as such, it is not a fundamental point in our research.
Schank’s team addressed the problem in the context of conceptualizations [150] and was able
to build quite sophisticated NLP translators.

Notice that although Schank’s conceptualizations provide powerful mechanisms to represent
the basic elements and the consequences and context of an action, it is still quite a simplistic
language for the description of the movements themselves, the objects, and the qualities of the
objects. In many respects, Schank’s formalism fails to accomplish with nouns and adjectives

"chef shows how to pound the chicken (on the chopping-board)"

(mtrans
(time (group (begin 337) (end 380)))
(actor chef)
(object how-to-pound)
(to public)

(instrument (group
(speak (actor chef)

(object sound)
(from (location

(description (object mouth)
(concept
(have

(object mouth)
(attribute (part chef))))))

(to (direction :center)))

(speak (actor chef)
(object gestures)
(from (location

(description (object hands)
(concept
(have

(object hands)
(group (attribute (part chef)
 (proximity chopping-board))))))

(to (direction :center)))))

Figure 2.6 Action frame corresponding to the action of explaining how to pound chicken with
a meat-mallet.

Chapter 2 Representing Action 44

the compactness and clarity of representation provided for verbs. Also, it is very limited in its
ways to describe spatial and temporal attributes.

2.4 Reasoning Using Action Frames
A representation is as good as the information that can be obtained from it. In particular, we are
interested in two capabilities in a representation for action. First, we want a representation that
facilitates recognition and interaction control. This is the central theme of this thesis and, as we
will see in the next chapters, the development of appropriate methods for the representation of
the temporal structure of action and interaction plays a fundamental role in this respect.

The second capability we are seeking for a representation of actions is the possibility of
automatic derivation of its component sub-actions and states. This comes from the observation
that in many situations, it is possible or desirable to feed a computerized recognition system
with high-level information that describes approximately the actions that are going to happen.
An example is the case of TV shows where there is a script available, in textual form, prior to
the actual recording of the show. Alternatively, it would be extremely helpful if surveillance
systems could be instructed to detect new patterns of activity by a formal, high-level
description of the actions to be recognized.

To accomplish that, it is necessary to investigate inference schemes that can take as input the
action frames corresponding to the actions and derive the sub-actions that occur as part of that
action. For instance, if the high-level description involves a physical move of a bowl, a system
should infer that it is necessary first to grasp the bowl, and, in more detail, that grasping
involves approaching, touching, and lifting the bowl. Ultimately, it would be quite desirable if
the system could infer basic primitive perceptual properties that can be detect by the system. In
the example above, if the recognition has a-priori knowledge about how to detect and track
hands and bowls, it can try to automatically deduce a method to detect the hands approaching
the bowl, getting close to it, and the hand movement that characterizes the lift. There has been
some work in computer vision in this direction, notably in object recognition [163, 164], and
navigation [21].

The current goals of our research are certainly much more modest. We have built an inference
system, based in Rieger’s work [144], that derives visual attributes from the action frames
describing simple cooking-related actions. Typical inferences are related to the direction of the
head of the actor, the amount of activity with the hands, and proximity relations among hands
and utensils in the field of view. As described in chapter 7, such simple relations can be
effectively used to control the application of pre-constructed visual routines in a real interactive
space.

2.4.1 Inference using Action Frames
It is important to make clear that the inference system we developed is very simple and
designed only to meet the demands of our particular domain. The system was designed to infer
position and movement information about human bodies and hands, and physical contact and
proximity among objects.

Chapter 2 Representing Action 45

The system is based on Rieger’s inference system for Schank’s conceptualizations [144]. It
outputs action frames representing sub-actions and collections of attributes about the humans
and objects in the scene. At each moment of time, we consider just the actions known to be
happening in that moment. In this implementation no mechanism was devised to include the
information of what happened in the past.

The inference engine uses rules that construct new action frames from any action frame that
matches the rule’s pre-conditions and structure requirements. A typical rule is shown in fig. 2.7.
The rule antecedent contains an action frame with wild-card fields (marked with “?”). The
inference process attempts to match this antecedent to every action frame; upon success, the
wild-card fields are instantiated and the consequent part of the rule is evaluated. In the example
of fig. 2.7, a propel action causes the system to infer a grasp action only if the category of
the propelled object is handleable-object , that is, the object is known to be small and
handleable. In this case, the actor and object fields of the grasp action are instantiated
accordingly. Moreover, it creates a field which describes the fact that the grasping occurs with
the hands of ?actor . This is specified by the inclusion of an instrument action stating that the
symbol hands has the attribute of being part-of the actor.

The following is the list of all rules that we have implemented in our inference system:

(1) result of change is phys-cont Ö ptrans

(2) ptrans of object Ö propel

(3) propel of small object Ö grasp

(4) propel of small object Ö move hands

(5) hands, mouth, body Ö part of actor

(6) propel, grasp Ö physical-contact

;;; propel implies grasping if propeled object is handleable

(rule
(propel (actor ?actor) (object ?obj))
(when (category ?obj 'handleable-object)

(grasp
(actor ?actor)
(object ?obj)
(to hands)
(instrument

(have hands
(attribute (part-of ?actor)))))))

Figure 2.7 Example of a rule used by the inference system (with Lisp details
omitted for clarity).

Chapter 2 Representing Action 46

(7) certain attributes Ö symetric attribute

(8) physical-contact Ö proximity

(9) three-object proximity Ö transitive closure

(10) multiple ids for the same object Ö unification

The first rule states that, if the result of an action is a change in the physical contact attribute of
two objects, then there must be some physical movement involved. Rule 2 infers that the
physical movement of an object involves propelling the object. Rule 3 is exactly the one
depicted in fig. 2.7. Rule 4, similarly, determines that propelling (small objects) involves
movement of the hands. Rule 5 simply determines that hands , mouth , and body are parts of
the actor of an action frame. Rule 6 states that propelling or grasping involves physical contact
between the object being moved and the body part of the actor involved in the action (typically
the hands). Rule 7 takes some attributes (such as physical contact) between two elements of the
scene and derives that the symmetric relation also exists. Rule 8 states that physical contact
implies proximity. Rule 9 is, in fact, a procedure to compute the transitive closure of the objects
that have proximity attributes (in certain cases). Finally, in the process of derivation it may
happen that new identifications are generated by the inference system and rule 10 runs a
procedure that unifies these ids.

Some of these rules are based on Rieger’s inference system for conceptualizations [144].
However, unlike in his system, we do not iterate until all the possible inferences are done. In
fact, we have observed in our experiments with two different, multi-action scripts that it was
sufficient to apply the rules in the order given above, in a l-pass algorithm. This guarantees fast
termination although it is only possible because the rules we used always infer action frames
that are structurally simpler than the input. A similar observation, in a more elaborate inference
system, is also made by Rieger [144].

2.4.2 Example of Inference: “Wrapping Chicken”

Below we list a manually commented printout of the action frames generated by our inference
system using as its input the action frame of “chef wraps chicken with a plastic bag”. The
action frame corresponding to this action is shown as item 0 of the list. In this case the system
deduces that the chef’s hands are close to the chicken. Only the relevant inferences are shown
from the approximately 20 action frames that were actually generated.

0 :action frame obtained from the script
(do-something

(actor chef)
(result

(change (object chicken)
(to (group (contain plastic-bag

(phys-contact plastic-bag))))))

Chapter 2 Representing Action 47

1 : to put an object in physical contact with other (0) physical transportation
 is required (rule 1)
(ptrans

(actor chef)
(object chicken)
(to (location plastic-bag)))

2 : to physically move (1) a small object, propelling is requited (rule 2)
(propel

(actor chef) (object chicken)
(to (location plastic-bag)))

3 : to propel a small object (2), grasping is required (rule 3)
(grasp

(actor chef)
(object chicken)
(to hands))

4 : grasping (3) requires physical contact (rule 6)
(have

(object hands)
(attribute (phys-contact chicken)))

5 : physical-contact (4) implies proximity (rule 8)
(have

(object hands)
(attribute (proximity chicken)))

The reasoning process goes as follows: according to rule 1, a change that produces physical
contact requires physical transportation of the object (in this case, the chicken); and physical
transportation requires propelling (rule 2). From the propel action the system can infer grasping
(rule 3), and from that it concludes that there is physical contact between the chicken and the
actor’s hands (rule 6); physical contact implies proximity (rule 8), and the system deduces that
the hands are close to the chicken.

Notice that from a perceptual point of view, such inference gives an indication of where the
piece of chicken can be found — near the hands! A typical use of such inference in the systems
described later in this thesis would be in the case where the position of the hands is known
(through a hand-tracker), and therefore, even if the chicken is not visible, the system still would
be able to point to the approximate position of the chicken in the scene. Therefore, given
knowledge about the action being performed (as movement plus context) it is possible to
determine from the context of the action even the position of elements not immediately
detectable.

2.4.3 Inferences in the “Pounding Chicken” Example
Let us now examine a more complex example where, from the action “pounding the chicken
with a meat-mallet”, the system obtains the fact that the hands are close to the chopping board.
The following is commented printout of the action frames generated by our inference system,

Chapter 2 Representing Action 48

using as input the action frame corresponding to the sentence “chef pounds the chicken with a
meat-mallet”. Only the relevant inferences are shown from the 44 action frames actually
generated. Notice that the transitive rule used for the inference of proximity (rule 9) is sensitive
to the size of the objects, avoiding its use if one of the objects is larger than the others.

0 : action frame obtained from the script

(propel
(time (group (begin 381) (end 400)))
(aider (group back-and-forth fast strong))
(actor chef)
(object meat-mallet)
(from (location

(description (object ?in-contact)
(concept (have (object ?in-contact)

(attribute (phys-cont chicken)))))))
(to (location

(description (object ?not-in-contact)
(concept (have (tense negation)

(object ?not-in-contact)
(attribute (phys-cont chicken)))))))

(result
(change (object

(description (object chicken)
(concept (have (object chicken)

(attribute (phys-cont chopping-board))))))
(from (flatness ?X))
(to (flatness (greater ?X))))))

1 : propelling an object (0) requires grasping (rule 3)

(grasp
(actor chef)
(object meat-mallet)
(to hands))

2 : grasping (1) requires physical-contact (rule 6)

(have
(object hands)
(attribute (phys-contact meat-mallet)))

3 : the end of propelling (0) implies physical contact (rule 6)

(have
(object meat-mallet)
(attribute (phys-cont ?in-contact)))

4 : physical-contact (0) implies proximity (rule 8)

(have
(object ?in-contact)
(attribute (proximity chicken)))

Chapter 2 Representing Action 49

5 : physical-contact (3) implies proximity (rule 8)

(have
(object meat-mallet)
(attribute (proximity ?in-contact)))

6 : physical-contact (0) implies proximity (rule 8)

(have
(object chicken)
(attribute (proximity chopping-board)))

7 : physical-contact (2) implies proximity (rule 8)

(have
(object hands)
(attribute (proximity meat-mallet)))

8 : transitiveness of proximity, (4) and (5) (rule 9)

(have
(object chicken)
(attribute (proximity meat-mallet)))

9 : transitiveness of proximity, (6) and (8) (rule 9)

(have
(object chopping-board)
(attribute (proximity meat-mallet)))

10 : transitiveness of proximity, (7) and (9) (rule 9)

(have
(object chopping-board)
(attribute (proximity hands)))

The reasoning behind this inference is altogether similar to the previous example of “wrapping
chicken”. The main difference is that, in this case, the transitive closure procedure is
fundamental to determine the target information, that the hands of chef are close to the
chopping-board.

2.4.4 Inferences in the Cooking Show
The second part of appendix A contains all the inferences made by our system for the action
frames corresponding to the script of fig. 2.1. Each action and inference is associated with the
interval of time when the action is happening or the attribute is known to be valid. Table 2.1
provides a summary of the process, describing how many of the different types of action frames
were inferred for each action in the script.

Chapter 2 Representing Action 50

As mentioned above, the main objective of this section is to demonstrate that it is possible,
through simple inference mechanisms, to infer action frames from other action frames. We also
had the opportunity to test the inference system with a difference script, involving a completely
new recipe and two chefs dialoguing to each other (the Alan Alda cooking show, as described in
chapter 7). We were pleased to see that, with minimal adjustments and augmentations, we were
able again to infer the needed visual attributes from the script of the new show (see chapter 7
for details).

2.5 Formalizing the Language: ACTSCRIPT

We are currently developing the idea of action frames further into a language, ACTSCRIPT, able
to represent actions and to communicate requests, queries, and goals in a physical environment.
Like action frames, ACTSCRIPT allows recursive decomposition of actions but it also includes
the possibility of specification of complex temporal relationships (using the formalisms
described in the next chapter).

The structure of ACTSCRIPT is similar to the action frames formalism described above. The
complete syntax of the language is given in appendix B. There are only some minor differences
with the syntax of action frames and the language was augmented to support the complete set
of Schank’s structures, including the ideas of reason, enable, and enabled by.

A major difference is the way the language was implemented. While in the case of action
frames we employed straight LISP code, in ACTSCRIPT all the statements are composed of
ASCII text strings. To recognize the language we designed and implemented an interpreter in
C++ code that, given a string of ACTSCRIPT, returns a C++ object describing the syntactic
structure of the ACTSCRIPT string. These C++ objects can be compared, partially matched, and
searched with wildcards. An analysis of Rieger’s implementation of an inference system for
conceptualizations [144] reveals that those are the basic computational procedures needed to
build inference mechanisms.

ptra
ns

pro
pel

gra
sp

m
ove

part-
of

conta
in

phys
-c

ont

pro
xim

ity

greets the public 1

turns to side camera 1 1

talks about recipe 1

turns to center camera 1 1

mixes ingredients 1 1 1 1 1 1 6 9

wraps chicken with plastic-bag 1 1 1 1 1 6 12

shows how to pound chicken 1 3

pounds the chicken with mallet 1 1 1 11 30

action frame from script actions description

Table 2.1 Distribution of the inferred actions and descriptions for each action in the script of fig. 2.1.

Chapter 2 Representing Action 51

Until now we have not implemented an inference system for ACTSCRIPT. Instead we have used
the language for the communication among the different computational modules in the
interactive spaces we built. As we discuss in chapter 6, we employ in our systems an
architecture that requires its high-level modules to exchange communication concerning
actions, intentions, and requests, and to make and answer questions. To facilitate the
communication of requests and answers, we have explicitly incorporated into the ACTSCRIPT

language a header description for every string, containing the type of message, the sending
module, and a serial number.

From this experience, we believe that ACTSCRIPT can become a protocol for high-level
communication among modules and agents in an interactive, physical environment. The
protocol is especially suitable for applications where the different computational components
need to exchange information about the users, that is, the humans that are interacting with the
machines.

Of course the appropriateness of text strings can be argued, for instance, by alternatively
considering the use of JAVA objects and methods. In our view, the real issue is not the actual
computational mechanism but the fact that a language that communicates what people or
machines do or want to do should use representational mechanisms at least as expressive as
Schank’s conceptualizations.

2.6 Problem: Actions Have Complex Temporal Structures
From the examples in this chapter we can see that an action can be decomposed into sub-
actions and that we can associate with the sub-actions states and attributes of the elements of
the scene. Both the sub-actions and the states of the world or its agents can be seen as discrete
units that are perceived to happen in definite intervals of time.

There is a tendency, especially among the visual recognition community, to assume that sub-
actions occur sequentially. [26, 27, 35, 40, 43, 67, 118, 152, 165, 181]. This is also evidenced
by the popularity of the use of Hidden Markov Models (HMMs) to represent gestures and
movement for recognition purposes, which recognizes an action by looking for the most likely
sequences of states or sub-actions given the sensory input.

We have observed that human action, in fact, does not follow clear sequential paths of units,
and that parallel actions are very common. For instance, in the cooking show case, the action
"chef shows how to pound the chicken” is clearly composed of two major parallel sub-actions:
the chef is talking and at the same time gesturing and pointing to what he is going to do with
the chicken. There are moments when the talking and the gesturing are synchronized, for
instance, when the chef use expressions such as “as you see here…” coupled with pointing to a
particular feature of the chicken.

Chapter 2 Representing Action 52

In some ways the performing of multiple actions (at the same level of granularity) in a human
is restricted by the number of limbs and by limitations in the perceptual mechanisms. A
drummer is a pathological example of parallelism at its peak. However, when we consider the
agent plus its context, or interacting with other agents and machines, then the possibilities for
parallel actions increase dramatically, making finite-state machines very unlikely candidates for
representing interaction or multi-agent action. State machines are inadequate to represent multi-
thread situations because the number of nodes increases exponentially as the number of parallel
states or actions increases.

In our experience with the cooking show, we have found that parallel states that are only
partially synchronized to the other states and sub-actions are very common. Figure 2.8 shows a
diagram of the temporal occurrence of sub-actions and of attributes of objects in the action
“chef mixes bread-crumbs and basil in a bowl” (chapter 4 details the meaning of the different
sub-actions and states depicted in the picture).

For the basic sub-actions of “mixing ingredients” we have a quasi-sequential performance of
the actions of “picking up the bowl”, “getting breadcrumbs”, “getting basil” , “stirring the
ingredients” and “putting the bowl down”. However, when we consider the associated states of
the objects in the scene, as shown in the bottom half of fig. 2.8, there is considerable overlap
and a general lack of common boundaries. To represent such a structure in a state machine
would require many different nodes just to define the multiple combinations for the occurrence
of these states.

At the same time, there are some moments when states and sub-actions have their occurrence
temporarily related, such as when the states are altered by the result of an action. For instance,
at some moment after physical-mix starts, it becomes true that the ingredients become

Figure 2.8 Example of the temporal occurrence of the sub-actions and related
states in an action of mixing ingredients in a bowl.

Chapter 2 Representing Action 53

mixed (mixed-ingredients). First, notice that the later can not occur before the former; and
second, that the perception of ingredients starting to becoming mixed occurs at some
undetermined point inside the sub-action physical-mix. This is the typical situation where
we observe that, although the sub-action and the state are not sequentially linked, there are
temporal constraints on the occurrence of one based on the occurrence of the other.

In the next chapters we will discuss methods to represent the temporal structure of the sub-
actions and states related to an action that can cope with similar situations. Basically, we are
looking for ways to augment Schank’s conceptualizations so such complex, loose temporal
constraints can be integrated into the representation of action. In particular, we propose a
method that enables an action recognition system to effectively use the temporal constraints to
enhance the recognition capabilities by discarding situations that contradict the temporal
structure of the action.

2.7 Summary
This chapter introduced the concept of action as a combination of movement and context. As
such, action recognition systems require mechanisms to represent both movement and
contextual information. From the different proposals for action representation we recycled
Roger Schank’s conceptualizations [150] into a paradigm for action representation we call
action frames. Among the good qualities of the paradigm, we highlight the use of a very small
number of primitive actions, the expressiveness, and the possibility of inferring the internal
structure of an action. Using a TV cooking show domain, we demonstrated that it is possible to
infer the sub-actions that compose an action frame in specific situations by considering simple
inference rules.

The action frame concept has been refined into a language called ACTSCRIPT that we have been
employing mostly for communication of actions and intentions between control modules of
interactive spaces. The complete syntax of ACTSCRIPT is given in appendix B.

Schank’s original proposal of conceptualizations fails in providing adequate mechanisms to
represent temporal relations between actions. In the last section of this chapter we argued that
such temporal structures are in fact quite complex, involving multiple and parallel sub-actions
that can not be easily represented by sequential paradigms such as finite-state machines (or
HMMs). This is a key observation that motivates the search in the next chapters for more
expressive temporal representations for actions and that constitutes the core of the theoretical
contribution of this thesis.

Chapter 3 PNF-Networks 54

3. Representing Temporal Structure Using
PNF-Networks

The fundamental problem addressed in this chapter is how to represent the temporal structure
of an action such that the representation can be effectively employed in action recognition and
interaction control. In the previous chapter we discussed methodologies for representing the
meaning of an action and how its component sub-actions can be derived by simple inference
schemes. In this chapter we concentrate on how just the temporal structure of an action or
interaction, if coupled with appropriate occurrence data of its sub-actions and sensor data, can
provide enough information for the detection of its occurrence, or for the triggering of reactions
in an interactive space.

During the occurrence of an action, each sub-action, event, and concept of the action occurs in
a defined time interval. It is important to notice that there are natural temporal constraints
among these intervals. For example, the time interval corresponding to drinking from a cup
always follows the time interval corresponding to the action of grasping the cup (except for
pathological drinkers). Therefore, we can represent the temporal structure of the occurrence of
these sub-actions by a temporal constraint stated that one interval happens before the other. In
section 3.1 we survey mechanisms for representing temporal relationships among actions, both
in terms of expressiveness and efficiency of their reasoning algorithms.

In our work with action recognition and interaction control we have been employing interval
algebra networks, or simply IA-networks, for the representation of temporal relations between
actions. An IA-network is a constraint satisfaction network where the nodes correspond to
variables to which time intervals can be assigned and the arcs correspond to binary temporal
constraints between these intervals expressed using Allen's temporal relationships [4]. In
section 3.2 we formally define IA-networks and analyze important aspects of these networks.

To compute the state of a variable corresponding to the occurrence of an action we develop an
approach based on the idea of determining the minimal domain of nodes of the action’s
corresponding IA-network. The minimal domain of a node in an IA-network is the set of all the
time intervals that belong to at least one solution. Given the intervals corresponding to the
actual occurrence of some nodes in the network (typically, sensor data), we then compute the

Chapter 3 PNF-Networks 55

minimal domain of all nodes of the network by constraint propagation. To determine if the
action — or any of its component sub-actions — is happening, we check whether the current
instant of time belongs to every interval in the minimal domain of a node. If this is true, then
the corresponding action must be happening, since otherwise there would be a time interval in
the minimal domain of the node that would not contain the current instant of time.

Unfortunately, temporal constraint propagation in interval algebra networks is NP-hard in most
cases [177], and in particular, in the computation of the minimum domain [176]. In this thesis,
we demonstrate that for control and recognition purposes it is not necessary to compute the
minimal domain of an IA-network as a set of time intervals. Instead, it is sufficient just to
determine, for each instant of time, whether its nodes are happening now, already happened
(past), or has not happened (future) — the PNF-state of the node. The PNF-states of an IA-
network can be more efficiently computed by projecting the IA-network into a specialized
constraint network where the domain of each node is simply {past, now, future} — a PNF-
network. This technique, a central result of this thesis, is explained in section 3.4.

However, computing the minimal domain in a finite constraint satisfaction network is also, in
general, a NP-complete problem. In our experiments we have been employing an arc-
consistency algorithm (based on [90]) to compute an approximation of the minimal domain of
the PNF-network in time linearly proportional to the number of constraints. A fundamental
objective of this chapter is to show that the result of the arc-consistency algorithm in PNF-
networks is a conservative approximation to the minimal domain of the original IA-network.
That is, a PNF-network after arc-consistency contains the mapping of all solutions of the
original IA-network. Moreover, if the PNF-network has no solutions, then the IA-network does
not have solutions either. Beyond that, our experience with this method tells that in most
practical cases the fast arc-consistency algorithm actually computes the correct PNF-state of the
nodes.

The last section of this chapter introduces PNF propagation, a technique by which information
about the occurrence of actions in previous instants of time can be consistently used to enhance
the detection of other actions in the current moment of time. At the heart of PNF propagation is
the representation of the (obvious) fact that after an action has happened it can not happen
again. Using this technique, we can compute consecutive PNF-states of nodes in a given PNF-
network.

We introduced the concept of PNF propagation in [132], and the first results appeared in [134]
in a different formulation than the one presented in this chapter. We later refined the original
formulation into the constraint satisfaction framework [135]. The formal definition of
PNF networks based on now intervals as presented in this chapter is completely new.

This chapter is essentially theoretical and its main goal is to formalize the PNF propagation
methodology and to prove that it is mathematically sound. We defer to the next chapter the
issue of how the temporal formalisms studied here can be applied in real action recognition and
interaction problems.

Chapter 3 PNF-Networks 56

3.1 Reasoning with Temporal Constraints
From databases to robotics, numerous problems in computer science involve time. This has
generated a variety of research that considers different assumptions about how temporal
information is obtained and about what kind of reasoning is needed. A good introduction to the
different methods was written by Allen [5].

In this section we review the main approaches for temporal representation and reasoning and
comment on their strengths and shortcomings. Since the work presented here deals primarily
with constraint-based temporal representations, we study those in greater detail and provide a
short review of constraint propagation.

To start, it is necessary to establish some terminology. An event is an instant of time with no
duration. A time interval is a continuous segment of time that has duration. Given an interval,
the earliest instant of time that belongs to the interval is its begin point, and the latest is its end
point (although some models, as we will see below, do not require the explicit reference to the
begin and end points of an interval).

But what is a good representation for time? First, as noted above, it depends on the specifics of
the situation being modeled (e.g., a database or a control system). However, there are properties
that can be generally considered important on temporal representation schemes. The following
is a list (based on [3]) of good characteristics of time representations:

• A temporal representation should allow imprecise knowledge since typically absolute time
information is not available. For example, although we know that grasping must precede
drinking from the cup, it is hard to determine in advance how long the act of grasping takes.

• A representation must accept uncertain information; for instance, a system might know only
that an action A happens before or during another action B. For instance, we consults maps
before and/or while driving to an unknown place.

• Time representations should provide facilities for reasoning about persistence, that is, that a
state often continues to be true after its cause ceases to happen. When a cup is put on a
table, the state corresponding to the cup being on the table remains “happening” until some
other action affects the cup or the table.

• A temporal representation should allow the expression of mutual exclusion, for instance,
when two actions or states I and J can not happen at the same time. A person can not read a
book while sleeping, or driving, or taking a shower.

Allen, in [3], discusses these issues in more detail. We would like to stress here that in
situations of action recognition, the ability to represent mutual exclusion is very useful.
Although this kind of negative knowledge can not contribute to the recognition of a particular
action, it is a powerful tool to eliminate competing alternatives. Although representing mutual
exclusion involves a considerable increase in computational complexity, as discussed below,
we found that such negative information decisively increased the recognition power of our
systems, and, therefore, was worth the extra cost. Moreover, when describing an action we

Chapter 3 PNF-Networks 57

realized in many situations that it is easier to state clearly what can not happen than what must
happen.

3.1.1 Formalisms to Represent and Reason about Time
One of the first approaches to temporal representation was the use of state-spaces as proposed
by Sacerdoti [148] and Fikes and Nilsson [50], where actions were modeled as functions
mapping between states that represent the situation of the world at some instant of time. In
these schemes, the duration of a transition between states corresponds to the duration of an
action, and the amount of time in the same state is associated to the duration of that state. Both
schemes could hardly represent uncertain and mutual exclusion knowledge, although they
could provide a notion of persistence.

Dating schemes (for example in the works of Hendrix [60] and Kahn and Gorry [75]) are
characterized by simple, fast ways to compute the ordering information between two dates
which represent known or unknown points in time. However, these representations require that
all events have assigned dates to them and all durations to be known, failing to comply with our
requisite of handling uncertain and imprecise information. As noted by Allen in [5], such dating
schemes also fail to represent partial ordering and simultaneous events.

The representation of duration is the main component of techniques based on network
representation such as PERT networks (allowing simple dynamic programming methods). A
more expressive formalism was proposed by Dean and McDermott [45] where relations
between events are represented as boundaries on the duration between them. If a symbol for
infinity (∞) is introduced, it is possible to represent qualitative information. However,
reasoning is based on graph search and, unless a great deal of information is known in advance,
the combinatorics of the approach is just too large.

Temporal logic is the foundation of McCarthy’s situation calculus [101] where knowledge is
represented as a series of situations describing what is true at every instant of time. A major
shortcoming of this theory is the difficulty in handling multiple events occurring at the same
instant of time. A point-based logic formalism was further developed by Shoham in [156].

The next subsection details the most popular formalisms for temporal representation that are
based on constraint propagation. Before that, we should mention that probabilistic methods are
very popular in sensor-based applications like computer vision and speech processing. Among
them, hidden Markov models (HMMs) are by far the most popular (see [140] for a good
introduction). HMMs consist basically in a probabilistic extension of the state space model
described above. The major advantage is the possibility of fast learning and recognition. The
major shortcomings are the difficulties of representing duration, parallel events, and negative
knowledge.

3.1.2 Temporal Constraint Networks
The most popular time representation methods in the AI community employ constraints to
encode the temporal information. Typically, the temporal knowledge is encoded as a set of
variables, domains on those variables, and constraints about the values that the variables can

Chapter 3 PNF-Networks 58

assume. A constraint network is simply a network where the nodes are variables, the domains
of the variables are unary constraints on the nodes, and the arcs correspond to the constraints
between the variables. Although arcs normally connect only two nodes, if there are constraints
involving more than two nodes, special, multi-ended arcs are employed. Original work on
temporal constraint networks dates back to the research performed by Montanari [108] and
Mackworth [90]. Good introductions to algorithms for constraint networks are provided by
Nadel in [110] and by Kumar in [80]; a good analysis of networks with finite domains is done
by Dechter in [46].

Dechter, in [47], gives a good general overview of the use of constraint networks for the
representation of time. Beginning in 1983, Malik and Binford [96] used simple ordering
constraints between nodes representing events in time. To solve the constraint problem, they
used linear programming techniques to solve systems of linear inequalities. Besides problems
with temporal representation similar to those of point-algebras as discussed below, the
approach also suffers from the need for full re-computation whenever a constraint is added.

In the so called point-algebras, originally proposed by Vilain and Kautz [177] and later revised
in [178], the nodes of the constraint network represent events in time, and the constraints are
typically subsets of the set { , , }< > = . If an arc between nodes a and b is labeled { , }< = , this
signifies that either a b< or a b= . There are some problems with this approach as discussed
by Allen in [3]. First, it becomes very hard to represent intervals, in particular because of the
problem of deciding if time intervals are open or close at their boundaries (see [3], pg. 834).

But, most important, it is not possible to represent that two intervals can not happen at the same
time, i.e., mutual exclusion. To see this, suppose we have two intervals: A, with begin point
a1 and end point a2 ; and B, delimited by b1 and b2 . To say that A and B occur in different
times is equivalent to saying that a b b a2 1 2 1< <or . In either case, these are constraints
between 4 nodes that can not be decomposed into binary constraints, and therefore are beyond
the representation power of point-algebras.

If we restrict the expressiveness further and disallow the use of the “different” relation between
nodes (≠ , represent by { , }< >), point-algebras allow very fast constraint propagation
algorithms based on the fact that in those cases there is a partial order in the network. Gerevini
and Schubert [56] discuss heuristics methods to efficiently propagate constraints in networks
with the “different” (≠) relation.

The competing formalism, called interval algebra [3, 4], differs radically by assuming that
nodes in the constraint network represent time intervals and the arcs are temporal constraints
between them. The next section formalizes such algebras and, in the following discussion, most
of the important properties are examined. We would like to point out now that, as formalized
by Allen in [7], interval algebras do not suffer from the problem of endpoints mentioned above
and also allow the representation of negative information such as that two intervals do not
happen at the same time. The latter is the main reason for our interest in employing interval
algebras in our work.

Chapter 3 PNF-Networks 59

However, most constraint propagation algorithms in interval algebras are exponential in the
number of constraints, although partial solutions are adequate for some practical applications
(see some empirical studies by Ladkin and Reinefeld [82] and Baptiste and Pape [12]).
Generalizations of interval algebras have been proposed by Freksa [51]. Also, Meiri [103] and
van Beek [176] suggested ways to combine point- and interval algebras. For the scope of
problems and applications considered in this thesis, we consider that interval algebras provide a
good compromise of expressiveness and efficiency if improved by the PNF algorithms
described below.

3.2 IA-Networks
Time intervals are the fundamental concept of the interval algebra proposed by James
Allen [3]. Unlike in point-algebras [177], the intervals are not defined by beginning and ending
points but instead they are a primitive concept themselves. Relationships and temporal
constraints are defined in terms of disjunctions of the 13 possible primitive relationships
between two time intervals: the relations equal (e), before (b), meet (m), overlap (o), during
(d), start (s), finish (f), and their inverses, ib, im, io, id, is, and if respectively. Figure 3.1
(from [3]) provides an intuitive understanding of the meaning of those relationships.

We denote by Λ the set of all primitive relationships, and by Λ the set of all possible
disjunctions of primitive relationships, seen here as subsets of Λ ; notice that the number of
elements of Λ is,

Λ Λ= = =2 2 819213

A before B
A

B
A i-before B

A

B

A meet B
A

B
A i-meet B

A

B

A start B
A

B
A i-start B

A

B

A finish B
A

B
A i-finish B

B

A

A overlap B
A

B
A i-overlap B

A

B

A equal B
A

B

A during B
A

B
A i-during B

A

B

Figure 3.1 The 13 possible primitive relationships between two time intervals.

Chapter 3 PNF-Networks 60

An interval algebra network X, or simply an IA-network (also called by many authors as an
Allen interval network), is a binary constraint satisfaction network (as defined, for instance, by
Kumar in [80]) where the nodes x x xn1 2, , ,� correspond to variables to which one time interval
can be assigned. To each node xi there is associated a set of intervals, called the domain of the
node xi (also referred as the unary constraints of the network), that specifies the time intervals
that can be assigned to the nodes. The arcs of the network correspond to binary temporal
constraints between the two nodes expressed as disjunctions of Allen's temporal relationships,

that is, as elements of Λ .

Figure 3.2 shows an example of an IA-network composed of four nodes, A, B, C, and D, and
five temporal constraints. The temporal constraint between A and B, {o,if} , determines that the
interval A either overlaps or is finished by interval B. Similarly, B overlaps (o) or starts (s)
interval C. The relations {b,ib} between A and D and between D and C make the corresponding
intervals mutually exclusive but do not constraint them to occur in a pre-determined order. The
relation between A and C is similar, but the {m,im} relation forces one interval to be
immediately followed by the other.

Following the convention adopted by most of the researchers in the field, fig. 3.2 does not show
the implied inverse relationships as well as the “unconstrained” relations — the disjunction of
all primitive relationships — that exist in our example, for instance, between B and D.

3.2.1 Solutions of an IA-Network
Given a set of unary constraints between nodes σ σ σ1 2, , ,� n , a solution of the IA-network X is
an assignment of time intervals to all the nodes x x xn1 2, ,..., of X which satisfies both the binary
constraints between any two nodes and the unary constraints σ σ σ1 2, , ,� n on each node. If at
least one solution exists the IA-network is said to be consistent under σ σ σ1 2, , ,� n , or simply,
consistent.

B

A

C

D

{o,if}

{o,s}

{m,im}

{b,ib}

{b,ib}

Figure 3.2 An example of an IA-network.

Chapter 3 PNF-Networks 61

In the examples shown in this chapter we will assume a model for the IA-algebra where
intervals are closed continuous segments of the real line ℜ . That is, an interval in our examples
is a pair [,]a b ∈ℜ × ℜ where a b< . The zero point has no special meaning in our model, so
intervals can be defined with negative values. As pointed by Allen [5], there are other models
for the interval algebra; the choice of segments on the real line is arbitrary and is done for the
sake of simplicity of exposition.

Figure 3.3 shows a solution of the IA-network of fig. 3.2 in the case that there are no unary
constraints on the nodes. It is easy to see that the assignment of each of the displayed intervals
to the nodes satisfies the constraints between each pair of nodes. Since there is a solution,
according to the definition above, the network is consistent. Notice that, for a different set of
unary constraints, the same network might not be consistent. For instance, consider the case
where the unary constraints on the domains of A and C are, respectively, σ A = −∞ −, 1< A and

σ C = +∞1,< A . Since the constraint {m,im} requires any solution to have no gaps between the

intervals corresponding to A and C, there is clearly no solution to the network and therefore
under those constraints the network is not consistent.

3.2.2 Transitive Closure of IA-Networks
Given a constraint between two intervals, that is, a disjunction of primitive temporal
relationships, the more elements it has the less restrictive is the constraint. For example, a
constraint enumerating all the primitive relationships does not impose any constraint on the
corresponding intervals.

However, given an IA-network, there can be constraints where some of the primitive
relationships are superfluous, that is, all solutions in all nodes are preserved if those primitive
relationships are removed from the constraints. For example, a more closer examination of
fig. 3.2 reveals that the relation im between A and C is superfluous. Since A finishes before or
at the same time as B, and C starts after the beginning of B, then A can not happen after C. That

B

 A

C

 D

{o,if}

{o,s}

 {m,im}

{b,ib}

{b,ib}

 [-1,1]

[2,3]

[-1.5,0]

[-2,-1]

Figure 3.3 A solution for the IA-network of fig. 3.2.

Chapter 3 PNF-Networks 62

is, the relation im between A and C can be eliminated from the constraint without the loss of
any solution (in any model).

A major feature of the interval algebra is the possibility of elimination of those superfluous
relationships between variables by simple constraint propagation. The method proposed by
Allen [3] is based on the concept of transitive closure of pairs of primitive relations (r, s) of Λ .
Given three variables, A, B, and C such as A r B and B s C, the set of all possible relations

between A and C is denoted by tc r s(,):Λ Λ Λ× → . That is, any relation that does not belong to

Table 3.1 The transitive closure tc(r,s) for the primitive relations between two intervals (from [3]).

 tc (r,s) e b ib d id o io m im s is f if

e e b ib d id o io m im s is f if

b b b <all>
b o m d

s
b b

b o m d
s

b
b o m d

s
b b

b o m d
s

b

ib ib <all> ib
ib io im

d f
ib

ib io im
d f

ib
ib io im

d f
ib

ib io im
d f

ib ib ib

d d b ib d <all>
b o m d

s
ib io im

d f
b ib d

ib io im
d f

d
b o m d

s

id id
b o m id

if
ib io id
im is

e o io s
d f is id

if
id o id if io id is o id if io id is id if o id id is io id

o o b
ib io id
im is

o d s
b o m id

if
b o m

e o io s
d f is id

if
b io id is o id if o d s o b o m

io io
b o m id

if
ib io d f

ib io im
id is

e o io s
d f is id

if
ib io im o id if ib io d f io ib im io io id is

m m b
ib io id
im is

o d s b b o d s b e f if m m d s o b

im im
b o m id

if
ib io d f ib io d f ib e s is ib d f io ib im im

s s b ib d
b o m id

if
b o m io d f b im s e s si d b m o

is is
b o m id

if
ib io d f id o id if io o id if im e s is is io id

f f b ib d
ib io im

id is
o d s ib io im m ib d ib io im f e f if

if if b
ib io id
im is

o d s id o io id is m is io id o id e f if if

Chapter 3 PNF-Networks 63

tc r s(,) is guaranteed to be superfluous and can be removed from an IA-network without the
loss of solutions.

Table 3.1 contains the values of tc (r,s) for all primitive relations r and s, according to the
semantics model proposed by Allen [3]. To compute the transitive closure of a generic pair of
relations (,)R S ∈ ×Λ Λ , denoted by TC (R,S), we simply take the union of the transitive
closure of all pairs of its constituent primitive relations,

TC R S tc r s
r R
s S

 (,) (,)=
∈
∈

�

3.2.3 Path-Consistency and Global Consistency
Table 3.1 is used by Allen in an algorithm to infer stronger temporal constraints between the
intervals of an IA-network. The algorithm (described in detail in [178]) basically reduces the
set of disjunctive relations between two nodes A and B by computing its intersection with the
transitive closure, for every node I, of the constraints between A and I and I and B. Constraints
are checked whenever a neighboring node has one of its constraints modified and until there is
no more changes in the IA-network. It is a classical path-consistency algorithm (according to
Montanari's classification [108]) which assures only that, for every sub-network of three nodes
A, B, and C, the set of primitive relations representing the temporal constraint between A and C,
RAC is contained in the actual transitive closure of the constraints between A and B, RAB and B
and C, RBC :

R TC R RAC AB BC⊆ (,)

Figure 3.4 shows the IA-network of fig. 3.2 after the use of Allen's path-consistency algorithm.
Notice that path-consistency tightened some of the temporal constraints of the network. The
constraints between A and B and B and C were reduced to {o}. In particular, path-consistency
removed the superfluous im relation mentioned above from the constraint between A and C.
Also, the algorithm reduced the constraint between nodes B and D from the set of all possible

B

A

C

D

{o,if}

{o,s}

{m,im}

{b,ib}

{b,ib}

⇒

B

A

C

D

{o}
{o}

{m}

{b,ib} {b,ib}

{b,ib,id}

Figure 3.4 The IA-network of fig. 3.2 after Allen's path-consistency algorithm. The resulting network still
contains the superfluous relationship id between nodes A and C.

Chapter 3 PNF-Networks 64

relations (which, following the conventions, is not represented in the figure) to the constraint
{b,ib,id}.

Allen's algorithm does not remove all the superfluous temporal relations from an IA-network,
as noticed by Allen himself and other researchers [3, 177]. This can also be verified by our
example in fig. 3.4. As show in fig 3.5, the interval D must occur either before or after the
group of A, B, and C, and therefore, the relation id between B and D corresponds to an
impossible case. Allen's algorithm fails to remove this inconsistency because this case involves
constraints among four nodes, and, as explained above, path-consistency assures consistency
only for sets of three nodes.

Vilain, Kautz, and van Beek [178] show that, in fact, removing all the superfluous relations of
an IA network is an NP-complete problem. However, Allen’s algorithm has been used by many
researchers in practical applications because of its speed and also because it seems to provide a
good approximation of the transitive closure in most cases. For instance, in [3] James Allen
argues that “... we have not encountered problems from this deficiency in our applications of
the model.” (from [3], pg. 837). Similarly, in our experience with IA-networks, we could never
detect a situation where the approximation computed the Allen’s path-consistency algorithm
was insufficient.

3.2.4 The Minimal Domain of IA-Networks
IA-networks are normally used in tasks involving planning or scheduling. Typically, unary
constraints are imposed on the nodes, for example, constraining the duration of some of the
intervals, or requiring that some of the intervals to be contained in pre-determined intervals (see
[103] for an account of different methods).

Given a node xi , we define a feasible value for xi to be a time interval that belongs to at least
one solution of X. The set of all feasible values of a node xi is called the minimal domain of xi .
The minimal domain of an IA-network with unary constraints σ σ σ1 2, , ,� n is the collection of

the minimal domains of all nodes, denoted in this chapter by σ σ σ1 2, , ,� n . Notice that, by

definition, σ σi i⊆

C

A

D

B

C

A

D

B

D before

D after

Figure 3.5. The two possible situations for the IA-network of fig. 3.4.

Chapter 3 PNF-Networks 65

The minimal domain of a network X should not be confused with the concept of minimal
network (see [47] for a clear treatment of the difference between the two), and explained in the
next section. The first is applicable to every constraint network and concerns feasible values of
nodes; the second is a concept specific to binary networks and refers to the construction of a
network where all the constraints satisfy a consistency property.

As it will become clear in the future chapters, our applications do not require the computation
of specific solutions, but instead require the determination of the feasible values of intervals in
an IA-network. Therefore, our analysis concentrates on issues related to the problem of
determining the minimal domain of the nodes of a IA-network given an initial set of
unary constraints on its nodes. In the case of IA-networks, both the minimal domain and the
unary constraints are represented by sets of time intervals.

In general, it is NP-hard to determine if there are solutions in a IA-network [103]. The
computation of the minimal domain in IA-networks is also NP-hard in the number of
constraints [177], preventing their use in most practical problems. The combinatorial explosion
does not come only from the handling of the constraints of the networks but in fact mostly from
the operations on the sets of time intervals associated to each variable. In particular, mutual
exclusive constraints can yield minimal domains that are composed of disjunct sets of intervals,
making difficult any compact representation of sets of intervals.

This is shown in fig. 3.6 that displays the minimal domain of the network of fig. 3.1 when it is
known that interval C is −11, and no other unary constraints in the other nodes. Notice that it
is necessary to describe the minimal domain of variables as infinite sets of intervals with
restriction in their beginning and ending values. Moreover, the mutually exclusive constraint
between C and D generates a set that is a union of two sets of intervals without common

[,]−11

{[,]} {[,]}a b a b
b
a b

a
b a

<−
<

>
>

1 1
� ��

{[,]}a
a

−
<−

1
1
�

{[,]}a b
a

b
<−

− < <
1

1 1

�

B

A C

D

{o} {o}

{m}

{b,ib}{b,ib}

{b,ib,id}

Figure 3.6 The minimal domain of the IA-network of fig. 3.4 given that
the interval C happens in the interval [-1,1].

Chapter 3 PNF-Networks 66

elements. Notice that if the minimal domain of C was described by a set of two intervals
without intersection, than the minimal domain of D would have to be described by four sets of
intervals. In fact, D is a typical case of the combinatorial explosion of the computation of the
minimal domain in IA-networks (see [177] for a complete analysis of the issue). Such problems
do not occur if the IA-network does not contain mutually exclusive relations because in such
cases there is a topological order in the network and therefore dynamic programming
techniques can determine solutions in polynomial time.

Even the computation of simple arc-consistency [90], a conservative approximation to the
minimal domain, can become exponentially long and/or large in IA-networks. Hyvönen
examines this problem in general [62] and suggests some optimizations that improve the
performance. The lack of fast methods to compute the minimal domain motivated us to search
for a simplification of IA-networks where an approximation of the minimal domain can be
computed in polynomial time but still produces the information required by our applications.

3.3 Past, Now, and Future
In the context of the applications described in the next chapters, it is sufficient to determine
only whether the action corresponding to a node of an IA-network is happening or not. In
particular, we found that it was not necessary for recognition and, to a lesser extent, for
interaction control to know precisely the time when an action will happen in the future or how
long the action is going to take. This motivated us to narrow our search for the minimal domain
so that it provides exclusively this kind of answer.

We can represent those situations by three symbols, past, now, and future, where intuitively
past stands for an action that happened before the current instant of time; now refers to actions
that are happening; and future corresponds to the actions which have not started yet. Given a
node of an IA-network in a given instant of time, and information about the occurrence of some
nodes (typically, sensor data), we want to assign one of these three symbols to identify if the
action corresponding to that node has happened or not.

The purpose of this section is to define a formal method to compute past, now, or future, such
that the result is compatible with the semantics of an IA-network. In particular, if the current
instant of time belongs to every interval of the minimal domain of an IA-network, we want the
now symbol to be assigned to that node, representing that the interval must be happening.

Before going in this direction, we should first examine the question of why do we use three
states and not two, that is, by representing only happening (on) and not happening (off)?
Temporal constraint propagation is polynomial in 2-valued constraint networks [46] and, in
particular, for the computational of the minimal domain. However, the problem is that in on/off
networks it is impossible to distinguish past from future: off stands both for intervals that
happened and those that will happen. In fact, some results in the next chapter show that
differentiating between past and future occurrences in a time line dramatically enhances the
recognition of actions and the detection of contradictory states.

Chapter 3 PNF-Networks 67

3.3.1 The PNF-state of an IA-network
The fundamental concept behind our methods is the division of the whole timeline into three
consecutive intervals, which, for simplicity of notation, are called respectively past, now, and
future. In this formulation, past is an interval that starts in − ∞ and ends just before now, that is
past {m} now. Similarly, now finishes exactly when future starts, now {m} future, and future
continues to +∞ . Notice that, as show in fig. 3.7, now is not an instant in time, but an interval;
in practice, the current instant of time will be contained in this interval.

We denote by m the set of these three intervals,m past now future= { }, , . To simplify notation,
let us also define the set M of subsets of m,

M past now future past now now future

past future past now future

= ∅,{ },{ },{ },{ },{ },

{ },{ }

, ,

, , ,

;
@

whose elements are abbreviated as

M P N F PN NF PF PNF= ∅, , , , , , ,; @
The idea of a now interval is related to the method proposed by Allen in [3] to control the
memory usage in IA-networks. However, our goal here is to use a conceptually similar
technique directly to obtain information about occurrence of intervals, while in Allen’s case the
interval NOW is basically used only as a reference point to control propagation. Moreover, our
research has shown that the concept can be extended to define a new class of networks (defined
in section 3.4) where constraint propagation can be computed much faster.

time

past future
now

current instant

Figure 3.7 Diagram of the relations between the intervals past,
now, and future.

Chapter 3 PNF-Networks 68

As a fundamental part of our theoretical framework, the interval now must have the property
that no other interval starts or finishes inside now. That is, given any interval I, it never
happens that now overlaps I (now o I), now is overlapped by I (now io I), now is started by I
(now is I), now is finished by I (now if I), or now is i-during I (now id I), as depicted in fig. 3.8.

In the application of this model, now always contains the current instant of time and therefore
the assumption of its existence is related to assuring that sampling rates of the other intervals’
changes are high enough to guarantee the fundamental property.

For a given interval of time, the above conditions mean that either now is contained in the
interval or the interval is contained in past or in future. Formally, given an interval I ∈ℜ × ℜ ,
we define the PNF-state of I by the function s I M():ℜ × ℜ → where

s I P I d f past

s I N now e s d f I

s I F I d s future

() { , }

() { , , , }

() { , }

= ⇔
= ⇔
= ⇔

Applying Allen’s transitive closure, we can equivalently define the function s by

s I P I b m now

s I N now e s d f I

s I F I ib im now

() { , }

() { , , , }

() { , }

= ⇔
= ⇔
= ⇔

Considering that by our definition of now it never happens, for any interval I, that
now o io d is if I { , , , , } , it is clear that the function s I1 6 is well defined — since it exhausts all
the remaining possibilities. Notice that, although the range of the function s is M, its image is
restricted to P N F, ,; @ .

We can extend s to sets of intervals by considering the union of the PNF value for each interval
of the set. We then define the PNF-state of a set of intervals Σ by the function
S M():Σ 2ℜ×ℜ → where

S s I
I

() ()Σ
Σ

=
∈
�

now i-start I

now

I

now i-finish I

I

now

now overlap I

now

I

now i-overlap I

now

I

now i-during I

now

I

Figure 3.8 Relations that never happen between the interval now and any other interval I.

Chapter 3 PNF-Networks 69

3.3.2 Computing the PNF-state of an IA-network
Using those definitions, we are ready to define a method to determine whether an action has
happened or not, as explained in the beginning of this section, given the intervals corresponding
to the occurrence of some nodes in the network (typically, sensor data). First, we have to define
a procedure to compute the PNF-state of the nodes of an IA-network given the intervals
corresponding to the occurrence of some of the nodes of the network.

Procedure 3.1

 i. define now as a very narrow interval containing the current instant of time;

 ii. obtain all the known intervals that correspond to the occurrence of some of the
nodes in the IA-network;

 iii. compute the minimal domain of the IA-network using as unary constraints the
known intervals;

 iv. project the computed minimal domains through S, computing therefore the PNF-
states of the minimal domain of all nodes.

Given the PNF-state of the nodes of the IA-network constructed by procedure 3.1, it is clear
that an interval is happening only if its PNF-state is N now= { } . Similarly, if the PNF-state is a
subset of PF past future= { }, , it is assured that the interval is not happening in this instant of
time. Of course, underlying this method there is the assumption about the minimal length of the
now interval as described above.

The main problem of procedure 3.1 is that it relies on the computation of the minimal domain
of an IA-network that we have already characterized as very computationally costly. In the next
sections, we introduce faster ways to compute a conservative approximation of the PNF-states
of the nodes of an IA-network.

3.4 A Better Representation: PNF-Networks
The computation of the PNF-state of the minimal domain of an IA-network is NP-hard due to
two factors, as mentioned above: the exponential search through all possible solutions; and the
exponential growth of the sets of intervals corresponding to the minimal domain. In this
section, we provide a method to calculate an approximate solution that solves the latter
problem; a solution for the former is described in the next section.

The method described in procedure 3.1 computes the PNF-state of a node after the minimal
domain is determined. The basic idea of the approach described in this section is to project the
initial set of unary constraints into the PNF space and to compute the minimal domain there
using special mechanisms, completely eliminating the explosion in the number of intervals. As
we will show in the end of this section, this process can not guarantee to produce the same
results as procedure 3.1, but it is conservative, in the sense that no possible solution is lost.

Chapter 3 PNF-Networks 70

In our method not only the intervals are projected into the PNF space, but the IA-network itself.
We started our research developing minimal domain methods for PNF constraint propagation
running on IA-networks, but later we found that it would be much more computationally
efficient to project the IA-networks into special, 3-valued networks that we named PNF-
networks.

3.4.1 PNF-Networks: Definition
Let us start by providing a formal definition of our special, three-valued networks, and by
establishing some useful notation. A PNF-network is a 3-valued binary constraint satisfaction
network where the domain of the all nodes w w wn1 2, , ,� is the set of symbols
m past now future= { , , } . An unary constraint Ri on a node wi can be represented by an
element of M P N F PN NF PF PNF= ∅{ , , , , , , , } . For instance, the constraint R PNi =
constrains the node wi to assume only the elements past or now. We alternatively denote this
by saying that Ri is the restricted domain of the node wi .

A binary constraint �Rij between two nodes wi and wj is a truth matrix which determines

which the admissible values are for the pair of nodes (,)w wi j . We represent these 3x3 matrixes

using a triad r r r M M MP N F, , ∈ × × where rP represents the admissible values for wj when

w pasti = , and similarly for rN and rF .

For example, suppose two nodes wi and wj are constrained by:

� , ,R PN F Fij =

According to this constraint �Rij , the only values that the pair of nodes (,)w wi j can assume are:

from the constraint r PNP = , they can be either (past, past) or (past, now); if wi is now, the
constraint r FN = , forces wj to be future, and therefore (,)w wi j can only by (now, future);

and from r FF = , (future, future).

3.4.2 Projecting IA-Networks into PNF-Networks
Given an IA-network X with a set of unary constraints σ σ σ1 2, , ,� n , we can associate a PNF-
network ′X with the same number of nodes and node domains S S S n(), (), , ()σ σ σ1 2 � . To
understand how to map binary constraints between nodes in an IA-network into binary
constraints in a PNF-network, we start with the following example.

Suppose a pair of nodes (,)x xi j is constrained in the original IA-network by the relation meet

(m), that is, in any solution I I I n1 2, , ,� , the interval I i of must be followed immediately by I j .

Intuitively, if I i is happening now, s I Ni() = , then I j can only occur in the future, yielding

s I Fj() = . Similarly, if I j has not happened yet, s I Fi() = , then I j must also be future,

Chapter 3 PNF-Networks 71

s I Fj() = . Finally, if it is know that s I Pi() = , the interval I i has already finished, meaning

that the interval I j must have started at some point in the past, although it may have finished or

not — therefore s I Pj() = or s I Nj() = .

As we saw above, the relationship meet between the nodes xi and xj can be mapped into the

binary constraint P PN F Fij = , , such as to preserve the temporal ordering contained in the

original IA-network (as we will formalize later).

Table 3.2 displays the function γ :Λ → × ×M M M that maps the 13 Allen's primitive
relationships into their equivalent binary-constraints between PNF symbols.

Given a binary constraint in an IA-network, i.e., a disjunction of primitive relationships R, we
can define its projection by the function Γ Λ: → × ×M M M :

Γ() ()R r
r R

=
∈

γ�

where the union of the PNF-network binary constraints is defined as their component-wise
union. For instance, if R m im= { , } , then

Γ

Γ

R m im m im

PN F F P P NF

R PN PF NF

= =

=

=

{ , } () ()

, , , ,

, ,

1 6

1 6

γ γ�

�

Table 3.2 The function γ ()r which maps Allen’s primitives
into PNF-network binary constraints.

r
e <P,N,F>
b <PNF,F,F>
ib <P,P,PNF>
m <PN,F,F>
im <P,P,NF>
o <PN,NF,F>
io <P,PN,NF>
s <PN,N,F>
is <P,PN,F>
d <PN,N,NF>
id <P,PNF,F>
f <P,N,NF>
if <P,NF,F>

r r rP N F, ,

γ r1 6

Chapter 3 PNF-Networks 72

Notice in particular that r PFN = , that is, if the first interval is now then the second interval can
only be in the past or in the future states. This is the constraint that typifies mutually exclusive
nodes in a PNF-network.

Given an IA-network, we can project it into a PNF-network where each binary constraint Rij is

projected into its PNF-equivalent Γ Rij3 8 . For example, fig. 3.9 displays the result of projecting

the IA-network of fig. 3.2, which is the path-consistent version of the network of fig. 3.1. In
general, it is always recommendable to run path-consistency before projecting to assure tighter
constraints between the nodes. Of course, higher degrees of consistency are even more
desirable: as noted before, the consistent relation between variables B and D is in fact {b,ib},
and not {b,ib,id} as determined by path-consistency. If that was the case, the PNF constraint
between B and D in fig. 3.9 would be strengthened from PNF PNF PNF, , to

PNF PF PNF, , .

Notice that, following the reasoning of the example in the beginning of this subsection, the
projection process preserves the “projected truth” of a solution. That is, if two intervals satisfy
the relations between a pair of nodes, the projection into PNF of the intervals satisfies the
projection of the relations. This is captured by the following proposition.

Proposition 3.1 Let I1 and I 2 be two time intervals that satisfy a primitive Allen relationship
r, I r I1 2 . Then, their PNF-state satisfy the projection of r through γ ,

I r I s I r s I1 2 1 2 () () ()⇒ γ

Proof. By enumeration of all possibilities. Let us do here just the proof for one primitive
relationship, during (d); the other relationships are proved in similar ways. So, assume the
primitive relation r is during (d), and therefore by table 3.2, γ () , ,d PN N NF= .

B

A

C

D

{o}
{o}

{m}

{b,ib} {b,ib}

{b,ib,id} ⇒ PN F F, ,

PNF PNF PNF, ,

PN NF F, ,

B

A C

D

PN NF F, ,

PNF PF PNF, ,PNF PF PNF, ,

Figure 3.9 The projection into a PNF-network of the IA-network of fig. 3.4.

Chapter 3 PNF-Networks 73

Suppose s I P past() { }1 = = . By definition, now ib im I { , } 1, which, combined with the
assumption I d I1 2 , yields, by transitive closure, now ib im io d f I { , , , , } 2 . By our definition
of now, it never happens that now io I 2 , leaving thus only two possibilities: now ib im I { , } 2 ,
yielding s I P()2 = ; or now d f I { , } 2 , yielding s I N()2 = . Therefore, if s I P()1 = , then
s I P()2 = or s I N()2 = , and thuss I r s I() () ()1 2γ .

Now, suppose s I N()1 = . Similarly, now s d e f I { , , , } 1 , and by transitive closure,

now d I { } 2 , and therefore s I N()2 = , satisfying the relation γ () , ,d PN N NF= . Last, if

s I F()1 = , the transitive closure produces now b m o s d I { , , , , } 2 , and thus s I N()2 = or
s I F()2 = after the exclusion of the impossible situation now o I 2 .

The proof for the other primitive relationships is altogether similar.�

Notice that the converse is not true. Consider, in our model of intervals in the real line, the
intervals I1 1 3= , and I 2 2 4= , when the reference interval now is [0,0.1]. It is not true that

I b I1 2 , but s I b s I() () ()1 2γ is true, since s I F11 6 = , s I F21 6 = , and γ () , ,b PNF F F= .

We can easily extend proposition 3.1 to sets of intervals and relationships, as stated in
proposition 3.2.

Proposition 3.2 Let σ 1 and σ 2 be sets of intervals, and R a set of primitive Allen
relationships. If every pair of intervals I1 1∈σ , I 2 2∈σ satisfies R, I R I1 2 , then the PNF-
projection of σ 1 and σ 2 satisfy the projection of R through Γ

I R I S R S1 2 1 2 ()⇒ σ σ1 6 1 6Γ

Proof. Let s S1 1∈ ()σ and s S2 2∈ ()σ be particular PNF-states of the projected sets of
intervals. Since they are in the projection, there exist I1 1∈σ and I 2 2∈σ such as s I s() { }1 1=
and s I s() { }2 2= . By the hypothesis, I R I1 2 , and therefore there exists a primitive relation
r R∈ that satisfies I r I1 2 . According to proposition 3.1, s I r s I() () ()1 2γ . Since r R∈ , by

definition, γ ()r R⊆ Γ1 6 , yielding that s I R s I() ()1 2Γ1 6 , and{ } { }s R s1 2Γ1 6 . This is valid for

every element s S1 1∈ ()σ and s S2 2∈ ()σ , and therefore S R Sσ σ1 21 6 1 6 ()Γ .�

Proposition 3.2 assures that constraints that are satisfied in the original IA-network are also
satisfied in the projected network, although the converse is not true (just consider the same
counter example used for proposition 3.1). We soon will show that a similar result holds for
minimal domains but before that we have to examine how to compute the minimal domain of a
PNF-network.

3.4.3 The Minimal Domain of PNF-Networks
It is straightforward to extend the concepts of solution, feasible values and minimal domains to
a given a PNF-network and its unary and binary constraints. As we will see later, most of our

Chapter 3 PNF-Networks 74

algorithms and methods for action recognition are related to the computation of the minimal
domain of a PNF-network subjected to a fixed set of binary constraints but with time-varying
unary constraints. This motivated us to have a common representation for minimal domains and
unary constraints that we call a component domain.

Formally, given a PNF-network on nodes w w wn1 2, , ,� , a component domain W of the PNF-
network is any combination of domains Wi on each of the nodes wi of the PNF-network,
denoted by W W W W Wi i n= =() (, , ,)1 2 � , where each Wi is a subset of m past now future= { , , } ,
that is W Mi ∈ . The value of each Wi in a component domain W is called the PNF-domain of
the node wi . We also denote by U the set of all possible component domains of a PNF-

network, U M n= , where n is, as always, the number of nodes in the PNF-network.

Given a PNF-network and a component domain W, consider the problem of finding the
minimal domain of the network by imposing the components of W as unary constraints on the
network’s nodes. First, notice that both solutions of PNF-networks and minimal domains are
also representable by component domains. To simplify notation we define a function that
computes the minimal domain of a PNF-network given unary constraints W, called the
restriction of W, R W U U(): → where each component R W i() of R W() is the minimal domain
of the node wi :

R W R W R W R W R W
i n() () (), (), , ()= =1 6 1 61 2 �

Procedure 3.2, described below, computes the minimal domain of a network constrained by a
component domain W of unary constraints by (almost) brute force search through the space of
solutions.

Procedure 3.2

Input: a PNF-network and a component domain W.

Output: the minimal domain of W, R W() .

L W← (1)
for i from 1 to n (2)

for each x Li i∈ (3)

S W W x Wi n← 1 2, , ,{ }, ,� �1 6 (4)

P FindASolution S← () (5)
if P = ∅ (6)

W W xi i i← \ { } (7)
else (8)

L L P← \ (9)
return W (10)

Chapter 3 PNF-Networks 75

Procedure 3.2 uses a search procedure FindASolution (W) that, given a component domain W,
returns one solution of the network given the unary constraints represented by W, or the empty
set if there is no solution. Typically, FindASolution is implemented using back-tracking
mechanisms and with a running time proportional to 3n , where n is the number of nodes in the
PNF-network. Procedure 3.2 is quite straightforward, searching for a solution which includes
every element of each variable domain. In line 6, elements of variables that do not belong to
solutions are excluded from the result of the procedure.

Since each domain of the component domain W, and therefore of L, has at most three elements,
past, now, or future, it is clear that FindASolution is called at most 3n times. However,
procedure 3.2 includes an optimization that, in practice, increases considerably the running
time. In line 9, all the elements of a found solution P are eliminated from future search
(contained in L) because the procedure have already found a solution for them. Therefore, if the
PNF-network is consistent, that is, has at least one solution, the solution found for an element
of the first domain examined,W1, eliminates at least one element from every other domain, and
FindASolution is called at most 2n+2 times.

Figure 3.10 shows the minimal domain of the network in fig. 3.9 given the original constraints
W PNF PF N NF= , , ,1 6 (shown inside parenthesis in fig. 3.10). In these conditions, the

minimal domain is R W P P N F1 6 1 6= , , , . In this case, as we see, the computation of the

minimal domain determines completely the PNF-state of its intervals.

The problem is that procedure 3.2 is still exponential, as it should be expected, since it is
known that computing the minimal domain of a 3-valued constraint network is NP-complete
(see [46]). Notice, however, that unlike in the case of IA-networks (as discussed by
Hyvönen [62]), the exponential growth comes only from the search of solutions. Section 3.5
will examine how we can compute an approximation of the minimal domain in linear time. But

PNF

P

1 6
�

PF P1 6→

PNF PF PNF, ,

PN F F, ,

PNF PNF PNF, ,

PN NF F, ,

B

A C

D

PN NF F, ,

PNF PF PNF, ,

NF F1 6→

N1 6

Figure 3.10 Minimal domain of a PNF-network where the
original constraints are inside the parenthesis.

Chapter 3 PNF-Networks 76

first, we have to determine how the minimal domain of projected PNF-networks relates to the
minimal domain of the original IA-network.

3.4.4 Minimal Domains in IA-Networks and in PNF-Networks
The objective of this subsection is to show that the process of computing minimal domain in
PNF-networks is a conservative approximate of the minimal domain of the original IA-
network. That is, the minimal domain of a projected PNF-network contains the PNF-state of the
minimal domain of the IA-network. This is formally stated and proved in proposition 3.3.

Proposition 3.3 Let X be an IA-network, σ σ σ1 2, , ,� n a set of unary constraints on its

variables, σ σ σ1 2, , ,� n the minimal domain of X under those constraints, and

S S S n(), (), , ()σ σ σ1 2 � the PNF-states of the minimal domain. Let ′X be the PNF-projection

of X, with unary constraints S S S S nσ σ σ σ1 6 1 6= (), (), , ()1 2 � corresponding to the projection of

the unary constraints of X. Then the minimal domain of ′X under S σ1 6 , R S()σ1 6 , contains
the minimal domain of X, that is, for every variable i,

S R Si i
σ σ3 8 1 62 7⊆

Proof. Let us consider an element s Si i∈ σ3 8 . Since σ σi i⊆ implies, by definition,

S Si iσ σ3 8 1 6⊆ , we have that s Si i∈ σ1 6 . Since σ σ σ1 2, , ,� n is the minimal domain, there

exists a solution I I I n1 2, , , ,� of X, I i i∈σ , where s I si i1 6 = . Let us consider the projection of

this solution, s I s I s In1 21 6 1 6 1 62 7, , ,� . According to proposition 3.2, these values satisfy every

relationship between two variables in ′X ; in fact, since I R Ii ij j , we obtain that

s I R s Ii ij j1 6 3 8 3 8 Γ . Together with the fact that s I S Si i i1 6 3 8 1 6⊆ ⊆σ σ , it is clear that

s I s I s In1 21 6 1 6 1 62 7, , ,� is a solution of ′X under S S S S nσ σ σ σ1 6 1 6= (), (), , ()1 2 � , and

therefore, is contained in the minimal domain. Since, by construction, s s Ii i∈ 1 6 , we obtain

s R Si i
∈ σ1 62 7 , and given that this is valid for every element s Si i∈ σ3 8 we obtain

S R Si i
σ σ3 8 1 62 7⊆ .�

Unfortunately the converse is again not true. Consider a network composed of two nodes, A
and B, linked by a meet constraint, A {m} B as shown in fig. 3.11. Now, suppose unary

constraints σ A = 0 2 1 3, , ,< A and σ B = 2 4,< A ; clearly, the minimal domain is σ A = 0 2,< A
and σ B = 2 4,< A . In the situation where now happens in 0 01, . , the corresponding PNF-states

are S NAσ3 8 = and S FBσ3 8 = . However, if we first project the network and the unary

Chapter 3 PNF-Networks 77

constraints, obtaining S NFAσ1 6 = and S FBσ1 6 = , and then compute the restriction, we

obtain the same values, R S NFA A
σ1 62 7 = and R S FB B

σ1 62 7 = , since γ m PN F F1 6 = , , . As

we see, in this example S NAσ3 8 = is different, although contained, in R S NFA A
σ1 62 7 = .

Proposition 3.3shows that the computation of the minimal domain through PNF-networks is a
conservative estimation of the true PNF-state of the minimal domain. That is, the PNF-states
corresponding to any solution of the IA-network are always contained in the minimal domain
of the projected PNF-network, under the same initial constraints. Notice also that if the minimal
domain of the PNF-network is empty, that is, the network is inconsistent, then the original IA-
network has no solutions.

In practice, the fact that computing the minimal domain of PNF-networks overshoots the
minimal domain of the IA-network has not been a problem, and it has been quite overshadowed
by the speedup enabled by the use of PNF-networks as we discuss in the next chapters.

3.4.5 The Space of Projected PNF-Networks
To finalize our exposition about PNF-networks we want to examine the structure of the space
of the projected PNF-networks and some of its properties that are responsible for fast constraint
propagation methods.

Let us consider first the process of projecting IA-networks itself. In theory, there is a great
reduction in the amount of information contained in an IA-network, since each of the 8192
types of arcs are projected into a 3x3 truth matrix, which has only 2 5129 = different
possibilities. However, if we consider all 8192 different disjunctions of Allen primitives, their
projection through Γ covers only 33 of the possible 512 constraints between nodes in a PNF-

A B

σ A = 0 2 1 3, , ,< A σ B = 2 4,< A

{m}

σ A = 0 2,< A σ B = 2 4,< A⇒
minimal domain

A B

S NFAσ1 6 =

PN F F, ,

�projection S

S FBσ1 6 = R S NFA A
σ1 62 7 =

�projection S

R S FB B
σ1 62 7 =⇒

restriction R
(minimal domain)

S NAσ3 8 = S FBσ3 8 =

≠

now= 0 01, .

Figure 3.11 Example of an IA-network with a minimal domain whose projection is properly
contained in the minimal domain of the projected PNF-network.

Chapter 3 PNF-Networks 78

network. For instance, there is no set of Allen primitives whose projection yields N PF N, , .
In fact, it is always true that, given any set of primitive relations R and its projection
Γ R r r rP N F1 6 = , , , then P rP⊆ and F rF⊆ .

Table 3.3 The PNF relations that actually occur in projected IA-
networks, and their corresponding inverses.

<PNF,PNF,PNF> <all>
<PNF,PNF,NF> {e, b, d, id, o, io, m, im, s, is, f, if}
<PN,PNF,PNF> {e, ib, d, id, o, io, m, im, s, is, f, if}
<PNF,NF,NF> {e, b, d, o, m, s, f, if}
<PNF,PNF,F> {e, b, id, o, m, s, is, f}
<PN,PNF,NF> {e, d, id, o, io, m, im, s, is, f, if}
<P,PNF,PNF> {e, ib, id, io, im, s, is, f}
<PN,PN,PNF> {e, ib, d, io, im, s, is, f}
<PNF,NF,F> {e, b, o, m}
<PN,PNF,F> {e, id, o, m, s, is, if}
<PN,NF,NF> {e, d, o, m, s, f, if}
<PN,PN,NF> {e, d, io, im, s, is, f}
<P,PNF,NF> {e, id, io, im, is, f, if}
<P,PN,PNF> {e, ib, io, im, is, f}
<PN,PN,F> {e, s, is}
<PN,NF,F> {e, o, m, s, if}
<P,PNF,F> {e, id, is, if}
<PN,N,NF> {e, d, s, f}
<P,PN,NF> {e, io, im, is, f}
<P,NF,NF> {e, f, if}
<PN,N,F> {e, s}
<P,PN,F> {e,is}
<P,NF,F> {e, if}
<P,N,NF> {e, f}

<PNF,PF,PNF> {b, ib, m, im}
<PN,PF,PNF> {ib, m, im}
<PNF,PF,NF> {b, m, im}
<PN,PF,NF> {m, im}
<P,P,PNF> {ib, im}
<PNF,F,F> {b, m}
<P,P,NF> {im}
<PN,F,F> {m}
<P,N,F> {e}

Γ −1 �R3 8�R

Chapter 3 PNF-Networks 79

Besides that, the image of Γ has a nice nested structure. That is, given a PNF-relation �R, every

set of relations R that maps into P, Γ R R1 6 = � , is contained in a “maximal” set of relations in

Λ which we will note as Γ −1 �R3 8 . In fact, the nested structure allows us to define such “inverse”

function for Γ , Γ Λ− × × →1: M M M .

Table 3.3 shows the 33 PNF relations that actually occur in projected IA-networks and the
maximal sets of Allen relations that project into them. We can also use the table as a way to
compute the projection of a set of relations R. In this case, to project R we just search the
column of inverses looking for the smaller set that contains R. The nested structure guarantees
that there is only one minimal set that corresponds, in fact, to Γ R1 6 .

One of the consequences of having only 33 different relations in projected IA-networks,
compared to 8192 in IA-networks, is that many basic operations become easily implementable
by small look-up tables. Moreover, it becomes a lot faster to examine the space of the networks
through enumeration. For instance, in the next section we will show that 3-node and 4-node
PNF-networks have some interesting features. These features were determined through
exhaustive enumeration of all possible 3-node and 4-node PNF-networks. If we were using the
original IA-network space where arcs come in 8192 different types, we would have to examine
8192 5 103 11≅ × 3-node networks, and 8192 4 5 104 15≅ ×. 4-node networks. Instead, we could
examine only 33 35 9373 = , and 33 1185 9214 = , , PNF-networks, respectively.

Another important property of the projection process is that it preserves path-consistency. To
verify this, we start by defining a function F M M M M M: × × × →1 6 that, given a PNF-

binary constraint � , ,P r r rP N F= , maps a PNF-state W0 into another which contains the image

of W0 through the binary constraint,

F r r r W rP N F s
s W

, , , 0

0

2 7 =
∈
�

Let us now define the concept of transitive closure in the space of PNF-networks. As explained
in [177], the transitive closure between two relations is the least restrictive relation that is
permitted by the composition of the two relations. That is, if �O is the transitive closure of PNF-

relations �P and �Q, we should have that, for every PNF-state W0 ,

F O W F Q F P W� , � , � ,0 03 8 3 84 9⊆

and �O being such that F O W� , 03 8 is maximal. Figure 3.12 depicts a diagram of these

relationships.

Chapter 3 PNF-Networks 80

Let us then define the transitive closure in the PNF realm by simply reverting to the IA-network
definition of transitive closure. Given PNF-relations P and Q, we define the transitive closure
of P and Q as the result of the function ptc M M M: 3 3 3× →

ptc P Q TC P Q(,) (,= − −Γ Γ Γ1 11 6 1 62 7
where TC is the transitive closure of two disjunctions of Allen primitives as defined in
section 3.2. To show that this is actually the transitive closure, we first observe that the
projection function Γ is well behaved. In fact, for any sets of Allen primitive relations
R S, ∈Λ , and any PNF-state W M0 ∈

F TC R S W F S F R WΓ Γ Γ, , , ,1 62 73 8 1 6 1 62 73 80 0=

This is proved by enumeration, checking all the 8192 8192 8× × = 536,870,912 possibilities

using a computer program. Now, given two PNF-relations P and Q, and their inverses Γ−1 P1 6
and Γ−1 Q1 6 , it follows immediately that

F TC P Q W F Q F P WΓ Γ Γ Γ Γ Γ Γ− − − −=1 1
0

1 1
01 6 1 62 74 94 9 1 62 7 1 62 74 94 9, , , ,

and therefore, since Γ Γ− =1 X X1 62 7 for any PNF relation X M M M∈ × × , we obtain

F ptc P Q W F Q F P W(,), , ,1 6 1 62 7=

Since equality holds, it is clear that ptc P Q,1 6 is maximal and thus the transitive closure

function for PNF-networks. This result yields the following proposition that guarantees that the
projection of a path-consistent IA-network is path-consistent.

Proposition 3.4 . Let X be an IA-network, and ′X its PNF projection. If X is path consistent
then ′X is path-consistent.

Proof. Since X is path-consistent, for every triad of nodes x x xi j k, , we have that their relations

R R Rij jk ik, , satisfy R TC R Rik ij jk⊆ ,3 8 . Let us consider the projection of those relations,

W0

F P W, 03 8

F O W F Q F P W, , ,0 03 8 3 84 9⊆
O

P
P

Q
P

Figure 3.12 Definition of transitive closure.

Chapter 3 PNF-Networks 81

P Rij ij= Γ3 8 , P Rjk jk= Γ3 8 , and P Rik ik= Γ1 6 . Since for any set of relations R∈Λ it is always

true that R R⊆ −Γ Γ1 1 62 7 , we can conclude that

R TC R R TC R Rik ij jk ij jk⊆ ⊆ − −, ,3 8 3 84 9 3 84 94 9Γ Γ Γ Γ1 1

Applying the projection in both sides and observing the definition of ptc, we obtain

Γ Γ Γ Γ Γ Γ Γ ΓR TC R R ptc R Rik ij jk ij jk1 6 3 84 9 3 84 94 94 9 3 8 3 84 9⊆ =− −1 1, ,

and therefore that P ptc P Pik ij jk⊆ ,3 8 , or simply, ′X is also path-consistent.�

3.5 Computing an Approximation of the PNF-Restriction
Computing the minimal domain in 3-valued constraint satisfaction networks is, in general, an
NP-hard problem [46, 103, 178]. In our experiments, we have been employing an arc-
consistency algorithm (based on [90]) to compute an approximation of the minimal domain in
linear time. In this section we define the notion of arc-consistency and provide a linear
algorithm (based in Mackworth’s arc-consistency algorithm [90]) to compute it. We then
proceed examining how good is this approximation.

Following the general definition provided by Dechter in [46], a PNF-network with unary
constraints W W Ui i

= ∈1 6 is arc-consistent under W if and only if, for each binary constraint

�Rij between two variables wi and wj , the image of every component Wi of W is contained in

Wj ,

W F R Wj ij i⊆ � ,3 8
The real meaning of arc-consistency is that, in an arc-consistent network, given a value in a
variable that satisfies the unary constraint, it is always possible to find a value in any other
variable that satisfies its local constraint and the binary constraint between them.

To simplify notation, let us define a function AC W U U1 6: → which maps a component domain
of a network into the maximal arc-consistent network contained in W. It is easy to see that, for
any set of unary constraints W, the minimal domain is contained in the maximal arc-consistent
network contained in W.

Proposition 3.5 For any component domain W of a PNF-network,

R W AC W1 6 1 6⊆

Proof. Just observe that a node value that belongs to a solution for the whole network satisfies
the binary constraints with any other node value in the solution.�

Chapter 3 PNF-Networks 82

3.5.1 The Arc-Consistency Algorithm
Procedure 3.3 shows an algorithm that computes the maximal arc-consistent network under a
component domain W. This is a version of the arc-consistency algorithm AC-2 proposed by
Mackworth in [90] and adapted here to the component domain notation. The algorithm uses the
function F defined above.

Procedure 3.3

Input: a PNF-network with variables w w wn1 2, , ,� and binary constraints �Rij ;

a component domain, W Wi i
= 1 6 representing unary constraints in the

variables.

Output: AC W1 6 , the maximal arc-consistent component domain that is
contained in W

initialize a queue Q with all nodes wj such that W PNFj ≠ (1)

W W← (2)
while Q ≠ ∅ (3)

w first Q0 ← () (4)
for each variable wi (5)

X F R Wi i← � ,
0 03 8 (6)

if W X Wi i≠ ∩ (7)

W X Wi i← ∩ (8)

queue w Qi ,1 6 (9)

return W (10)

The first step of the algorithm consists in detecting which nodes of the component domain W
are different from PNF, and queuing all those nodes for further expansion. Then W , the
component domain to be returned is initialized identically to the input W. The core of the
algorithm is a loop that ends when the queue Q is empty. In each cycle, one node w0 at state

W0 is examined. For each node wi an auxiliary variable X is assigned the possible values for

the domain Wi of wi given the present domain W0 of w0 , computed by the function F

described above. In steps 7-9, if necessary, the domain Wi of wi is actualized with the
intersection of its previous value and X, and the modified node wi is put in the last position of
the queue.

Let us verify that procedure 3.3 actually computes the maximal arc-consistent network under
the component domain W. It is easy to see that the result is contained in W, since line 8 sets
new values for components as intersections with the previous ones. To prove that the result is

Chapter 3 PNF-Networks 83

arc-consistent, just consider the invariant that, before the test of the while instruction of line 3,

it is always true that W F R Wi ji j⊆ � ,3 8 for all nodes wj which are not in the queue Q (the fact is

trivially true before line 3, since all nodes wj not in the queue have PNF as their state). To see

that the invariant remains true after lines 4-9 let us first notice that after lines 7-9, it is true that

W F R W Wi i i i= ∩� ,
0 03 8 for any node wi . Therefore, after the big loop of lines 4-9, although w0

is not in the queue any more, it is true that W F R Wi i i⊆ � ,
0 03 8 . However, new nodes have been

queued but all those that were not queued keep satisfying the invariant since

W F R W Wi i i i= ∩� ,
0 03 8 .

Therefore, upon termination, since the queue is empty, every node satisfies the invariant and
therefore the result is arc-consistent. Since only values that do not satisfy the constraints are
removed from the solution in line 8, it is easy to show that the output is also maximal.

Also, since the nodes can assume only 3 values and a node is queued only when its domain is
reduced, we can have at most 3n executions of the loop 4-9 and therefore the algorithm is
guaranteed to terminate. Moreover, assuming constant time for the computation of the function
F and the intersection operations (through look-up tables), we conclude that the algorithm is

O n22 7 in the number n of variables, or, as more commonly referred in the constraint

propagation literature, linear in the number of constraints.

3.5.2 How Good is Arc-Consistency?
Before we go further and demonstrate how PNF-networks can be used to recognize and control
interaction, we want to examine how well arc-consistency works as a method to approximate
the minimal domain of a PNF-network.

In this analysis, we will assume that the original IA-network was processed using Allen’s path-
consistency algorithm and therefore, according to proposition 3.4, the PNF-network is path-

consistent, that is, any triad of relations � , � , �R R Rij jk ik among 3 nodes w w wi j k, , satisfies

� � , �R ptc R Rik ij jk⊆ 3 8 .

The basis of our arguments is a result by Dechter [46] that demonstrates that any 3-valued
binary network that is strong 4-consistent is globally consistent. Global consistency implies that
in any 4-consistent 3-valued network, the minimal domain is exactly equal to the result of the
arc-consistency algorithm. So, we want to examine how far a path-consistent PNF-network is
from being strong 4-consistent.

According to Dechter, a network is strong i-consistent when it is j-consistent for every
j i= 1 2, ,� . A network is i-consistent when every partial solution of the network involving
i − 1 nodes can be expanded to a partial solution with i nodes. For instance, an arc-consistent

Chapter 3 PNF-Networks 84

network is 2-consistent, since any value assumed by one individual variable can be extended
such as there is another value in each of its neighbors that satisfy the constraint between them.

Unfortunately, path-consistency, in the way we defined it, does not imply 3-consistency in
Dechter’s sense. In fact, as shown by Meiri [103], it is easy to construct path-consistent 3-node
IA-networks where there are 2-node partial solutions that can not be extended.

Figure 3.13 shows an example of a path-consistent PNF-network that is 2-consistent but it is
not 3-consistent. To see that the network is path-consistent, let us compute the transitive closure

of �RAB and �RBC . Since, according to table 3.3, Γ − =1 � { , , }R e f ifAB3 8 and also that

Γ − =1 � { , , , , , , }R e d io im s is fBC3 8 , we can compute the transitive closure as

ptc R R TC P NF NF PN PF NF

TC e f if e d im io s is f

e b im d id o io s is f if

PN PNF PNF

AB BC
� , � , , , , ,

{ , , },{ , , , , , ,

{ , , , , , , , , , , }

, ,

3 8 2 7 2 73 84 9
1 62 7

1 6

=

=

=

=

− −Γ Γ Γ

Γ

Γ

1 1

And therefore, since� , , , ,R PN PN NF PN PNF PNFAC = ⊂ , the network is path-consistent.
It is straightforward to see that the network in fig. 3.13 is 2-consistent, that is, it is arc-
consistent. However, the network is not 3-consistent as shown in the diagram in the right of

fig. 3.13. Given the values N for node B and P for node C, the constraint �RBC between them is
satisfied by these values, but there is no value of A (inside its initial domain PF) that satisfies at

the same time the constraints �RAB and �RAC .

This, however, does not diminish the importance of pre-processing the PNF-network in order to
assure that it is path-consistent. In particular for our approach, detailed in the following
chapters, we compute path-consistency off-line and only run arc-consistency for each run-time
cycle. This produces, for each time cycle, a PNF-network that is path-consistent and 2-
consistent. First, notice that we could take the resulting network with its unary constraints and

PN PF NF, ,

P NF NF, ,
B

A C

PN PF NF, ,

PN

PN

PF

B

CA

P

N

?

Figure 3.13 An example of a path-consistent, 2-consistent network that is not 3-consistent.

Chapter 3 PNF-Networks 85

run procedure 3.2 which computes by brute-force search the minimal domain. As shown by
Mackworth and other researchers [82, 90], it is often the case that the occurrence of back-
tracking is significantly reduced after arc- and path-consistency.

In our applications we have not even gone that far but instead we have considered the arc-
consistent PNF-network our final approximation. In order to estimate how often we are
overshooting the minimal domain, we ran some experiments trying to verify how often path-
consistent 2-consistent PNF-networks are not 3-consistent and 4-consistent — and therefore
globally consistent.

Table 3.4 shows the results of examining 3-node PNF-networks. The data in table 3.4 was
constructed by generating every possible combination of relations and PNF-states for a 3-node
network. The first column lists the results grouped considering only the relations among the
nodes while the second column consider all the different assignments of PNF-values to each 3-
node PNF-network. That is, in the second column we consider individually each of the different
7 3433 = possible assignments for a particular PNF-network.

For each configuration generated, we checked if the configuration was path- and arc-consistent
(shown in the second row). As we see, only approximately 15% of the possible 3-node
configurations are path-consistent and 12% of the cases are also arc-consistent. Most
importantly, we then checked in how many of the consistent cases the minimal domain was
different from the result of the arc-consistency algorithm. The results, listed in the last two
rows, show that in more than 17% of the configurations there is at least one assignment of
PNF-values that causes the minimal domain to be smaller than the result of the arc-consistency
algorithm. However, if we look into how many of the individual assignments causes “trouble”
to the arc-consistency algorithm, in only 0.2% of the cases the result of arc-consistency was
different from the actual minimal domain.

Table 3.4 Occurrence of problems in 3-node networks.

relations only relations and values
Total cases 35,937 12,326,391
Consistent cases 5,345 1,449,649
% consistent cases 14.87% 11.76%
MD not equal to AC (in consistent cases) 942 2,598
% MD not equal to AC (in consistent cases) 17.62% 0.18%

Chapter 3 PNF-Networks 86

Table 3.5 shows similar results for the case of 4-node networks. Using a computer program that
run for about 5 days, we generated all possible 4-node PNF-networks and for each of them the
7 24014 = possible assignments for the nodes. Among all of the PNF-networks only 0.32%
were consistent, and only 0.22% of the assignments. Among the approximately 4 million
consistent PNF-networks, 43% allowed an assignment where the minimal domain was smaller
than the result of arc-consistency. However, these assignments are rare, only about 0.47% of
the total number of consistent assignments.

We examined a little further the troubled configurations and we noticed two interesting
characteristics:

• if the PNF-state of any of the 3 nodes is either P, N, or F, then the minimal domain is equal
to the result of the arc-consistency algorithm; that is, if one of the nodes is single-valued,
the arc-consistency algorithm propagates values through the constraints to the “local” nodes
as well as the minimal domain algorithm;

• if the 3 relations follow exactly the transitive closure, � � , �R ptc R Rik ij jk= 3 8 , then it is also true

that the minimal domain is equal to arc-consistency.

Based on this analysis, we believe that it is quite common that in path-consistent, 2-consistent
PNF-networks, the minimal domain is equal to the domain computed by the arc-consistency
algorithm.

For the rest of this thesis, unless otherwise noted, we employ procedure 3.3 to determine an
(approximation) of the minimal domain. We found no need to refine this result, specially
considering that, as noted above, the minimal domain of the PNF-network can be bigger than
the actual minimal domain of the IA-network. A similar conclusion, but in a different context,
was reached by Ladkin and Reinefeld in [82].

3.6 PNF Propagation
To finish this chapter, we want to introduce one last concept that tries to expand into discrete
time the ideas discussed so far. From the way the interval now is defined, it is clear that PNF-
restriction deals exclusively with determining feasible options for the PNF-state of an action at

Table 3.5 Occurrence of problems in 4-node networks.

relations only relations and values
Total cases 1,291,467,969 3,100,814,593,569
Consistent cases 4,175,450 6,938,350,000
% consistent cases 0.32% 0.22%
MD not equal to AC (in consistent cases) 1,806,050 32,535,000
% MD not equal to AC (in consistent cases) 43.25% 0.47%

Chapter 3 PNF-Networks 87

a given moment of time. The question is how much information from one moment of time can
be carried to the next?

In fact, information from the previous time step can be used to constrain the occurrence of
intervals in the next instant. For example, after a node is determined to be in the past, it should
be impossible for it to assume another PNF-value, since, in our semantics, the corresponding
action is over. Similarly, if the current value of the node is now, in the next instant of time it
can still be now or the corresponding action might have ended, when the node should be past.
To capture these ideas we define a function that time-expands a component domain into
another that contains all the possible PNF-values that can occur in the next instant of time.

3.6.1 Time Expansion
Given the PNF-state of a variable in time, we want to define a function Τ:U U→ , called the
time expansion function, that considers a component domain Wt at time t and computes another
component domain W Wt t+ =1 Τ2 7 at time t + 1 that contains the minimal domain at time t + 1

if the original component domain Wt also contained it.

pastt futuretnowt

t

pastt+1 futuret +1nowt +1

t+1

now b nowt t{ } +1

pastt futuretnowt

t

pastt +1 futuret+1nowt +1

t+1

now m nowt t{ } +1

Figure 3.14 Diagram of the two different possibilities for two
consecutive now intervals.

Chapter 3 PNF-Networks 88

First, we have to observe that for each consecutive instant of time t there is a different interval
nowt being associated. Given the semantics of now, that is, an interval never overlaps with
now, we are left with just two options for the relation between two consecutive now intervals
corresponding to consecutive instants of time. Either the two now intervals meet,
now m nowt t; @ +1, or they follow each other, now b nowt t; @ +1 . In particular, notice that they can
not overlap, otherwise the other intervals could start or finish inside one of the now intervals.
Figure 3.14 depicts the two different possibilities.

Let us consider first the case where the two intervals meet, now m nowt t; @ +1. Under this
condition, we start by defining a time expansion function for each element of
m past now future= , ,; @ , τ m m M: → such as:

τ
τ

τ

m

m

m

past P

now PN

future NF

1 6
1 6

1 6

=

=

=

Given the function that time-expands elements of m, we define the function that expands the
elements of M , Τm M M: → as being the union of the results of τ m,

Τ Ω
Ω

m m1 6 1 6=
∈

τ ω
ω
�

and the time expansion of a component domain W, Τm U U: → (abusing the notation), as the

component-wise application of the original Τm on a component domain W Wi i
= 1 6 ,

Τ Τ Τ Τm m m m nW W W W1 6 1 6 1 6 1 62 7= 1 2, , ,�

As much as we have a different interval nowt for each instant of time t, there are also different
functions s It 1 6 and St σ1 6 . Now, consider an interval I with PNF-state s It 1 6 at time t. The
next proposition guarantees that the PNF-state in the next instant of time is contained in the
time expansion of s It 1 6 .

Proposition 3.6 Let I be an interval with PNF-state s It 1 6 at time t. Assume now m nowt t; @ +1.
Then the time expansion of the PNF-state contains the next PNF-state,

s I s It
m

t+ ⊆11 6 1 62 7Τ

Proof. Suppose first that s I Pt+ =11 6 , that is, now ib im It +1 ,; @ . Since now m nowt t; @ +1, by

transitive closure we obtain now ib io id im e f if It , , , , , ,; @ . Since no interval starts or ends inside

a now interval, we have in fact now ib im e f It , , ,; @ . If now ib im It ,; @ , we obtain s I Pt 1 6 = and

Chapter 3 PNF-Networks 89

therefore Τm
ts I P1 62 7 = . Otherwise, now e f It ,; @ yields s I Nt 1 6 = , but since the time

expansion guarantees Τm
ts I PN1 62 7 = , we obtain P s I s It

m
t= ⊆+11 6 1 62 7Τ .

Now, suppose that s I Nt + =11 6 , that is now s d e f It +1 , , ,; @ . In this case, the transitive closure

produces now m o s d It , , ,; @ , from which the relation o is eliminated since no interval is

overlapped by now, yielding now m s d It , ,; @ . If now s d It ,; @ we have s I Nt 1 6 = , and

therefore Τm
ts I PN1 62 7 = . In the case that now m It ; @ we obtain s I Ft 1 6 = , and thus

Τm
ts I NF1 62 7 = . In both cases, we verify that N s I s It

m
t= ⊂+11 6 1 62 7Τ .

Finally, if s I Ft+ =11 6 , a similar reasoning produces now b It ; @ , and therefore s I Ft 1 6 = and

Τm
ts I NF1 62 7 = .�

Let us now consider the other possibility for the occurrence of the now intervals, that is, when
they follow each other but do not meet, now b nowt t; @ +1 . Under this condition, an interval can
happen between two consecutive now intervals, or, in other words, the PNF-state of a variable
can go from future to past between two cycles. Therefore it is necessary to define a new time
expansion function, τ b m M: → , that handles those situations:

τ
τ

τ

b

b

b

past P

now PN

future PNF

1 6
1 6

1 6

=

=

=

Notice that the only difference between the two time expansion functions is the expansion of
the future state, which in the τ b case also allows the P value. Like in the previous case we can
define an expansion function for PNF-states and for component domains, Τb U U: → . It is
straightforward to see that proposition 3.6 also holds for this function. To simplify notation, for
the rest of this section we will just refer to the time function Τm. Unless otherwise mentioned,
all the results apply to both expansion functions.

It is easy to see that proposition 3.6 can be expanded to sets of unary constraints over multiple

nodes. The following proposition asserts that if the projection at time t of the unary constraints
are contained in component domain Wt , then they are contained in any subsequent time
expansion of Wt .

Chapter 3 PNF-Networks 90

Proposition 3.7 Let σ σ σ σ= (, , ,)1 2 � n be a collection of unary constraints in an IA-network

X. Suppose the PNF-projection at time t of σ , S S S St t t t
nσ σ σ σ1 6 1 6 1 6 1 64 9= 1 2, , ,� is

contained in a component domain Wt , S Wt tσ1 6 ⊆ . Then, if we define W Wt
m

t+ =1 Τ 2 7 , for

t t≥ , it is true that

∀ ≥ ⊆t t S Wt tσ1 6

Proof. By induction on t. Consider initially the case where t t= + 1. From proposition 3.6 it is

clear that S St
m

t+ ⊆1 σ σ1 6 1 64 9Τ . But since Τm is conservative, Τ Τm
t

m
tS Wσ1 64 9 4 9⊆ , that is

S S W Wt
m

t
m

t t+ +⊆ ⊆ =1 1σ σ1 6 1 64 9 4 9Τ Τ

A similar argument makes clear that the step of induction is true, finishing the proof.�

Notice that, in particular, if the set of unary constraints W
t
 is equal or contains the minimal

domain of the IA-network, proposition 3.7 assures that time expansion always yields a
component domain that still contains the minimal domain of the whole network. Given this, we
are now in position to put the concept of time expansion together with PNF-restriction,
obtaining a general method to propagate and constrain PNF-states through time.

3.6.2 PNF Propagation: Definition
To finish the theoretical structure of our work we will define a method, called PNF
propagation, that propagates temporal constraints through a sequence of events considering the
available information about the current state and the influence of all the past states of the
system. Initially, let us show that PNF-restriction behaves well through different events.

Proposition 3.8 Suppose that at an initial time t the projection of a collection of unary
constraints σ is contained in an initial state Wt , S Wt tσ1 6 ⊆ . For any subsequent t t≥ , we

define W R Wt
m

t+ =1 Τ 2 74 9 . Then, the projection of the minimal domain under σ , σ , is

contained in Wt , for all t t≥ ,

S Wt tσ3 8 ⊆

Proof. By induction on t. First, observe that in the case of t , S S Wt t tσ σ3 8 1 6⊆ ⊆ , making the

base of the induction true. Let us now suppose that the proposition is true at time t, t t≥ , that is

S Wt tσ3 8 ⊆ . Given that S Wt tσ1 6 ⊆ we can apply proposition 3.7, obtaining

Chapter 3 PNF-Networks 91

S Wt
m

t+ ⊆1 σ1 6 2 7Τ . From proposition 3.3 we have that S R St t+ +⊆1 1σ σ3 8 1 62 7 , and combining

both statements, given that R is conservative, we obtain

S R S R W Wt t
m

t t+ + +⊆ ⊆ =1 1 1σ σ3 8 1 62 7 2 74 9Τ

finishing the proof.�

Proposition 3.8 basically states that if the first component domain Wt contains the projection of
the minimal domain of the IA-network, the minimal domain remains contained in the result of
the repeated application of time expansion and restriction. However, no information from the
current instant of time is added and, in practice, the tendency is that Wt ends up containing
only states with value PNF. The next proposition provides a safe mechanism by which new
information can be added at every instant of time while keeping the minimal domain inside the
result.

Proposition 3.9 Suppose that at an initial time t the projection of a collection of unary
constraints σ is contained in an initial state Wt , S Wt tσ1 6 ⊆ . For any subsequent t t≥ , we

define W R W Vt
m

t t+ += ∩1 1Τ 2 74 9 where V t +1 is a component domain that satisfies

S Vt t+ +⊆1 1σ3 8 , σ being the minimal domain of σ . Then, the projection of σ , is contained in

Wt , for all t t≥ ,

S Wt tσ3 8 ⊆

Proof. By induction on t. The base of induction follows immediately from proposition 3.8.

Also, the same proposition provides that S Wt
m

t+ ⊆1 σ3 8 2 7Τ . By hypothesis, S Vt t+ +⊆1 1σ3 8 , and

therefore S W Vt
m

t t+ +⊆ ∩1 1σ3 8 2 7Τ . If we apply restriction on both sides,

R S R W Vt
m

t t+ +⊆ ∩1 1σ3 84 9 2 74 9Τ , and noticing that the minimal domain is invariant under

restriction, R S St tσ σ3 84 9 3 8= , we obtain

S R S R W V Wt t
m

t t t+ + + += ⊆ ∩ =1 1 1 1σ σ3 8 3 84 9 2 74 9Τ

completing the proof.�

Let us examine the basic mechanism that proposition 3.9 allows us to use. Typically, we set the
initial component domain W0 to be composed only of PNF states, W PNF

i

0 = 1 6 , thus trivially

satisfying the initial condition of the proposition. Then, for each instant of time t, we can
determine, through sensor information or external sources, the PNF-state of some of the nodes.

Chapter 3 PNF-Networks 92

If we create the component domain V t containing all those known values and the PNF value
for the other nodes, it is guaranteed that the minimal domain of the IA-network is contained in

V t , S Vt tσ3 8 ⊆ , if we assume that the sensor information is right. Then, given the previous

component domain Wt −1 , we can compute an upper bound of the current minimal domain of
the PNF-network by making

W R W Vt
m

t t= ∩−Τ 12 74 9

We call this process PNF propagation. Notice that the more information is contained in V t , the
smaller is Wt . In the extreme case, if V t is the minimal domain, then Wt is also the minimal
domain. In most cases, however, we will have V t providing new information which is filtered
through the intersection with the past information (safely provided by Τm

tW −12 7). Then,

information incompatible with the structure of the problem is removed by constraint
propagation, through the computation of the minimal domain. Here, we also want to point out
the two propositions above are also true if we use arc-consistency instead of the full minimal
domain.

Like PNF-restriction, PNF propagation is also a conservative approximation of the true PNF-
states of the original IA-network. Therefore, there can be situations where Wt contains values
that do no correspond to possible solutions in the original network. However, as we highlighted
before, if the current state Wt is inconsistent, that is, it has no solutions, then the original IA-
network has also no solutions. Typically, such situations are caused either by an error in the
current value of one of the sensors (making V t incorrect) or in the value of a sensor in the past,
in a situation where an incompatibility with other values is detected only in the current
moment.

In the following chapters we will show examples of use of PNF propagation in different
problems. In most cases we have used, in fact, the arc-consistency algorithm to compute an
approximation of the minimal domain. As it will be seen in the examples, the combination of
restriction, time expansion, and new information provides powerful enough constraints to
actually determine the PNF-state of most of the nodes.

3.7 Future Directions
We have shown throughout this chapter that the PNF approach is a conservative approximation
of solving an IA-network, that is, that projecting an IA-network and computing the minimal
domain in the corresponding PNF-network always contains all the solutions of the original
network, although the converse is not true. We would like to investigate in which conditions
the minimal domain of an IA-network and its PNF projection coincide. In particular, we would
like to find situations where if the original domains respect some determined structure or
property then the converse of proposition 3.3 is true.

Chapter 3 PNF-Networks 93

Similarly, we want to determine conditions in which the minimal domain of a PNF-network is
equal to the result of the arc-consistency algorithm. In subsection 3.5.2 we listed some
preliminary results in this direction where we identified how often the two algorithms provide
different results in 3- and 4-node networks. It would be extremely useful to identify properties
of the PNF-network that guarantee the equality, especially if the properties are based only on
the temporal constraints (and not in the unary constraints) and therefore, possible to be checked
before run-time.

Recently we have also got interested in comprehending better the space of generic PNF-
networks. As mentioned in subsection 3.4.5, there are constraints that are representable in PNF-
networks that do not correspond to any set of primitive Allen relationships. For instance,
consider the constraint N PF N, , . This constraint requires that when one of the intervals is
not occurring, the other interval is happening, similar to the not (¬) operator in logic. The
question is to determine what kind of constraints — besides temporal constraints — can be
represented in the PNF space (or in another of its subsets) without corrupting the semantics of
temporal relationships.

Another fundamental issue is the reduction of the brittleness of PNF-networks, especially by
allowing uncertainty measures and probabilities of occurrence. In the next chapter we propose
some ideas for the special case of action recognition in the presence of sensor error. However,
we are also interested in the more general problem of how to introduce uncertainty in constraint
propagation without exploding the complexity of the algorithms.

3.8 Summary
In this chapter we discussed the advantages of using IA-networks for the representation of
temporal structures. In particular, IA-networks meet the criteria we set in the beginning of the
chapter for a good representation for time. IA-networks can represent imprecise and uncertain
information about time; persistence is a natural consequence of the use of intervals instead of
events; and they can represent mutually exclusive actions.

However, constraint propagation algorithms in IA-networks are, in most interesting cases, of
exponential complexity. To overcome this limitation of IA-networks we propose the use of
PNF-networks, a simplification of IA-networks where each node only assumes three values —
past, now, or future.

We showed how IA-networks can be projected into PNF-networks and that all solutions in the
IA space are also present in the PNF space, although the converse is not true. To perform
constraint propagation in PNF-networks and, in particular, to compute the minimal domain, we
suggest the use of an arc-consistency algorithm. Although arc-consistency is just a conservative
approximation of the minimal domain, we presented reasons by which we expect that, in
practice, both computations will yield the same results most of the time.

Finally, we provided the theoretical ground for PNF propagation, a method to compute the
PNF-state of the nodes of an IA-network in consecutive instants of time that considers past
occurrence of actions. In particular, we have determined conditions in which the use of PNF

Chapter 3 PNF-Networks 94

propagation provides a conservative approximation of the true state of the network, that is, it
produces a component domain that contains all the solutions of the original network. Therefore,
if the result of the PNF propagation does not have solutions, there are also no solutions in the
original network. In the next chapters we exploit the findings of this chapter when examining
the actual use of PNF propagation in methods to handle two kinds of situations: human action
recognition and interaction control.

Chapter 4 Action Recognition 95

4. Action Recognition using PNF-Networks

The goal of this chapter is to show how IA-networks can be employed to represent the temporal
structure of human actions and how this representation is used to detect the occurrence of
actions. The fundamental assumption of our approach is that actions can be decomposed into
sub-actions having among them a variety of temporal constraints. Given that some of the sub-
actions can be directly detected by perceptual methods, the task is to determine whether the
action — and its component sub-actions — is currently happening or not.

We propose the use of Allen’s temporal primitives (as discussed in the previous chapter) to
describe the rich temporal structure of human action. Most previous action recognition
schemes [67, 111, 118, 159] use strict sequential definitions of actions that do not reflect the
simultaneous way actions happen in everyday life. In our case we were not only able to
represent parallel actions and states but also allowed the definition of mutual exclusive
relations. The construction of such representations is examined in section 4.2.

For a given action, we collect all the temporal relations between its sub-actions in an IA-
network (see chapter 3), pre-process it using Allen’s path consistency algorithm, and then
project it into a PNF-network. To detect an action we apply the PNF propagation method
described in the previous chapter using as unary constraints the information gathered by
perceptual routines, as detailed in section 4.3. In each instant of time we combine the previous
state of the PNF-network with the sensor-derived constraints and make this the input for the
PNF restriction algorithm. The algorithm then removes PNF-states that are incompatible with
the temporal constraints.

We show using examples that if the temporal constraints are tight enough, the constraint
satisfaction algorithm propagates the sensor-derived constraints into the higher-level sub-
actions and actions and recognizes their occurrence, as described in section 0. In practice we
have used the arc-consistency algorithm (described in the previous chapter and based on [90,
107]) which computes an approximation of the minimal domain in a time linearly proportional
to the number of constraints. In section 4.5 we demonstrate this approach on two other
examples of action detection taken from the cooking show script described in chapter 2. The
examples show the impact of different temporal constraints on which actions and sub-actions
are detected given information from simple sensor routines.

Chapter 4 Action Recognition 96

A shortcoming of straightforward PNF propagation is that it assumes that actions and sensor
information always proceed from future to now and then to past. Although conceptually
correct, this model makes it hard to recover from erroneous sensor information. We address the
issue in section 4.7, where we propose a method for recovery from errors based on the PNF
propagation of multiple threads of states. Finally, section 4.8 presents results for the recognition
of actions in an interactive environment, the installation “It” (described in detail in chapter 7).

Traditionally action detection is distinguished from action categorization. Action detection
concerns the problem whether in a given instant of time an action is happening or not. Action
categorization is the problem of determining which action of a set of actions is happening in a
given moment of time — given that one of the actions is happening. We will use the term
action recognition to refer to the simultaneous problem of detecting and categorizing actions.
Throughout this chapter we basically examine action detection scenarios where we must
recognize which of the component sub-actions is happening. As we will see, the framework we
have developed can be used both for detection and for recognition.

The work described in this chapter first appeared in [134] in a different formulation. The
results, except for the recovery methodology and its results, have appeared before in [135].

4.1 Limitations of Current Methods for Action Recognition
The majority of work on the machine understanding of video sequences has focused on the
recovery of the two-dimensional optic flow or the three-dimensional motion of objects or the
camera. Recently, however, emphasis has shifted to the interpretation or classification of the
observed motion. In chapter 2 we presented our definition for action as movement in a context.

Recent years have witnessed a great deal of work in activity recognition and, in particular,
gesture recognition [40, 165, 181]. Most commonly, those systems fully exploit the fact that
gestures are linear sequences of recognizable states and the real problem is how to consider the
variations of the length of time spent in each state. For instance, Darrel and Pentland [40] used
dynamic programming to determine the most likely path of states in a gesture model.

The success of hidden Markov models (HMMs) in speech recognition (see, for instance [61])
spawned a wave of systems employing HMMs for visual action recognition. HMMS first
appeared in the pioneering works of Yamato et al. [187] and Schlenzig et al. [152]. More
recently they have been applied in domains like American sign language [165], performance
animation [71], and T’ai Chi gestures [35]. Using HMMs enables the learning of the models
using the Baum-Welch algorithm (see [140] for a good introduction). However, HMMs are
probabilistic finite-state machines that grow exponentially in size with the number of parallel
events and simultaneous sub-actions.

When it comes to the recognition of actions — that is, requiring contextual information — the
body of work is much smaller. As discussed in chapter 2, most attempts at the logical
formalization of the semantics of action (e.g. [65, 69, 149]) are based on either philosophy or
formal logic. These systems are typically not grounded in perceptual primitives and have not
been used in real action recognition systems.

Chapter 4 Action Recognition 97

Mann et al. [97] developed a system to recognize simple visual actions without any temporal
information, mostly based in contact information. Although interesting, and as noted by
Bobick [20], this is a limited approach for action recognition. Other works in the vision
community [81, 111, 159] have attempted to incorporate logical definitions of time into
perceptual mechanisms. However, these systems are unable to cope with most of the complex
time patterns of everyday actions that include external events, simultaneous activities, multiple
sequencing possibilities, and mutually exclusive intervals [6]. For example, Kuniyoshi and
Inoue [81] used finite automata to represent actions when performing simple actions to teach a
robot. Implicit in the model is the assumption of strictly sequential sub-actions which, although
adequate for the mapping into robot primitives, is a strong restriction for the representation of
generic human actions.

Similarly, Nagel [111] used transition diagrams to represent driver’s maneuvers in a highway
but provided no means to represent overlapping activities unless they are generalizations or
specializations of each other. Siskind’s approach [158, 159] used an event logic to represent
basic actions that are temporarily connected using Allen’s primitive relationships. However, in
addition to being a fully exponential modal logic, Siskind’s temporal propagation method using
spanning intervals is computationally inefficient.

Probabilistic methods for visual action recognition have been proposed in the computer vision
community [27, 67, 118]. The work of Brand et al. with coupled HMMS (CHMMs) [27], later
applied to the problem of surveillance [118], tried to overcome part of the problem by
providing a model in which two HMMs can be trained and run in parallel with mutual
influences. The problem here is that some of the improvements do not scale for situations with
three or more parallel actions. Further, we believe that it is important to exploit the fact that
logical impossibilities prevent the occurrence of some sequences of sub-actions and that
incorporating such constraints into action recognition systems can significantly improve their
performance. As shown by our results, the addition of a single temporal constraint between two
intervals can dramatically increase the recognition capability of the detection system.

Bobick and Ivanov [22] used stochastic grammars to represent and recognize human actions.
The idea has been applied to recognition of a conductor’s gestures [22] and, more recently, to
detect abnormal actions in a parking lot [67]. Although context-free grammars are more
expressive than HMMs — since context-free grammars can represent recursive structures —
they still lack the ability to handle parallel actions. Like their finite-state models, probabilistic
grammars can only recognize sequences of sub-actions.

4.2 Representing the Temporal Structure
To represent the temporal structure of an action we use an interval algebra network [4], or
simply an IA-network. As detailed in the previous chapter, an IA-network is a constraint
satisfaction network where the nodes correspond to time intervals and the arcs correspond to
binary temporal constraints between the intervals. The temporal constraints are expressed using
Allen’s interval algebra [4], which employs disjunctions of the 13 possible primitive
relationships between two time intervals. The primitive relations are equal (e), before (b),

Chapter 4 Action Recognition 98

meet (m), overlap (o), during (d), start (s), finish (f), and their inverses, ib, im, io, id, is, and if
(see chapter 3 for the definition of these relationships).

In our methodology, we start by identifying the different sub-actions and states of an action
following the general approach described in chapter 2. These sub-actions and states are
identified by the nodes of an IA-network. Next, we examine the definition of the action and
determine temporal constraints that exist between the different components. For instance,
grasping a bowl always precedes the act of lifting the bowl. Such identified temporal
constraints are translated into disjunctions of Allen’s primitive relationships and the resulting
constraints are associated to the corresponding nodes of the IA-network.

After determining the temporal constraints between the basic sub-actions and states of an
action, we then define another set of nodes in the IA-network corresponding to the state of the
available sensors. Nodes associated with perceptual routines are referred in this chapter as
detectors. The detectors are then connected to the other nodes of the network by temporal
constraints representing the situations when they occur.

The basic structure of an action can be used by systems with different sets of sensors. A new
set of sensor routines can be added by simply establishing the appropriate temporal relations
between the detectors and the nodes representing the sub-actions and states of the action. All
the temporal relationships are determined by considering normal occurrences of the actions and
not considering sensor malfunction. Later in this chapter we propose a mechanism for handling
a limited amount of wrong information coming from sensor routines.

It is important to consider the adequacy of the initial specification of the action, i.e., is the
specification sufficiently constrained to recognize the action given the sensors? This problem is
discussed later, but a basic result of the method developed here is the ability to determine when
a description is insufficient. In order to clarify our approach let us examine a concrete example
involving the description of an action of “picking up a bowl from a table”.

4.2.1 Picking Up a Bowl
Figure 4.1 shows the representation for the temporal structure of a “pick-up bowl” action from
the cooking show script described in chapter 2. In the figure, the node pick-up-bowl
corresponds to the temporal interval where the action of picking up the bowl is occurring. This
action is decomposed into two sub-actions corresponding to the nodes reach-for-bowl and
grasp-bowl.

Chapter 4 Action Recognition 99

The relations between these three nodes are defined by the arcs connecting them. The sub-
action reach-for-bowl is declared to be a time interval which has the same beginning as pick-
up-bowl, but finishes first — the {s} relationship. Similarly, grasp-bowl finishes at the same
time as pick-up-bowl, {f}. The relationship between reach-for-bowl and grasp-bowl is defined
considering two possibilities: they either immediately follow each other or they happen in a
sequence, though they are always disjoint as represented by the constraint {m, b}.

The next level of decomposition involves two complementarily predicates (written as {m, im})
encoding the physical relation between the bowl and the hands: either the bowl is in the hands
of the agent, bowl-in-hands, or not, bowl-out-of-hands. Notice that the constraint {m, im} states
that the end of one action meets the beginning of the other or, in other words, that they are
mutually exclusive. Allen’s algebra was chosen as the underlying temporal formalism because
we consider the expressing of mutually exclusive actions and states a fundamental capability of
an action representation paradigm. For this reason, we can not use temporal algebras based on
relations between endpoints (like [48, 178]), despite the good performance of the reasoning
methods for point-algebras as discussed in the previous chapter.

pick-up-bowl

reach-for-bowl grasp-bowl

bowl-out-of-hands bowl-in-hands

{m,b}

{s} {f}

{m,im}
{d,f} {m,o}

Figure 4.1 IA-network corresponding to the temporal structure of a “pick-up
bowl” action.

pick-up-bowl

reach-for-bowl grasp-bowl

bowl-out-of-hands bowl-in-hands

DET:hands-close-sta-bowl

DET:bowl-on-table DET:bowl-off-table

{m,b}

{s} {f}

{m,im}
{d,f} {m,o}

{s,e,d,f} {s,e,d,f}
{s,e,d,f}

Figure 4.2 IA-network of fig. 4.1 connected to detectors (marked by the
prefix “DET:”).

Chapter 4 Action Recognition 100

Finally, the fact that reaching for the bowl must happen while the bowl is not in contact with
the hands is expressed by the {d, f} relationship between reach-for-bowl and bowl-out-of-
hands. Similarly, bow-in-hands starts during grasp-bowl or immediately after its end ({m,o}).

4.2.2 Connecting to Perceptual Routines
So far the structure of our “pick up bowl” example contains only sub-actions and states that are
intrinsically part of the action. To have a perceptually-based system recognizing the action, it is
necessary to connect the nodes of the action’s network to detectors. Detectors, in our notation,
are always marked by the prefix “DET:” .

For example, suppose in a vision-based system routines there are routines that detect when the
user’s hands are close to the bowl and also whether the bowl is on the table or not. Let us
associate to the node DET:hands-close-sta-bowl the result of the first perceptual routine that
detects if the hands are close to the bowl (only in the cases that the bowl is static and on the
table). Similarly, we associate to the routine that identifies the presence of the bowl on the table
two other detector nodes, DET:bowl-on-table and DET:bowl-off-table.

Figure 4.2 displays the resulting network. From the definition of the action and of the detectors,
there are clear temporal constraints connecting the detectors to some sub-actions and states of
the “pick up bowl” action. In this case, DET:hands-close-sta-bowl and DET:bowl-on-table can
fire only when the bowl is out of the hands. This corresponds to the temporal constraint
{s,d,e,f} between each detector and bowl-out-of-hands, i.e., the interval of time corresponding
to the occurrence of the detectors must be contained (maybe including the endpoints) in the
interval of time of bowl-out-of-hands. On the other hand, DET:bowl-off-table can only happen
while the bowl is being held, as expressed by the constraint {s,d,e,f} with bowl-in-hands.

4.2.3 Strengthening the Constraints
A clear benefit of using IA-networks for representation is the possibility of computing the
transitive closure to detect temporal constraints that are implied by the stated constraints. As
discussed in chapter 3, in practice we employ Allen’s path consistency algorithm that, although
not removing all inconsistencies, computes a reasonable approximation of the transitive closure
in time proportional to the cube of the number of constraints.

Figure 4.3 shows part of the IA-network of “pick up bowl” after computing path-consistency,
where the nodes corresponding to detectors are omitted for clarity. As seen in the figure, path-
consistency tightened the temporal relationships of the network. For instance, the original
constraint that reach-for-bowl is followed by grasp-bowl ({m,b}) is propagated and force bowl-
out-of-hands to accept just a meet ({m}) relationship with bowl-in-hands — instead of the
original {m,im}.

Chapter 4 Action Recognition 101

Allen’s path consistency algorithm allows the system designer to avoid the laborious and
tedious task of manually encoding all the possible relationships. Moreover, in our use of the
system, we found that many times the result of the algorithm makes visible for the system
developer mistakes and errors in the definition of the temporal structure of the action.
Typically, mistakes are detected either by the detection of inconsistencies or by the unexpected
removal of some primitive relation from the disjunctive set of relations between two nodes.

4.2.4 Automatic Inference of Temporal Constraints
Describing the temporal structure of an action using IA-networks is not a trivial task and
involves some training of the designer/programmer. However, in our experience, we found that
after some basic rules were understood, specification of temporal relations became fairly
straightforward.

Further, we also believe that some of the temporal relations could be automatically derived by
simple inference systems if enough information about the action itself was available. For
instance, many of the relationships defined in the “pick up bowl” example do not involve
“deep” common-sense reasoning. For example, bowl-in-hands and bowl-out-of-hands are
temporally mutually exclusive because, by definition, they represent logically opposite states of
the bowl. As described in chapter 2, it is possible to generate the decomposition of actions into
sub-actions using “shallow” common-sense reasoning. We believe that temporal constraints
similar to the ones used in the representation of the “pick-up bowl” action can also be
automatically generated by a system composed of a dictionary of basic actions and simple
reasoning.

4.3 Recognition Using PNF-Networks
In this section we describe the basic structure of our recognition method that is based on the
PNF propagation method (formally defined in the end of chapter 3). PNF propagation is a
method of detecting the occurrence of actions based on intersecting the information from the
sensors with the time expansion of the component domain of PNF-states representing all the
past information.

When using PNF propagation for action detection, we consider the computed PNF-state of each
node to determine whether the action is happening. If the PNF-state of the node is now, we can

pick-up-bowl

reach-for-bowl grasp-bowl

bowl-out-of-hands bowl-in-hands

{m,b}

{s} {f}

{m}

{d}
{m,o}{b}

{o,if}

{o,if} {io,im}

Figure 4.3 Part of the IA-network of the "pick up bowl" action as
generated by Allen’s path consistency algorithm. The nodes
corresponding to detectors are omitted for clarity.

Chapter 4 Action Recognition 102

say that the action is happening; if it is past, future, or either of them (PF), the action can be
said to be not happening. Also, if the PNF-state of a node is NF, we conclude that the action
has not finished yet and if it is PN, that it has not started. Otherwise (that is, PNF), we assign an
indeterminate label to the node.

Although PNF propagation has been described in the end of chapter 3, we summarize below the
basic steps as they are implemented in our test set-up:

I. The IA-network representing the action is projected into a PNF-network.

II. For each instant of time t, a component domain Wt is computed that corresponds to
the PNF-state of each node at time t. Based on the PNF-state of each node, it is
possible to determine the occurrence of an action as described above.

i. The initial state W0 is defined according to the information available about the
nodes or simply with every state equal to PNF, W PNF

i

0 = 1 6 .

ii At each subsequent instant of time, t > 0 , Wt is computed by the following
sequence of steps:

• Information from the detectors (perceptual routines) is gathered in a
component domain V t such as

V
I I

PNFi
t i i=

%
&
'
PNF - state of the detector if is a detector

 , otherwise

 ,

• The current state of the nodes is determined by simple PNF propagation,

W AC W Vt
m

t t= ∩− Τ 12 74 9
where Τm is the time expansion function (based on meet relations) and AC is
the arc-consistency algorithm as defined in chapter 3.

Typically, the information coming from a detector is either N or PF. In other words, the PNF-
state corresponds to the detector being either on or off. Also, it is necessary to time expand the
component Wt −1 before intersecting it with the perceptual information V t , since between
instant t-1 and t actions may have ended or begun. In fact, the experimental results of the next
section demonstrate that using past information is a fundamental component of the power of
PNF propagation.

Finally, if we compare the above definition of Wt to the hypothesis of proposition 3.9 of
chapter 3 we can see that they are identical. Therefore, if we assume that the detectors are
corrected all the time, then the proposition holds and thus it is true that for every instant of time
t, Wt contains the true PNF-state of each node of the IA-networks.

Chapter 4 Action Recognition 103

4.4 Temporal Constraints vs. Detection Power
By representing actions by IA-networks we provide a framework where the representation is
independent of particular perceptual routines. For each perceptual system, the different
available detectors can be linked to the representation through temporal constraints. However,
in practical situations there is no guarantee that the perceptual routines have enough
discriminatory power to actually detect the action.

Similarly, a common problem in action recognition and especially in vision-based systems is
that most of the information gathered by the perceptual routines is indirect. For instance,
current camera resolutions prevent the detection of contact between two objects forcing the use
of the weaker notion of proximity instead. Also, it is not clear in our formulation how many
and how strong the temporal constraints need to be and how many different sub-actions and
states are needed to fully describe an action.

There are no unique answers to these questions. Our experiments have convinced us that IA-
networks provide an excellent framework in which representations are easily experimentally
defined and refined. Moreover, unlike learning-based methods like HMMs, the programmer of
the application has a clear representation of what the system knows, what can be detected, and
the assumptions used to enhance detection.

This section describes how representing the temporal structure with IA-networks and detecting
actions using PNF propagation facilitate the handling of these issues. We discuss them by
considering different IA-networks to detect the action “pick up bowl”. To test the expressive
power of the different IA-networks, we tested them with manually extracted values for the
sensors. We obtained these values by watching a video of the action being performed. We also
determine the interval where every action and sub-action has actually happened (the “TRUE:”
state of the sub-action) and use the information to evaluate the performance of the action
detection method.

Typical images of our video sequences are shown in fig. 4.4. We did not implement the
perceptual routines described above because using manually extracted information allows the
simulation of sensors with different levels of correctness and a more careful analysis of

Figure 4.4 Images from the video used in the experiments.

Chapter 4 Action Recognition 104

coincidences. Later in this chapter we will present examples of action detection with machine
generated perceptual data.

4.4.1 Visual Representation of PNF States
For the display of the results we employ a visual representation for PNF states based on
different symbols for each possible state. As shown in the legend of fig. 4.5 we use the
convention that the bottom line represents the future state, the middle represents now, and the
top, past. For instance, the PF state is represented by lining the bottom and the top row
simultaneously, and PNF is displayed as three parallel lines. Also, we highlight the unitary
PNF-states P, N, and F to clearly mark moments when the detection system reaches only one
possible situation.

4.4.2 Weaknesses of the Original Representation
Let us consider the detection of the action “pick up bowl” using the PNF propagation method
as described above. In this section we presume perfect sensors; a fault-tolerant extension of
these ideas is described later.

The top part of fig. 4.5 displays the temporal diagrams for the PNF states of the detectors
(marked as “DET:”) and the true state of all other sub-actions and states (marked as “TRUE:”)
for a particular instance of the action of picking up a bowl. As explained above, the data were
obtained manually from a video depicting the action.

Item (a) of fig. 4.5 shows the results when the detection process uses the description of the
“pick-up bowl” action exactly as given in fig. 4.2. Only the physical states bowl-in-hands and
bowl-out-of-hands are close to being detected. The main action, pick-up-bowl, is never
detected. However, notice that in the initial period the method determines that the action may
have started but it is not finished (by the value NF). This is followed by a period of complete
indeterminacy (PNF), but after DET:bowl-off-table becomes N, it is detected that the action
pick-up-bowl is happening or has already happened (PN).

The problem is that the definition of “pick-up bowl” of fig. 4.2 has constraints that are too
weak, although always true. We intentionally constructed a weak example because it illustrates
clearly some of the extra assumptions that are needed to link states detected by simple sensors
to actions and sub-actions.

4.4.3 Causal Links
One of the problems is that the original definition of “pick-up bowl” lacks any causal link
between detecting that the bowl is not on the table and the result of the act of grasping. If we
assume that movements of the bowl can not be caused by other agents, objects (the bowl could
be pushed by a spoon), or forces (gravity), we can include a constraint imposing that the only
cause for movement of the bowl is a grasping action by the agent of grasping. This can be
accomplished by setting the relationship between grasp-bowl and DET:bowl-off-table to be
sequential and non overlapping {b,m}. Item (b) of fig. 4.5 shows that with the addition of such
relation the end of pick-up-bowl is detected. This happens as the result of the detection of the

Chapter 4 Action Recognition 105

 Detectors (DET:) and true state (TRUE:)

a) Original pick-up bowl representation (as in fig. 4.2)

b) Addition of a new relation:
 grasp-bowl {b,m} DET:bowl-off-table

c) Addition of a new relation:
 DET:hands-close-sta-bowl {s,e,d,f} reach-for-bowl

d) Addition of a new detector:
 DET:hands-touch-bowl {s,e} grasp-bowl

e) Using sensor information without time propagation:

LEGEND:

Figure 4.5 Influence of the temporal structure on the
detection of the action “pick-up bowl”.

Chapter 4 Action Recognition 106

end of grasp-bowl, that is now possible due to the association with the detector of the bowl
being off the table.

To detect the beginning of pick-up-bowl, it is necessary that the action description includes
some causal relationship about the beginning of the sub-action reach-for-bowl. One way to do
this is to indicate that the proximity between hands and bowl (as detected by DET:hands-close-
sta-bowl) is an indicator for the occurrence of reach-for-bowl. In this situation, we impose that
whenever the hands are detected close to the bowl, the sub-action reach-for-bowl is supposed
to be under way. By doing this, we are assigning a relationship that may not be always true.
However, given the simplicity of our sensors (and of most state-of-art vision-based algorithms),
such “intentional” links are necessary to detect higher level actions. The results, shown in
item (c) of fig. 4.5, display the almost complete detection of pick-up-bowl and reach-for-bowl.

4.4.4 Adding an Extra Detector
Finally, if we also want to detect the beginning of the occurrence of grasp-bowl, a new detector
is necessary. This is shown in itemt (d) of fig. 4.5, which displays the temporal diagram of a
new sensor, DET:hands-touch-bowl. This sensor fires precisely when the hand touches the
bowl. This detector, coupled with the assumption that touching the bowl always starts the
action of grasping the bowl, is sufficient to assure the detection of grasp-bowl. As we can see in
this last case, the states of the sub-actions are known in the majority of the time and are correct
(compare to the TRUE: diagram at the top of figure 4.5).

4.4.5 The Influence of Past States
In the beginning of chapter 3 we claimed that the ability to represent time with three states (i.e.,
past, now, or future) significantly improves detection — thus justifying some computational
overhead. Item (e) of fig. 4.5 shows the importance of the information from the previous instant
of time on the power of PNF propagation. In this case, Wt is computed solely based on the
information from the sensors, with no reference to past states, that is, W AC Vt t= 2 7 .

Comparing item (e) of fig. 4.5 with item (d), we can see a distinct degradation in the results.
The main reason is that after a cause for a sub-action or state being in the now state ceases to
exist, the system still considers that the sub-action can still happen later in the future (compare,
for instance, the detection of pick-up-bowl in both cases).

4.5 Detector Instances and Detectors
Before further examining results, it is necessary to understand and solve a technical difficulty.
The basic problem is that during the occurrence of an action a perceptual routine may detect the
occurrence of a state several times. For instance, in the “mixing ingredients” action described
in the next section, we use a vision routine that fires when the hands of the chef get close to the
mixing bowl. This detector fires both when the chef picks up the bowl and when he puts it
down.

Suppose that we associate the same detector — called in this case DET:hands-close-bowl — to
both sub-actions by imposing, as we did in the previous section, that the detector must happen

Chapter 4 Action Recognition 107

during both sub-actions using the temporal constraint {s, d, e, f}. However, “picking up bowl”
and “putting down bowl” are sub-actions that must occur one after the other, that is, there is a
temporal constraint {b} between them. As fig. 4.6 shows, the imposition of these three temporal
constraints lead to an inconsistent IA-network. In fact, imposing these constraints require
DET:hands-close-bowl to happen in two intervals of time that are distinct.

The issue here is that the on-off behavior of the perceptual routine is not adequately modeled
by a single node in an IA-network. As discussed in chapter 3, a node in an IA-network
corresponds to a single interval of time, while the occurrence of a detector corresponds to
multiple segments of time.

A solution for this problem is to associate multiple nodes in the IA-network to the same
detector and consider those nodes to be different instances of the same detector. The right side
of fig. 4.6 displays an IA-network for the case described above where we employ two instances
of the same detector to avoid the inconsistency, named DET:hands-close-bowl and DET:hands-
close-bowl2. Notice that since the nodes pick-up-bowl and put-down-bowl have the {b}
temporal constraint between them, it is possible to infer (using Allen’s path-consistency
algorithm) that the two instances of the detector must also follow one another. That is, there is
also a temporal constraint {b} between them (shown inside the dotted rectangle in fig.4.6).

With this example we also want to make clear that in an IA-network each node represents a
single occurrence of the sub-action associated to it. Notice that multiple instances of the same
detector are not required because of detector’s misfiring, but only in situations where the same
detector is supposed to occur more than one time during the occurrence of the same action. The
issue of sensor malfunction is discussed later in this chapter.

All the reasoning presented in this section also applies to sub-actions and states that have
multiple occurrences within the same action. As with the detector case, it is necessary to rely on
defining multiple instances of the sub-actions and to constrain them appropriately. In the next
chapter we present — in the context of representing interaction — a mechanism by which an
arbitrary number of repetitions of the same sub-action or detector can be handled.

pick-up-bowl put-down-bowl pick-up-bowl put-down-bowl{b} {b}

DET:hands-close-bowl DET:hands-close-bowl DET:hands-close-bowl2

{s,d,e,f} {s,d,e,f} {s,d,e,f} {s,d,e,f}

{b}

inconsistent case solution with different detector instances

Figure 4.6 An inconsistent association of a detector to two intervals solved by using two different instances of
the same detector.

Chapter 4 Action Recognition 108

4.6 Other Examples of Results
Having discussed the influence of the temporal constraints on the detection power, it is useful
to examine more complex actions. In our experiments (described in [135]) we tested the PNF
propagation methodology applied to the detection of two other actions from the cooking show
domain, “mixing ingredients” and “wrapping chicken”. The temporal structure of each action
was codified manually into an IA-network and the values of the detectors were manually
gathered from actual video sequences and provided to the detection system.

With these two examples we want to experimentally show that both the IA-network
representation and PNF propagation scale well. The action “pick up bowl” is, in fact, a sub-
action of the “mixing ingredients” action. In general, we have observed that the detection of
actions is enhanced as the complexity of the action increases. This is due to the power of
constraint propagation to spread quickly information through an entire network. In this scheme,
small pieces of evidence lump together and constrain the possible states to very constrained
component domains, especially when past information is available.

4.6.1 Mixing Ingredients
The complete description of the IA-network for the action “mixing ingredients” is found in
appendix C, codified in the action frames format discussed in chapter 2. The action “mixing
ingredients” is composed of four sub-actions, corresponding to different phases: first, the bowl
is picked up, then basil and bread crumbs are added to the bowl (in any order), and, after the
mixing is done, the bowl is put back on the table. For the sake of compatibility with the original
description, the node corresponding to the action “mixing ingredients” is called chef-is-mixing.

Figure 4.7 Detection of the action “mixing ingredients”.

Chapter 4 Action Recognition 109

Seven detectors are employed in this example. The detector DET:chaos-front-chef is a vision
routine that looks for fast-paced change in the area in front of the chef’s chest that corresponds
to the actual mixing of the ingredients in the bowl. Whenever the chef’s hands get close to the
stationery bowl, DET:hands-close-bowl fires. The second time this happens, corresponding to
the end of putting down the bowl, a new instance of the detector DET:hands-close-bowl2 fires.
Similary, DET:no-motion-of-bowl and DET:no-motion-of-bowl2 are two instances of a
perceptual routine that determines when the bowl is observed to be static on the table. Finally,
two other detectors, DET:hands-close-crumbs and DET:hands-close-basil, detect when the
hands get close to the cups containing bread crumbs and basil, respectively.

The description of chef-is-mixing comprises a total of 17 sub-actions plus the seven detectors.
Figure 4.7 shows the results for the detection of the action using data manually extracted from a
video sequence. The figure displays the detector values on the top and, for each of the five
main sub-actions, the ground truth data (marked as “TRUE:”) and the result of the detection.
As we see in fig. 4.7, the main action is detected most of the time and similar results are
obtained for the four main sub-actions.

Some of the non-resolved periods are caused by the lack of appropriate sensors. For instance, in
the case of get-bread-crumbs, there is a period just before the action starts to happen when the
PNF-state is NF. This is caused by the fact that the detection of this sub-action relies on the
proximity of the hands to the bread crumbs (DET:hands-close-crumbs). Before proximity is
detected, the only way for the system to know that the action is not happening is the fact that
pick-up-bowl has not finished, as determined by the IA-network describing “mixing
ingredients” listed in appendix C. In the action definitions, there is a temporal constraint
enforcing that get-bread-crumbs must happen after (ib) pick-up-bowl. When pick-up-bowl
finishes, freing the constraint, there is no information to determine if get-bread-crumbs has
started or not. Of course, when DET:hands-close-crumbs is detected, the sub-action get-bread-
crumbs is immediately set to N. Similar situations explain most of the other cases of non-
perfect detection.

4.6.2 Wrapping Chicken with a Plastic Bag
Figure 4.8 illustrates the detection of another complex action, “wrapping chicken with a plastic
bag”, which involves 25 sub-actions and 6 detectors. The corresponding IA-network is defined
in appendix C in the action frames format. Figure 4.8 displays the true and the recognized
PNF-state of the main action and of five sub-actions, each of them with a level of complexity
similar to the “pick-up bowl” shown above. All the sensors are very simple: proximity between
hands and the box containing plastic bags (DET:hand-close-pbag-box) and the plate containing
chicken (DET:hand-close-chix-co), chaotic movement in front of the subject’s trunk
(DET:chaos-front-trunk), and absence of motion in the area of the wrapped chicken (DET:no-
motion-wrap-chix).

Notice that the main action and the five sub-actions in the example are correctly detected most
of the time. The only real error happens in the detection of put-down-wrap-chix, which remains
in the N state even after the action has finished. The problem is caused by the detector DET:no-
motion-wrap-chix, which is responsible for determining the end of that sub-action. As seen by

Chapter 4 Action Recognition 110

examining the other detector, DET:hands-clo-wrap-chix, the subject’s hands remained close to
the chicken after it was put down (as evidenced by TRUE:put-down-wrap-chix), preventing the
detector DET:no-motion-wrap-chix from actually determining its state.

In theory, the detector DET:no-motion-wrap-chix should have signaled this by outputting PNF
instead of PF. However, here we simulated the normal situation where a perceptual routine is
not able to determine when it is failing. As fig. 4.8 shows, that does not prevent the detection
process from being correct most of the time, although it could have been the case that a
contradiction would completely prevent the recognition of the action. How to overcome such
problems is the subject of the following section.

4.7 Recovery From Errors
Implicit in the PNF propagation method as described above is the assumption that the sensors
are always correct. When computing the current component domain Wt using the previous
domain Wt −1 (time-expanded), only the possible domains allowed by the previous values of the
sensors, V V Vt0 1 1, , ,�

− , are considered. For instance, if a sensor erroneously set up a node to P,
the proposed method has no way to recover from the error.

To overcome this limitation, we have been using a scheme where the detection system keeps
track of multiple hypotheses. We first describe a method that assumes that at most one sensor is
wrong at each instant of time and guarantees the recovery in such cases. The price for this
ability to tolerate errors is an increase in space and time requirements and a small decrease in

Figure 4.8 Detection of the action “wrapping chicken”.

Chapter 4 Action Recognition 111

detection power. Next we explore heuristic methods to deal with multiple sensor failures.We
start by defining some useful notation. We note as V t

0 the values of the l sensors at instant t,

V Vt t
0 = and V V Vt t

l
t

1 2, , ,� as the component domains where Vj
t , j l= 1 2, , ,� , is obtained by

“inverting” the value of the j-th sensor in V t . In other words, Vj
t is the true state of the sensors

if only the sensor j had failed by reporting the inverted value. Therefore, the set V V Vt t
l
t

0 1, , ,�

represents all the possible combinations of sensor states if at most one of the sensors fails at
one instant of time.

4.7.1 Detection with At Most One Sensor Error
Our approach for error recovery relies on the construction, for each instant of time t, of a set of
error-tolerant component-domains, Ωt . The basic idea is to define Ωt such as it includes all
possible threads of component domains, considering that at most one sensor was wrong at any
past instant of time. This is accomplished by

Ω Τ Ωt
j
t tR V j l= ∩ ≠ ∅ = ∈ − () | , , , ,ω ω3 8> A for all and 0 1 2 1

�

In other words, the set of error-tolerant component domains contains all non-empty restrictions
of the combinations between the previous error-tolerant domains and current values of the
sensors with at most one error allowed. Typically, there is total ignorance at time t=0,
Ω0 = ()PNF i; @ .A potential problem is that Ωt can increase exponentially by this method. In
our tests, however, we found that the large number of repetitions and empty component
domains kept the size of Ωt almost constant. A possible explanation can be related to the
observation (from [82]) that the number of consistent IA-networks is very small if the number
of nodes is greater than 15. The method described above guarantees that the progression of sets
of error-tolerant domains Ω Ω Ω0 1, , ,�

t always contains the correct component domain if at
most one sensor is wrong each instant of time. Therefore, under this constraint, we can
assure that if we declare the current values of the nodes to be

Wt

t

=
∈

 ω
ω Ω
�

then Wt contains the right answer.

However, computing Wt in this manner is too conservative: many times, most of the nodes are
assigned the PNF value. To address this problem, we propose to de-couple the building of the
set of error-tolerant domains from the choice of the current values for the nodes. It is important
to keep the set of all error-tolerant domains as complete as possible. However, we determined
that a good policy is to make the current value Wt based on the actual readings of the sensors,
considering all the different possibilities of past errors. Basically, we define Wt to be the union
of restriction of all previous domains intersected only with the current value of the sensors,

W R Vt t

t

= ∩
∈ −

Τ
Ω

()ω
ω

0
1

2 7�

Chapter 4 Action Recognition 112

Of course, if this quantity ends up being empty, then we use the overly-conservative method for
computing Wt . In summary, the set Ωt is computed considering always that one of the sensors
might be wrong (plus the previous set Ωt −1) but the current state Wt considers just that the
sensors could be wrong in the past, but not in the present. This was found to be a good
compromise between accuracy and ability to recover from errors.

4.7.2 A Heuristic for General Error-Tolerant Detection
In practice we need to be able to recover, at least partially, even in the case of more than one
simultaneous error. We focused here on the situations where all the current sensor readings
allow no consistent interpretation with the past information, that is, Ωt = ∅ . In this case, we
use an heuristic for recovery which completely disregards past information, considering only
the possible implications of current sensor information, but still assuming that only one of the
sensors is wrong,

Ωt
j
tR V j l= ≠ ∅ =3 8> C | , , , ,for all 0 1 2�

If this is still an empty set, we define the set of error-tolerant domains to be the one with the
least information possible, Ωt

iPNF= (); @ .

4.7.3 Examples of Recovery from Errors
Figure 4.9 shows examples of the results obtained by using the method described above. As a
measure of comparison, we provide in item (a) of fig. 4.9 the results obtained assuming perfect
sensors (the same as in item (d) of fig. 4.5). Using the method described above, the processing
of the same data produces the results in item (b) of fig. 4.9, where there are intervals of time
when the system is unable to decide whether the actions are happening or not.

Surprisingly, when we introduce errors in the detectors DET:hands-close-sta-bowl and
DET:bowl-off-table (but never at the same time) there is an increase in the detection accuracy,
as show in fig. 4.9.c. This can be explained by considering that when a sensor has a false
positive, its corresponding value of now in the component-domain has the effect of producing
many contradictions, pruning the set of error-tolerant domains Ωt at an early stage.

Chapter 4 Action Recognition 113

Figure 4.10 shows other results obtained by adding erroneous information into the sensors of
the “wrapping chicken” action of fig. 4.8. In item (a) of fig. 4.10 we repeat the result of fig. 4.8
for comparison. Item (b) shows the result when all the information from the sensors is correct
but employing the error recovery system described above. Basically, the result is the same
except when all the sensors are off (PF).

This degradation of performance when sensors are wrong is examined further in items (c)
and (d) of fig. 4.10, where we observe the effects of false positives and false negatives of the
same sensor, DET:chaos-front-trunk1, on the detection of the action wrap-chicken. Notice that
a false N value improves the detection but a false PF value gives rise to segments of complete
ignorance (PNF). In itens (e) and (f) of fig. 4.10 we examine two other cases showing the
robustness of the method to repeated errors and to confusion between similar sensors.

 Detectors (DET:) and true state (TRUE:)

a) Result assuming perfect sensors (same as fig. 4.5.d):

b) Result assuming realistic sensors (when sensors are still
correct):

c) Result when 2 sensors are wrong at two different times:

LEGEND:

Figure 4.9 Influence of sensor errors on the detection
of the action "pick-up bowl".

Chapter 4 Action Recognition 114

Until now all the examples have relied on manually extracted data from a single video
sequence depicting the action and on hand-generated errors. The next section examines these
methods running on data from perceptual routines employed in one of interactive spaces we
build, the art installation “It” (described in chapter 7).

4.8 Experiments in the “It” Scenario
As part of the art installation “It” that we design and built in 1999 (described in chapter 7), we
wanted to detect actions involving the user and wood cubes in the space. Among other actions,
we examine here the case of detecting the occurrence of situations where the user picks up a
cube from the floor and move it to other position in the space.

 Detectors (DET:) and true state (TRUE:)

a) Result assuming perfect sensors (same as fig. 4.8):

b) Result assuming realistic sensors (when sensors are correct):

c) Result when 1 sensor fires longer than expected:

d) Result when 1 sensor does not fire at all:

e) Result when 1 sensor fires randomly:

f) Result when 2 similar sensors fire at the same time:

LEGEND:

Figure 4.10 Influence of sensor errors on the detection of the action
"wrapping chicken".

Chapter 4 Action Recognition 115

moving-cube

pick-up-cube p-has-cube put-down-cube

one-cube-is-visible p-close-to-cube

{s}
{s,d,e,f}

{f}
{b,ib}

{m,im,b,ib}

{m,im,b,ib}

{m,b}

{m} {if}

Figure 4.11 IA-network for the “moving cube” action.

Figure 4.12 Silhouette input used in the experiments of the detection of a “moving cube” action.

Chapter 4 Action Recognition 116

The IA-network that represents the action “moving cube” is shown in fig. 4.11. The network is
composed of six nodes, where the main action is decomposed first into three sub-actions:
“pick-up cube”, “person has cube”, and “put-down cube”. We also associate two states that
are affected by the action, the first corresponding to the situation where the cube seen can be
seen as an isolated component from the person’s body; and the second corresponding to the
state where the person is known to be close to the cube. As we will see below, this is motivated
by the fact that we are employing a silhouette-based vision system that can not distinguish
whether a person is carrying a cube or not.

Unlike the examples previously used in this chapter, this experiment has been performed with
sensor data obtained automatically from the vision system of “It” . Based on silhouette images
similar to the ones shown in fig. 4.12, we implemented simple detectors for visual properties.

The implemented detectors are:

• DET:one-cube-is-detect : determines if an isolated cube has been detected by the
low-level visual routines. This detector is linked to the state one-cube-is-visible of
fig. 4.11 by a constraint {s,d,e,f}.

• DET:p-is-shorter : determines if the height of the person has decreased. This detector
is used to detect the beginning of both pick-up-cube and put-down-cube actions,
and therefore we employ two instances of it. The first, DET:p-is-shorter has a
{o,s,e,is} relation with pick-up-cube , and the second, DET:p-is-shorter2 is
constrained by a {s,e,is} arc to put-down-cube .

• DET:p-is-higher : similar to DET:p-is-shorter , detects if the height of the person
has increased. Two instances are used, the first, DET:p-is-higher has a constraint
{im,io} to pick-up-cube , and the second, DET:p-is-higher2 , is {im,io} to put-
down-cube .

• DET:p-sa-as-one-cube : detects if the person is at the same area as the cube was seen
for the last time. This detector is associated to the state p-close-to-cube through the
constraint {s,e,d,f}.

• DET:and-not-sa-not-det : a detector corresponding to the AND composition of the
negation of the states of two other detectors, DET:p-sa-as-one-cube and DET:one-
cube-is-detect . It basically fires when the person is seen leaving the area where a
cube has been seen for the last time and the cube is not seen anymore, that is, typically
when the person is carrying the cube. This detector is associated to the state p-has-cube
through a {s,d,e,f} constraint.

• DET:I-is-inside : determines if the person is inside the area. This is, in fact, a
necessary condition for the action to be seen, expressed by a constraint {is,e,id,if} with
the main action moving-cube .

The low-level visual routines associated to these detectors are, unfortunately, quite noisy, often
producing errors. Therefore, we employ the method to recover from errors described above. To

Chapter 4 Action Recognition 117

verify the performance of the detection of the action, we designed an experiment where
subjects entered the space and where asked to perform the action whenever they liked. They
were instructed to remain inside the space for about 25 seconds, during which they should
perform the action only once, and do whatever they wanted in the rest of the time. The
experiment was recorded in video and the actual occurrence of the action “moving cube” was
determined manually, providing ground truth to compare the results of the algorithm.

We run the experiment with 4 different subjects, for a total of 18 analyzed runs. Figure 4.13
display the PNF diagram of one of these runs (for subject #1). The top part of the figure
contains the sensor data that are clearly noisy. The last line displays the ground truth, that is,
the actual occurrence of the action as determined by manual inspection of the video. Just above
it, we see the result of the action detection algorithm with recovery from errors. As it can be
seen, the algorithm successfully determines whether the action is happening most of the time.

To evaluate numerically the performance of the algorithm, we classify the computed PNF-state
at each instant of time according to four categories: right , if the algorithm provides an answer
that is correct and specific; wrong if the computed PNF-state does not contain the true state of
the action; not wrong if the PNF-state contains the true state of the action, but it is not specific;
or undetermined, for the cases where the PNF-state is computed to be PNF. Table 4.1 displays
the assignments of these categories for all possible combinations of actual and computed PNF-
states. Notice that we consider that the algorithm is right when the actual state is P or F and the

Figure 4.13 Example of the detection of “moving cube” using the method for recovery from errors.

Table 4.1 Distribution of the four categories of answers according to the actual and the computed PNF-state.

F N P PF PN NF PNF
F right wrong wrong right wrong not wrong undetermined
N wrong right wrong wrong not wrong not wrong undetermined
P wrong wrong right right not wrong wrong undetermined

computed PNF-state

 actual
state

Chapter 4 Action Recognition 118

computed PNF-state is PF, so it is possible to compare the performance of our method with
traditional algorithms that do not differentiate between past and future.

Table 4.20 displays the results of detecting the action “moving cube” using PNF propagation
augmented by the recovery from error method described in section 4.7. The table contains the
results for each of the four subjects and the average detection rates. The last line displays the
length of action compared to the total time where the subject was inside the space, in average
30% of the total time.

The method, in average, provided the correct answer 76% of the time and the wrong answer
only 8% of the time. Also, if we also consider the time that the algorithm was not wrong, we
obtain 85% of time where the system could provide an answer that was not wrong. We consider
this results quite good given the amount of noise coming from the sensors and that we have not
employed any kind of “smoothing” techniques on top of the results. We observed that in the
situations where the sensor routines performed better the overall result of the algorithm was
also greatly improved. Based on these observations we believe it is possible to increase the
detection rates by at least 10%, to the levels achieved in the case of the best subject (#2).

4.9 Future Directions
The PNF-network model for action recognition proposed in this chapter needs further
development. The major advantage is its ability to express complex temporal patterns,
including mutual exclusion of actions and states. This is possible only because we have
developed the PNF framework where approximate temporal constraint propagation is fast in a
strong temporal algebra.

There are two major shortcomings in the model. First, PNF networks and algorithms can not
handle confidence measures computed by perceptual routines. This introduces an undesirable
degree of brittleness that does not match well with the reality of computer vision low-level
routines. Second, the current methodology requires completely manual definition of the actions
and their temporal structures. Some ideas to overcome these difficulties are discussed below.

4.9.1 Including Confidence Measures
To introduce confidence measures into the PNF propagation structure the first challenge is to
determine what the subject of the confidence measure should be. In one scenario, each node
would have different confidence values for each of the three basic states past, now, and future.
Although this seems straightforward for the detector nodes, it is not clear which mechanisms

Table 4.2 Results for the detection of different subjects performing the “moving cube” action.

subject #1 subject #2 subject #3 subject #4 average
right 81.2% 84.4% 71.8% 68.1% 76.4%
not wrong 7.5% 6.8% 4.7% 14.7% 8.4%
wrong 9.4% 6.3% 8.1% 8.8% 8.1%
undetermined 1.9% 2.5% 15.5% 8.4% 7.0%

length of action 29.4% 33.0% 19.5% 34.5% 29.1%

Chapter 4 Action Recognition 119

could be applied to propagate those values to non-detector nodes and how to compute this in a
reasonable amount of time.

Instead, we have been considering a different approach where, given confidence measures for
the detectors, we first associate a confidence measure to a component domain, and then to an
individual temporal thread of component domains. Suppose that at instant of time t, a detector
I j has a confidence level c vj

t () that its value is v. Let us consider a particular collection of

values v v vl1 2, , ,� , and its associated component domain V
t
. Then we can compute the

confidence level of V
t
as

c V c vt t

j
t

j

j

l

4 9 3 8=
=

∏
1

In this model, since the confidence is associated to the detector nodes’ confidences and not with
the other nodes, computing the PNF restriction or the arc-consistency on a component domain
does not alter its confidence, c W c R W c AC Wt t t1 6 1 62 7 1 62 7= = , except if an inconsistency is

detected. If R W1 6 = ∅ , then this is a logically impossible situation, and therefore the
confidence on the component domain must be 0,

c ∅ =1 6 0

Similarly, time expansion does not alter the confidence in a component domain,
c W c WΤ1 62 7 1 6= .

Given this model, let us consider the set of error-tolerant component-domains Ωt ,

Ω Τ Ωt
j
t tR V j l= ∩ ≠ ∅ = ∈ − () | , , , ,ω ω3 8> A for all and 0 1 2 1

�

Notice that an element ω of Ωt −1 represents a particular thread of component domains and
detector values from the instant 0 to the current time t-1. If we assume that the occurrence of
the sensor values at time t-1 is independent of their occurrence at time t, we can compute the
confidence of each element of Ωt by taking the product of the confidence of the time expanded
component thread, c ct t− −=1 1Τ ω ω1 62 7 1 6 , and the confidence of a particular set of sensor values,

c Vt t

4 9

c R V c V c c Vt t t t t t t
Τ Τ() ()ω ω ω∩�

�
�
� = ∩ = −4 9 4 9 1 6 4 91

Of course such a formula is possible only if independence between sensor values in different
instants of time is assumed. However, there is one more technical difficulty. Since Ωt is
defined as the union of component domains, we have to determine what the confidence value is
in the case of a component domain that is obtained by the combination of different threads and

Chapter 4 Action Recognition 120

sensor values. For instance, suppose two component domains ω1 and ω 2 and two sets of

sensor values V
t
 and V

t

 such as

′ = ∩ = ∩�
�

�
�ω ω ωR V R T V

t t

Τ() ()1 24 9

A possible approach in such cases is to take as the confidence of the component domain ′ω to
be the maximum of the confidence of the two “threads” that led to it; that is,

c c R V c R T Vt t t t
t

′ = ∩�
�

�
� ∩�

�
�
�

�
��

�
��

%
&
'

(
)
*

ω ω ω1 6 4 9max () , ()Τ 1 2

Given this formulation, we can determine the most likely current state simply by considering
the component domain with highest confidence in Ωt ,

W ct t

t

=
∈

arg max ()
ω

ω
Ω

As before, the set of error-tolerant component-domains can expand exponentially. A simple
heuristics to prevent this is, at each cycle, to keep in Ωt just the component-domains with
highest confidence. Finally, it is necessary to normalize the confidence measures at each instant
of time to avoid numeric underflow in the values of the confidence. We plan to test this
formulation in real action recognition situations in the near future.

4.9.2 Learning Temporal Structures
In our methodology, the temporal structure of each action has to be manually defined by the
designer of the application. First, notice that since the nodes in our representation are symbolic,
it is possible to simplify the task by collecting basic representations into action dictionaries and,
as discussed in chapter 2, pre-process the representations with simple reasoning algorithms in
order to infer low-level nodes and states. Also, as explained before, we can separate the basic
elements of the action from the specific detectors of the task at hand, increasing the reusability
of previously defined actions.

However, it is important to consider the possibility of automatically learning the temporal
structure of the actions. Particularly, we want to briefly discuss the possibility of learning the
temporal constraints of a given network by observing multiple occurrences of the action. A
simple mechanism would be to observe which pairs of states between two actions occur in the
examples and to construct PNF temporal constraints (not Allen-type constraints) allowing only
the occurrence of the observed pairs of states. For instance, if the only observed states between
two nodes A and B are (past, now), (now, now), and (now, future), then the relation between
then can be defined by PN NF F, , . Notice that we have to include the relations (past, past)
and (future, future) since it is always possible to have both nodes in the past or in the future.

The computed relation — or a close approximation — can be projected back using the function
Γ−1 defined in chapter 3 into a set of Allen’s primitive relations. Given the learned relations for

Chapter 4 Action Recognition 121

the whole IA-network, we can apply Allen’s path-consistency algorithm, remove unnecessary
relations, and project back into a PNF-network.

The problem with this approach is that it requires a set of observations that span all the possible
occurrences of each pair which, especially in the case of parallel actions, can become quite a
large set. This is, in fact, a problem that is faced by any learning algorithm for actions. For
instance, in [118] Olivier et al. had to resort to synthesized data in order to train their HMMs to
recognize simple actions like “following” and “meeting”. Notwithstanding, this is a direction
that can potentially simplify the construction of the IA-networks.

4.10 Summary
In this chapter we showed how IA-networks can be used to represent the temporal structure of
actions. In particular, IA-networks allow the definition of simultaneous sub-actions and states
without the overhead that is typical of finite-state machines such as HMMs. Another feature of
IA-networks is the symbolic specification of the temporal structure that allows the
programmer/designer to refine the definition of an action and to easily visualize the different
assumptions used to detect the action.

We demonstrated our ideas by showing examples of real-time detection of actions represented
by IA-networks. During the detection of those actions, we also performed recognition of sub-
actions. In particular, we highlighted the role of different constraints in the process and how
causal links can be inserted to strengthen the recognition power.

The original PNF propagation formulation assumes perfect sensing. In this chapter we
developed a set of heuristics to recover from errors that are based on tracking possible states
through time. The results showed that being more resilient to errors slightly degrades the
recognition but produces a recognition system able to handle many failure situations. We also
tested the action detection method with real data in a concrete problem of recognizing an action
and obtained good detection rates. Finally, in the future direction section we drafted a method
to incorporate confidence measures into the framework based on the assignment of confidence
values not to nodes but to entire component domains. In the next chapter we return to some of
the issues discussed in this chapter when dealing with a different kind of application for PNF-
networks: the control of interactive spaces.

Chapter 5 Interval Scripts 122

5. Interval Scripts

In the previous chapter we described how the temporal structure of human actions can be
represented and recognized using PNF-networks. The research described in this chapter extends
the ideas previously developed by considering a different, but similar, problem: the scripting of
computer characters and interaction. As before, we propose the use of temporal constraints to
represent the temporal structure of the interaction and use the PNF framework to recognize and,
in this case, control the interactive environment.

The proposed paradigm — called interval scripts — is based on the encapsulation of actions
and states in nodes of an IA-network constrained by the temporal primitives of Allen’s
algebra [3]. The objective is to provide the designer of an interactive system or complex
computer graphics scene with a tool that combines expressiveness and simplicity. Among other
desired features, we included in interval scripts: facilities for the easy abstraction of actions, the
ability to impose restrictions on what can happen (negative scripting), mechanisms to infer
indirectly the occurrence of users’ actions (in a similar manner to the previous chapter), and the
capacity of recover from errors and unexpected situations.

To accomplish this, we added constraint-based scripting mechanisms to the traditional
procedural methods of designing interaction. Basically, an interval script contains descriptions
of how to activate and stop the actions of the characters. The activation of the actions is
determined by verifying the current state of the system, comparing it with the desired state
according to the constraints, and issuing commands to start and stop action as needed. Another
innovation in interval scripts is the de-coupling of the actual state from the desired state which
allows for the introduction of methods for recovery from errors and increases the robustness of
the system.

Similar to the action recognition problem described in chapter 4, a key issue when scripting
interaction is the management of complex temporal patterns. The interval script paradigm
builds upon the work presented in the previous chapters first by employing temporal constraints
to represent the structure of the interaction as we did for human action; and second by using the
same PNF-propagation method (chapter 3) to allow fast constraint propagation. However,
unlike the action recognition case, we have developed the paradigm into a fully functional
prototype where the ideas could be thoroughly tested.

Chapter 5 Interval Scripts 123

The idea of interval scripts has been implemented in an interval script language that is
described in this chapter and fully specified in appendix D. Although the concept of interval
scripts could be variously realized (e.g. as a graphical programming language), in this chapter
we present all the basic concepts of our paradigm using the interval scripts language.

In the human-machine interaction community there has been much work on languages to
describe interaction in multimedia interfaces and computer graphics environments. However,
few attempts have been made to create methods to handle specific difficulties of scripting
interactive characters in immersive, interactive worlds. Interval scripts have proved to be
essential to manage the complexity of the large-scale interactive, story-driven spaces that we
have been developing. Three of those projects will be examined in detail in chapter 7. It is our
opinion that it would take far longer to implement these systems in any other language or
system. In fact, we believe that the fact that it was possible to build these complex systems at
all is good evidence of the usefulness and appropriateness of the interval scripts paradigm.

Although our research has concentrated on immersive environments and, in particular, in
interactive theatrical performances, we argue that the design of scenes with semi-autonomous
characters in animated movies face similar problems. Current industrial techniques for
animation rely on the painstaking definition of the changes between two consecutive frames.
Along with issues of movement and body control and facial animation, research on how to tell
a computerized character what to do is becoming more common. Most of the research is,
however, concentrated on how to describe coordinated body activities like walking, running, or
Newtonian physical interaction.

When computer graphics is used to generate crowd scenes in animated features, it is often the
case that simply applying flock-behavior like programming elements do not achieve the
necessary result. For instance, in a scene with a crowd in a marketplace, an animator might
want autonomous characters to wander around the place looking for merchandise and
bargaining with the shoppers. It is conceivable with today’s technology to create such a scene
using behavior-based characters. However, in a real animated movie, it might necessary to
impose story-related constraints to achieve the desired level of drama or comedy. For example,
it is desirable that no big action among the crowd characters happens during a particular intense
moment of the main characters; or perhaps that suddenly, the whole crowd pays attention to
some event. As we will show, the interval script paradigm is suited to control high-level story-
related issues similar to those.

The initial formulation of the idea of interval scripts was developed by Pinhanez, Mase and
Bobick [137]. The methodology was greatly refined when the interval script language was
developed for the production of the computer theater play “It / I” (see chapter 7 and [136] for
more details). For the installation “It” (see chapter 7) we re-designed the run-time engine and
considerably improved the interval script language. The examples discussed in this chapter
refer to this version of the language.

This chapter starts by reviewing the current scripting languages and identifying their
shortcomings. We then introduce the interval script language through some simple examples.
The core of the chapter describes the run-time engine architecture based on the PNF

Chapter 5 Interval Scripts 124

propagation method described in chapter 3. We then explore more complex constructions
allowed by the interval script language. In chapter 7 we describe our experiences on using the
paradigm to build interactive spaces.

5.1 Problems with current Scripting Techniques
The idea of interval scripts was spawned by our dissatisfaction with the tools for the integration
of characters, stories, and I/O devices in interactive environments. As described by Cohen,
systems to control interaction tend easily to become “big messy C program(s)” ([39], fig. 2).
Also, from our experience with “The KidsRoom” [18], it became clear that one of the major
hurdles to the development of interesting and engaging interactive environments is that the
complexity of the design of the control system grows faster than the complexity of the
interaction.

5.1.1 Finite-State Machines and Event Loops
The most common technique used to script and control interactive applications is to describe
the interaction through finite-state machines. This is the case of the most popular language for
the developing of multimedia software, Macromedia Director’s Lingo [1]. In Lingo the
interaction is described through the handling of events whose context is associated with
specific parts of the animation. There are no provisions to remember and reason about the
history of the interaction and the management of story lines.

Videogames are traditionally implemented through similar event-loop techniques. To represent
history, the only resort is to use state descriptors whose maintenance tends to become a burden
as the complexity increases. Also, this model lacks appropriate ways to represent the duration
and complexity of human action: hidden in the structure is an assumption that actions are
pinpoint-like events in time (coming from the typical point-and-click interfaces for which those
languages are designed) or a simple sequence of basic commands.

In the “The KidsRoom” [18] an interactive, immersive environment for children built at the
MIT Media Laboratory, the interaction was controlled by a system composed of a finite-state
machines where each node has a timer and associated events. A problem with this model is that
it forces the designer to break the flow of the narrative into manageable states with clear
boundaries. In particular, actions and triggered events that can happen in multiple scenarios
normally have to be re-scripted for each node of the state machine, making incremental
development quite difficult.

5.1.2 Constraint-Based Scripting Languages
The difficulties involved in the finite-state based model have sparkled a debate in the
multimedia research community concerning the applicability of constraint-based programming
(starting with the works of Buchanan and Zelllweger [34] and Hamakawa and Rekimoto [59])
versus procedural descriptions, including state machines (for example, [175]). In general, it is
believed that constraint-based languages are harder to learn but more robust and expressive.

Chapter 5 Interval Scripts 125

Bailey et al. [11] defined a constraint-based toolkit, Nsync, for constraint-based programming
of multimedia interfaces that uses a run-time scheduler based on a very simple temporal
algebra. The simplicity of the temporal model, in particular due to its inability to represent non-
acyclic structures, is also the major shortcoming of Madeus [74], CHIMP [154], ISIS [2], and
TIEMPO [184].

André and Rist [9] have built a system, called PPP, that designs multimedia presentations
based on descriptions of the pre-conditions of the media actions, their consequences and on the
definition of temporal constraints using a strong; hybrid temporal algebra that combines
intervals and points as its primitives (based on Kautz and Ladkin’s work [78]). The system uses
the descriptions to plan a multimedia presentation that achieves a given goal. The multimedia
presentation is represented as a constraint network. During run-time, the scheduler has to build
and choose among all the possible instances of the plans. However, since Kautz and Ladkin’s
propagation techniques are exponential, and the number of possible plans can be exponentially
large, the applicability of André and Rist’s PPP [9] is restricted to simple situations, and
especially, to cases with limited interaction (otherwise the number of possible plans increases
too fast).

In computer graphics, Borning [25] has been the strongest proponent of constraint-based
languages for animation. Other examples are TBAG [49] and Kakizaki’s work on deriving
animation from text [76].

5.1.3 Scripting of Computer Graphics Characters
The scripting of computer graphics characters and, in particular, of humanoids has attracted
considerable attention in the computer graphics field. A group of researchers has worked with
languages for scripting movements and reactions of characters, like Perlin [124], Kalita [77],
and Thalman [170]. In particular, Perlin [125] has developed a language, Improv, that nicely
integrates low-level control of geometry with middle-level primitives such as “move” , “eat” ,
etc. The major shortcoming of Improv is the lack of simple methods to synchronize and to
temporally relate parallel actions. On the other hand, Cassel et al. [36] examines directly the
contents of a dialogue between two characters and automatically generates gestures, facial
expressions, and voice intonations; however, it is hard to imagine a way in their system to
impose on the characters dramatic constraints that could alter their behavior.

Bates et al. [14] created an environment composed of several modules that encompass
emotions, goals (Hap), sensing, language analysis, and generation. Character actions are
represented as AND/OR plans to achieve goals. To represent the development of the interaction
among the characters, Hap employs an adaptation of AND/OR trees where AND nodes contain
conjunctions of goals and OR nodes represent disjunctions of plans [87]. During run-time, the
system grows an active plan tree considering the goals that are achieved and excluded by the
current state of the world, and selects appropriate sub-goals and plans to be executed. Although
Hap provides easy forecast of the future effect of actions, it is hard to express complex
temporal structures in the formalism. By the own nature of AND/OR trees, Hap imposes many
restrictions in the ways parallel actions can be synchronized.

Chapter 5 Interval Scripts 126

Another line of research stems directly from Rodney Brooks’ works with autonomous
robots [33]. The objective is to create characters with their own behaviors and desires.
Significant examples are Blumberg’s behavior control system [17], Tosa’s model for emotional
control [172], and Terzopoulos work on the interaction of sensory and behavior
mechanisms [169]. Sims [157] went beyond the creation of behaviors and devised methods to
evolve them in conjunction with the creature’s physiology. The problem with purely behavior-
based characters is that they are unable to follow stories. In chapter 6 we will argue that there is
a significant difference between computer creatures and computer actors, the former being
unable to accept high-level commands that are needed for the precise timing and developing of
a stories. Integration of high-level thought into behavior-based control still defies the research
in the area.

Finally, Strassman’s Divadlo [167] uses natural language-like statements to interactively create
animation. The system uses a shallow rule-base reasoning system that compares the users’
statements to a world database. However, as a foundation for a run-time system, the issue of
robustness poses a main problem.

5.1.4 Scripting Interactive Environments
Starting with the pioneer work of Myron Krueger [79] the interest of building interactive
environments, especially for entertainment, has grown in the recent years (see [15] for a good
review). In the case of virtual reality (VR), it seems that the user-centered and exploratory
nature of most interfaces facilitates the scripting of the interface by using state machines and
event loops. There are, however, few references of scripting systems for VR (for
example [155]). A recent example is Alice [120] used in Disney’s “Alladin” ride (described
in [121]) a language that allows rapid prototyping but has very few possibilities in terms of
temporal structures.

In many interactive environments the control of the interaction is left to the characters
themselves (seen as creatures living in a world). This is the case of ALIVE [94], where the
mood of the CG-dog Silus commands the interaction; and also in Swamped [71] where a user-
controlled chicken plays cat-and-mouse with a raccoon. In both cases, however, there is no
easy way to incorporate dramatic structure into the control system as discussed above. In most
of these cases, as well as in Galyean’s work [52], it is necessary to “hack” the behavior
structure in order to make a story flow. For example, in a scene of where a dog is supposed to
follow a human character, the behavior is achieved by making the leg of the human being
associated with food [16].

In [39] Cohen proposes a distributed control structure, the Scatterbrain, based on Marvin
Minsky’s concepts of society of mind [106] and Rod Brooks’ subsumption architecture [33]. In
this paradigm, used in the control of a sensor-loaded room, the dispersion of knowledge and
behavior is even greater. Although an appealing model, the use of multiple agents without
centralized control makes story control and, to some extent, authoring, extremely difficult.

Chapter 5 Interval Scripts 127

5.2 A Proposal: Interval Scripts
Using interval scripts to describe interaction was first proposed by Pinhanez, Mase, and Bobick
in [137]. The basic goal was to overcome the limitations of traditional scripting languages as
described above. The work drew from the technique for representation of temporal structure of
human actions (described in chapter 4) which was in its initial stages at that time.

In interval scripts, all actions and states of both the users and the computer characters are
associated with the temporal interval where they occur. However, the actual beginning and
ending of the intervals are not part of the script. Instead, the script contains a description of the
temporal constraints that the intervals obey during run-time. For example, suppose we want to
describe the situation where a CG character appears on the screen whenever the user makes a
gesture. To do this with interval scripts, we associate the user gesture to an interval A and the
appearance of a CG character to another interval B. We then put a temporal constraint stating
that the end of the gesture interval A should be immediately followed by the entrance of the
character B. During run-time, the interval script engine monitors the occurrence of the time
interval corresponding to the gesture. When it finishes, the engine solicits the entrance of the
CG character in an attempt to satisfy the temporal constraint.

In this chapter we will use sometimes the term interval to refer to nodes of the IA-network
corresponding to an interval script. Although, as defined in chapter 3, the nodes of an IA-
network are variables on the space of temporal intervals, we found that it is conceptually
simpler to refer to the representation of the possible temporal occurrence of an action (that is, a
node in an IA-network) as the interval of the action.

Developing an interface or interactive system with interval scripts is a classical case of
programming by constraints as discussed above. Notice that programming by constraints
always requires a run-time engine that examines the current information and assigns new
values for the different variables of a problem to satisfy the constraints.

To model the time relationships between two actions we employ again the interval algebra
proposed by Allen [3] and described in chapter 3. For instance, in the above example, the
relation A meet B describes the temporal constraint between the gesture interval A and the
interval associated with the entrance of the CG character B. If the entrance of the character
could start before the end of the gesture, the relation between the two intervals would be
described by the disjunction overlap OR meet. Of course, in any real occurrence of the
intervals, only one of the relationships actually happens.

We see several reasons to use Allen’s algebra to describe relationships between actions in an
interactive script. First, no explicit mention of the interval duration or specification of relations
between the intervals’ starting and endings are required. Second, the existence of a time
constraint propagation algorithm allows the designer to declare only the relevant relations,
leading to a cleaner script. Allen’s path consistency algorithm (described in chapter 3) is able to
process the definitions and to generate a constrained version that contains only the scripts that
possibly satisfy those relations and are consistent in time. Third, the notion of disjunction of
interval relationships can be used to declare multiple paths and interactions in a story. Fourth, it

Chapter 5 Interval Scripts 128

is possible to determine whether an action is or should be happening by properly propagating
occurrence information from one node of the IA-network to the others in linear time (as
described later in chapter 3). This property is the basis of the interval script run-time engine
which takes temporal relationships between intervals as a description of the interaction to occur
and determines which parts of the script are occurring, which are past, and which are going to
happen in the future by considering the input from sensing routines.

Finally Allen’s algebra allows the expression of mutually exclusive intervals. For instance, to
state that a CG character does not perform actions C and D at the same time we simply
constrain the relation between the intervals C and D to be before OR i-before. That is, in every
occurrence of the intervals, either C comes before D or after D, but never at the same time. As
discussed in detail in chapter 3, the ability of expressing mutually exclusive intervals defines
different classes of temporal algebras [102]. In general, algebras without that property allow
fast constraint satisfaction but are not expressive [177]. However, Allen’s algebra is both
expressive and can be used in real time because we have developed a fast method to compute
approximations of the values that satisfy the constraints — PNF propagation.

André and Rits [9] have also used a strong temporal algebra to script multimedia presentations.
Their work employs a more expressive temporal algebra that combines Allen’s [3] and
Villain’s [178] proposals as suggested by Kautz and Ladkin [78]. However, constraint

propagation in this temporal algebra is basically O n e n2 3+2 74 9 , where n is the number of nodes

and e is the time required to compute the minimal network of the IA-network; typically, e is

exponential in the number of nodes, O e O n1 6 2 7= 2 . Moreover, their system requires the

enumeration of all possible temporal orders of actions implied by the constrained network,
which can grow exponentially, especially in the case of multiple and frequent user interaction.

We can see an interval script as the declaration of a graph structure where each node is
associated with actions, events, and states of characters and users in an environment. The arcs
between nodes represent the constraints imposed on the structure of the interaction. Basically,
an interval script describes a space of stories and interactions. Notice that, unlike in other
formalisms like [14], interval scripts represent and control plans of action and interaction but
can not create them from a set of goals like in traditional planning [116]. In the next section we
introduce the basic structures used in interval scripts. Following that, we detail the basic
inference mechanism of the run-time engine.

5.3 Basic structures of Interval Scripts
In this section we describe the basic capabilities of a scripting language based on the paradigm
of interval scripts. There are multiple ways to implement the concepts described in this chapter.
We chose to develop a compiler that takes a text file containing the descriptions of the intervals
and the temporal constraints between them and produces a C++ file. The C++ file can be
compiled and, through especially-defined functions, the script can be executed at run-time.

It is arguable whether a text file is an adequate format for scripting interaction and stories in
comparison with a graphical programming language. We will return to this discussion later. For

Chapter 5 Interval Scripts 129

now, we will describe the fundamental structures of interval scripts assuming the syntax and
format of our language. The grammar of the language is described in appendix D. Notice that in
most of the cases the constructions we examine are completely implementation-independent.

5.3.1 Start, Stop, and State Functions
Each action or state in an interval script is described by three functions:

• START: a function that determines what must be done to start the action; however, after
its execution, it is not guaranteed that the action has actually started.

• STOP: a function defining what must be done to stop the action; similar to START, the
interval may continue happening after the STOP function is executed.

• STATE: a function that returns the actual current state of the interval as a combination of
three values, past, now, or future, corresponding respectively to the situation where the
interval has already happened, is happening in that moment of the time, or it has not
happened yet.

STATE functions are oblivious to START and STOP functions and are designed to provide the
best assessment of the actual situation. Also, if they are not declared, the state of an interval is
automatically set to PNF. They are used both to define intervals attached to sensors and to
provide the actual state of execution of an action.

As we can see, in interval scripts we de-coupled the goal of starting or stopping an interval
(represented by the START and STOP functions) from the actual state of the interval. That is,
an interval script describes how an interaction or story should happen and does not assume that
response is perfect. That is simply because it is impossible to predict how characters or devices
actually react in run-time due to delays, device constraints, or unexpected interactions. This
follows the notion of grounding as proposed by Rodney Brooks for autonomous robots [33].
According to this principle, a system that interacts with other complex systems should as much

object moves

interval script control

C++ code, devices, etc..

STATESTART STOP

N N NN N N NFFF P P

Figure 5.1 The structure of an interval.

Chapter 5 Interval Scripts 130

as possible sense directly and not predict or model the common environment to avoid losing
contact with the reality.

We explicitly distinguish between wish and occurrence exactly because interactive
environments are as hard to model as the real world. Even in the case of computer graphics
scenes where all the information is potentially available, it is still possible that a situation
satisfying all the different agents is unattainable.

Therefore, we adopted a design in interval scripts where the request that an action happens is
independent of the actual occurrence of the action. During run-time, the interval scripts engine
examines the current state of the intervals (through the results of STATE functions) and tries to
achieve a set of states compatible with the temporal constraints by executing appropriately
START and STOP functions.

Figure 5.1 shows a typical execution of an action in interval scripts. This action corresponds to
a movement of a CG character. In this diagram time is running from left to right, and the
START function is executed some time before the STATE functions actually detects the
occurrence (N for now state) of the action. Similarly, it takes time for the effects of the STOP
call to be sensed. Of course the response time is different for different devices and systems. In
the case of interactive environments, it is common that some physical devices have significant
delays; while in computer graphics scenes, it can take time for a character to start an action
because pre-conditions must be have to be achieved first. For instance, a command for moving
might be delayed because the character first must stand up.

Figure 5.1 depicts the best case where the action actually happens after the START call. It is
easy to see that physical or spatial constraints can prevent an object from moving. In the same
way, a character might start to move because an object bumped into him. In both cases, we
would expect that the STATE function report the actual state of the character.

5.3.2 Encapsulating Code in Intervals
It is important that a scripting language communicates with low-level programming languages
that provide basic functions and device access. In our current implementation of interval
scripts, we allow the inclusion of C++ code directly into the script.

Let us examine an example from the script of one of our experiments, the art installation called
“It” described in chapter 6. In that installation a camera-like object appears on the screen and
interacts with the user (“camera”, in this example, is not the computer graphics virtual camera,
but a CG object that looks like a photographic camera).

Chapter 5 Interval Scripts 131

Figure 5.2 shows the definition of the interval “camera moves” in our language for interval
scripts. The definition is comprised between curly brackets containing the definition of the
basic functions of the interval. To include C++ code we use the command execute followed by
the symbols “[> ” and “<] ”. For instance, when the START function is called, it executes the
C++ code between those symbols, that is, a C++ method called “Move” for the object
“camera ” with parameters “posA ” and “posB ”. These variables are defined in separated
C++ files that are linked together with the code generated by the interval script compiler.

In our model, a START function is not called if the current PNF-state of the corresponding
interval does not contain the F state. That is, an interval is started only if there is a possibility
that interval is in the future state. Similarly, a STOP function is not called unless the PNF-state
of the interval contains the now state. We also employ a mechanism by which if a STOP
function is called and the PNF-state is exactly F, then the state of the interval is set to P, but the
function is not called.

The definition of the STATE function is slightly different. In this case, the function is defined
to set the state of the interval to be equal to the PNF-state returned by the C++-code inside the
special symbols. In the case depicted in fig. 5.2, a method of the object “camera ” determines
if the computer graphics camera is moving or not. If true, the state of the interval is set to now,
referred in the C++-code by the special constant “_N_”; otherwise, the state is set to be past
OR future, symbolized by “P_F”. We similarly define the constants “P__”, “ __F”, “ PN_”,
“_NF”, and “PNF”. The last constant stands, as before, for past OR now OR future, that is,
there is no information available about the interval.

5.3.3 Putting Constraints between Intervals
Let us examine now how temporal constraints are defined. Continuing the example of fig. 5.2,
let us consider that after the camera moves, it should zoom, that is, move forward towards the
user. Also, we would like the camera movement to be accompanied by the sound of a pre-
recorded file.

“camera moves” =
{

START: execute [> camera.Move(posA,posB); <];
STOP: execute [> camera.Stop(); <];
STATE: set-state pnf-expression

[> (camera.isMoving() ? _N_ : P_F) <];
}.

Figure 5.2 Interval describing the movement of the “camera” character.

Chapter 5 Interval Scripts 132

Figure 5.3 shows the script corresponding to the situation. It contains three intervals (whose
definitions, using C++ inline code, are omitted for clarity). The interval declarations are
followed by two statements establishing temporal constraints between intervals. In the first, it is
declared the “camera moves” should meet with the interval “camera zooms”. Notice the
syntax better-if which was chosen to imply that this is a constraint that will be tried to be
enforced but that is not guaranteed to occur. Figure 5.4 shows the desired relation between the
two intervals.

The last line of the script in fig. 5.3 establishes a constraint between the intervals “camera
moving sound” and “camera moves”. They should always start together and “camera moving
sound” can end before or at the same time as “camera moves”. Figure 5.4 renders the two
possible occurrences of “camera moving sound” in order to respect the constraint start OR
equal.

“camera moves” ={ . . . }.

“camera zooms” ={ . . . }.

“camera moving sound” = { . . . }.

better-if “camera moves” meet “camera zooms”.

better-if “camera moving sound” start OR equal “camera moves”.

Figure 5.3 Script with temporal constraints.

start

equal

meet

OR

camera moves

camera zooms

camera moving sound

Figure 5.4 Diagram of temporal constraints in the script of fig. 5.3.

Chapter 5 Interval Scripts 133

5.3.4 Defining on Previous Intervals
Although the ability to include references to external code is very important, a key feature that
we want to introduce with interval scripts is the possibility of defining a new action or state
solely based on other intervals. With this we can create hierarchies, abstract concepts, and
develop complex, high-level scripts.

Continuing with our example, we want to define the interaction between the user and the
camera-like object as follows. When the user makes a pose (as detected by a computer vision
system) and the camera has finished moving and zooming, the camera can “click” and “take” a
picture. Figure 5.5 shows the script corresponding to this interaction.

Initially the interval “user is posing” is defined as before, by a reference to C++ code that
communicates with the vision system. Then we define the interval “ready to click” that has
only a STATE function. The state of the interval is determined by checking the state of two
previously defined intervals: if “camera zooms” is in the past state, and “user is posing” is
happening, than the state is set to now, otherwise it is the default, that is, undetermined (PNF).

In our model we assume that the state of the intervals is evaluated following the order of their
definition. In the case of nested intervals, the state of the contained intervals is determined
before the state of the container. By doing that, we assure that the PNF-state of all intervals
refer to the same instant of time.

“camera moves” ={ . . . }.

“camera zooms” ={ . . . }.

“camera moving sound” = { . . . }.

better-if “camera moves” meet “camera zooms”.

better-if “camera moving sound” start OR equal “camera moves”.

“user is posing” =

{ STATE: set-state pnf-expression
[> (user.isMoving() ? _N_ : P_F) <];

}.

“ready to click” =
{ STATE: if “camera zooms” is past

AND “user is posing” is now
set-state now

endif.
}.

“camera clicks” = { . . . }.

better-if “ready to click” start OR equal OR i-start “camera clicks”.

Figure 5.5 Scripting based on previously defined intervals.

Chapter 5 Interval Scripts 134

To accomplish the clicking of the camera and the “taking of the picture”, the interval “camera
clicks” is defined, again through invocation of C++ code. Finally, we want that whenever
“ready to click” starts, the camera takes the picture. This is established by the constraint start
OR equal OR i-start that forces the two intervals to start together. That is, when the interval
“ready to click” assumes the state now (by examining the state of its two defining intervals),
the propagation of temporal constraints will request that “camera clicks” is also running. In
response to that the run-time engine calls the START function of “camera clicks” as many
cycles as needed until the state of the interval also becomes now. This process is described in
detail in the next section.

A typical occurrence (the case where the actual relation is start) is depicted in the diagram of
fig. 5.6. Notice that “ready to click” is now in the intersection between “user is posing” and
the time after “camera zooms” is finished. Also, the figure shows one of the possible
occurrences of “camera clicks”, when the interval starts “ready to click”, that is, starts
together but finishes first.

5.3.5 Mutually Exclusive Actions
We want to improve the scene described above by not allowing the taking of pictures if the user
is moving. This is the classical case of mutually exclusive intervals mentioned above.
Moreover, in our vision system the detection of movement is independent of detection of
posing. Using interval scripts the expression of such constraints is easily accomplished by
adding the following lines to the script of fig. 5.5:

“user is moving” = { . . . }.

better-if “camera clicks” before OR i-before “user is moving”.

camera clicks

ready to click

camera zooms
camera moves

camera moving sound

user is posing

“camera zooms” is past

start OR equal OR i-start

Figure 5.6 A possible occurrence of the script described in fig. 5.5.

Chapter 5 Interval Scripts 135

The interval “user is moving” communicates with the vision system and assumes the state now
if the user is perceived as moving around. Then, a constraint is established determining that
moving and clicking never happen at the same time.

Figure 5.7 shows three possible occurrences of the interval “user is moving”. The first two,
before or after “camera clicks”, are compatible with “camera clicks”. The third occurrence
overlaps with “camera clicks” and is not compatible. In this last case, since by definition “user
is moving” is only a STATE function and can not be stopped, the run-time system would never
call the START function of “camera clicks”, preventing the undesirable situation from
happening. To understand better how this is accomplished, it is necessary to examine how the
run-time engine actually works.

5.4 The Interval Script Engine
As we see from above, an interval script associates actions and states of an interactive
environment to a collection of nodes in an IA-network with temporal constraints between them.
In this section we explain how the state of the intervals is determined during run-time and the
process that triggers the call of START and STOP functions. At each time step the goal is to
select which of those functions to call in order to make the state of the world, as represented by
the PNF-state intervals, consistent with the temporal constraints of the PNF-network associated
to the script.

The basis of this process is the PNF propagation method described in chapter 3. We start by
observing that, given an interval script, we have two different kinds of information: how to
compute the state, and how to start, and stop each interval as represented in the basic functions;
and the temporal constraints between them. The collection of temporal constraints constitutes
an interval algebra network. Item (a) of fig. 5.8 displays the interval algebra network associated
with the script of fig. 5.3.

camera clicks

ready to click

camera zooms
camera moves

camera moving sound user is posing

user is moving (1)
user is moving (2)

before OR i-before

user is moving (3)

Figure 5.7 Possible occurrences of "user is moving".

Chapter 5 Interval Scripts 136

As in the case of action recognition, it is possible to remove most of the superfluous temporal
relations by applying Allen’s path consistency algorithm (described in chapter 3). As noted
before, computing the minimal network that contains only satisfiable constraints is NP-hard (as
shown in [177]). In all of our experiments we have always used only Allen’s path consistency
algorithm and have found no case where a stronger algorithm seemed to be needed. Item (b) of
fig. 5.8 shows the result of the application of the path consistency algorithm on the IA-network
corresponding to the script of fig. 5.3.

5.4.1 Using Prediction to Avoid Conflicts
We have defined a framework where wish and reality are de-coupled and, at the same time,
temporal constraints are imposed between the different actions and sensing states of the IA-
network corresponding to an interaction script. The problem is how to decide when to call the
START or the STOP function of each interval, especially in the situation where the current
state of the system is inconsistent.

Let us consider a very simple case of a network of two intervals, A and B, temporarily
constrained to be equal. Figure 5.9 shows a situation where the PNF-state of interval A is PF
and B is N, and therefore their values do not satisfy the constraint. In that situation the system
should take two actions: try to start interval A (so it PNF-state becomes N) or to stop interval B
(becoming P). Figure 5.9 shows the four options for the actions to be taken, considering that
the no action can be done, one of the two, or both. In particular, notice that if the system decide
both to start A and to stop B, a new inconsistent state is reached.

The goal of this example is to show that taking action involves looking for actions whose
outcome lead to the global consistency of the network. If we look only locally in each node for
a manner to make the network consistent, it might happen that both nodes A and B change their
state but keep the network inconsistent (as it is the case when both A is started and B is
stopped). The correct way to choose which intervals to start or to stop is to look for global
solutions for the IA-network corresponding to the achievable PNF-states.

camera moves

camera zooms

camera moving sound

start OR
equal

meet

before OR
meet

a) Original network. b) After Allen’s path consistency.

camera moves

camera zooms

camera moving sound

start OR
equal

meet

Figure 5.8 Interval algebra network associated with the script of fig. 5.3 before and after path consistency.

Chapter 5 Interval Scripts 137

To quickly determine possible globally consistent solutions, we propose starting the process by
PNF propagating the current state of the network, that is, time-expanding and computing the
minimal domain (or an approximation). By doing so we obtain a compact representation of the
space of consistent solutions for the next time step. Figure 5.10 displays this process in the
example of fig. 5.9. As displayed in the figure, the result of the PNF propagation is that both
intervals can be in the PN state in the next time step. In fact, the time expansion of PF gives
PNF, while for interval B the result of the time expansion is PN. As defined in chapter 3, the

A B
equal

PF N

A B
equal

F N

A B
equal

N N

A B
equal

PF P

A B
equal

N P

start A stop B start A

stop B

Figure 5.9 Example of an inconsistent state and the effect of possible actions.

A B
equal

PF N

A B
equal

N N

A B
equal

P P

start A stop B

A B
equal

PN PN

current state

PNF-propagation

possible solutions

action to take

Figure 5.10 Finding a globally consistent state for the situation depicted in fig. 5.9

Chapter 5 Interval Scripts 138

second step of PNF propagation involves taking the PNF restriction, which rules out future as a
possible state for interval A.

Now it becomes easier to search for globally consistent solutions. In this case, the globally
consistent solutions are (N, N) and (P,P). In the first case, the appropriate action to be taken is
to start A, while in the second is to stop B. The decision of which line of action to take is
arbitrary.

5.4.2 Run-Time Engine Architecture
The method described above has the problem that it is necessary to search for solutions in the
PNF-network, what can be exponential in the number of intervals. To avoid this, we have
designed a run-time engine for interval scripts that has heuristics that decide which action to
take without resorting to the full search.

There are three reasons for doing so. First, we have found in our experiments that those
heuristics handled quite well the decision of which actions to take. Second, many times the
inconsistency in the original global state is caused by faulty sensing and therefore the delay
caused by performing a full search is not justifiable. In fact, in the latter case, it is often more
useful if the system just proceeds as fast as it can to the next step, causing the minimal amount
of change that can be irreversible. Third, as mentioned above, it may take time for intervals do
actually start and stop; while waiting for this to happen, the run-time system might detect states
with no solutions. For instance, if in the example above the decision is to start the interval A,
some cycles may be necessary until the interval actually starts, and while that does not happen
the constraint is violated (and, again, the search is useless). Notice that, by design, an interval
script describes the situations that should happen but not the intermediate, unexpected states.
The handling of these is left for the run-time engine.

I

Determination of
the Current State

PNF
Propagation Thinning

Taking
Action

current state StSt-1

Pt+1 Dt+1

call STATE functions return of STATE functions call START,STOP functions

II III IV

St St St

St+1

Figure 5.11 A cycle of the interval script engine.

Chapter 5 Interval Scripts 139

Figure 5.11 shows a diagram of one cycle of the run-time engine. The main component is the
current state St at time t that contains the current state of all intervals in the associated PNF-
network. It is important to notice that, unlike PNF propagation, the current state is not updated
by time expansion or PNF restriction at each cycle.

Each cycle t is composed of the following four stages:

I. Determination of the Current State: all the STATE functions are called and the engine
waits until all the results are reported back and stored in the component domain St . For
this computation, the STATE function is allowed to use the previous state of the
intervals, available in the previous component domain St −1 , and the current states of all
the intervals that had already been computed. After this stage, the current state remains
unchanged for the rest of the cycle.

II. PNF Propagation: in this stage the engine tries to determine what changes can be made
to satisfy the constraints in the next cycle t + 1, noted as Pt +1 . Unlike in the original
time expansion, we consider for expansion only those intervals that can be started or
stopped, since no action can be taken to alter the state otherwise,

Τ
Τ

m i
t m i

t

i
t

S
S i

S
2 7

2 7
=
%
&K
'K

if the interval has STARTor STOP functions

otherwise

Using this definition, this stage then PNF-propagates the current state,

P R St
m

t+ =1 Τ 2 74 9

If the computation of P R St
m

t+ =1 Τ 2 74 9 detects a conflict, Pt + = ∅1 , the engine tries to

enlarge the space of possibilities by using simple PNF propagation, that is, expanding
all states regardless of the existence of START or STOP functions,

P R St
m

t+ =1 Τ 2 74 9
Although this normally handles most problems, there are situations where sensors report
incorrectly and produce a state with no solutions. In those extreme cases, the engine
simply time-expands the current state without computing the restriction,

P St
m

t+ =1 Τ 2 7
III. Thinning: the result of stage II is normally too big and undetermined, although it

contains all the globally consistent solutions. To have a more specific forecast of the
next stage without doing search, we apply an heuristic where the current state of an
interval should remain the same unless it contradicts the result of the PNF-propagation,
but as long as the final result is still feasible. This is accomplished by taking a special

Chapter 5 Interval Scripts 140

intersection operation between the forecast of the next state Pt +1 and the current state
St . For each node the special intersection is computed by

S P
S P S P

P
i
t

i
t i

t
i
t

i
t

i
t

i
t

�
� �+

+ +

+
=

≠ ∅%
&K
'K

1
1 1

1

 if

otherwise

The result is then passed through PNF restriction to assure that there are solutions and
to remove impossible states,

D R S Pt t t+ +=1 1
�3 8

If the computation of D R S Pt t t+ +=1 1
�3 8 yields a state with no solutions we simply

ignore the intersection

D Pt t+ +=1 1

In practice this normally prevents any action to be taken since the states of Pt +1 tend to
be not as simple as required to call start and stop functions.

IV. Taking Action: The result of thinning, Dt +1, is compared to the current state St , and
START and STOP functions are called if a need to change the state of an interval is
detected. This is done according to the following table:

action

F N, PN START
N P STOP
F P STOP

x Si
t⊆ Di

t+1

For example, if the current state of interval i can be future, F Si
t⊆ , and the desired state

is now, N Di
t= +1, then the interval should start and the START function of the interval

is called.

In the case that we want to perform the search for globally consistent solutions, stage III
(thinning) would be substituted by the search of all solutions and the arbitrary choice for one
among them (or simply, by considering the first solution found). As detailed in chapter 3, we
can use arc-consistency to speed up considerably such search. In practice, the run-time engine
with the heuristics described above has been able to run all our applications without halting,
deadlocking, or flip-flopping.

Let us examine the behavior of the run-time engine in the example of fig. 5.9 where intervals A
and B are constrained by an equal relation. Let us assume that t = 0 and the current state
determined at stage I is S PF N0 = ,1 6 . The result of PNF propagation is P PN PN1 = ,1 6 . The

first attempt of thinning the result of PNF propagation yields S P P N0 1
� = ,1 6 , which is not

Chapter 5 Interval Scripts 141

consistent, D R S P R P N1 0 1= = = ∅�3 8 1 6, . By the recovery heuristics, we define the desired

state to be D PN PN1 = ,1 6 . According to the stage IV of the run-time engine, only the start
function of A would be called.

5.4.3 An Example of a Basic Run Without Conflicts
Figure 5.12 shows an example of run of the interval script of fig. 5.3. In the first instant of the
run t=0, the state of all intervals is F. Although the result of PNF propagation allows the first
two intervals to be either in the now or in the future states (NF), the result of the thinning
process, D1 keeps the state as it is and no action is taken.

In the next instant of time, t=1, the interval “camera moves” has started, as detected by its
STATE function. We ignore here the cause of the start of “camera moves”. When PNF
propagation is run, the fact that “camera moves” and “camera moving sound” should start
together constrains the desired PNF-state of the latter to be N, and provokes a call for its
START function. In the next instant, t=2, we assume that “camera moving sound” is already
running and therefore no further action is taken. The system remains in this state up to t=9.

When t=10, “camera moves” finishes and assumes the P state. Because of the constraints,
“camera moving sound” should stop and “camera zooms” should start. Notice that the result
of PNF propagation, P11, shows exactly that configuration and the appropriate actions are
taken. In t=11 the desired state is reached for both intervals; if it was not the case, we would

camera moving sound

start
equal

meet

OR

camera moves

camera zooms

t= 0 1 2 10 11 21

START
sound

STOP
sound

START
zoom

.

S 0 P 1 D 1 S 1 P 2 D 2 S 2 P 3 D 3 S 10 P 11 D 11 S 11 P 12 D 12 S 21 P 22 D 22

camera moves F NF F N PN N N PN N P P P P P P P P P
camera moving sound F NF F F N N N PN N N P P P P P P P P
camera zooms F F F F F F F NF F F N N N PN N P P P

t=11 t=21
interval

t=0 t=1 t=2 t=10

Figure 5.12 Example of a run of the interval script of fig. 5.3.

Chapter 5 Interval Scripts 142

have a state similar to t=10, and the START and STOP functions would be called again.
Finally, “camera zooms” ends at t=21 and all intervals assume the past state.

5.4.4 A Run With Conflicts
An example of a conflict situation is show in fig. 5.13, for the interval script depicted in
fig. 5.5. Here, we consider the case where the intervals “camera clicks” and “user is moving”
are defined as mutually exclusive and a conflict situation arises where both are expected to
happen.

At t=31, a conflict is detected by the PNF propagation stage since there is no way to satisfy the
requirements that “camera clicks” should start together with “ready to click” and that “camera
clicks” can not happen while “user is moving” is occurring. In this situation the first level of
recovery succeeds and finds a set of states that is compatible with the constraints as shown in
fig. 5.13. However, P32 is quite non-specific and the thinning process basically keeps the
current situation as it is without taking any action. Later, when t=37, “user is moving” finishes,
and since “ready to click” is still happening, “camera clicks” is started.

As we see, the run-time engine of interval scripts was designed to avoid halts by searching for
feasible states with the least amount of change. This strategy is not guaranteed to succeed
always but has proved to be robust enough to run quite complex structures. We are currently
working on better methods to overcome contradictions such as keeping a history of previous
states for backtracking purposes (such as those employed in chapter 4) and devising
mechanisms to detect and isolate the source of conflicts.

user is moving

start
equal

before OR after

OR
ready to click

camera clicks

t=30 31 37 38

START
click

. . . .

OR
i-start

S 30 P 31 D 32 S 31 P 32 P 32 D 32 S 37 P 38 D 38 S 38 P 39 D 39

ready to click F F F N N N N N N N N N N
camera clicks F F F F F F F N N N PN N
user is moving N N N N N N N P P P P P P

t=38
interval

t=30 t=31 t=37

∅

Figure 5.13 Example of a run with conflict.

Chapter 5 Interval Scripts 143

5.4.5 Compiling Interval Scripts
The design of the mechanisms of the run-time engine is independent of the actual
implementation of the interval script structure. However, we think it is important to provide
some clarification on specific implementation issues so future implementations can benefit
from some of our ideas.

In our implementation the interval script file is translated into a C++ file where every START,
STOP, and STATE function is encapsulated into a C++ function call. Those calls become
methods in the definition of each interval. After compilation of the C++ code, the run-time
engine can call any of the functions simply by calling the interval’s method.

In parallel, the translator program builds an IA-network with all the declared intervals. Before
generating the C++ code the translator program runs Allen’s path consistency algorithm. The
tightened network is then projected into a PNF-network as described in chapter 3. The resulting
structure is then codified as a C++ function that, when executed, rebuilds the PNF-network for
real-time use. Notice that it is not necessary to run Allen’s algorithm before an execution of the
script but only at compilation time.

Finally, the interval script language provides mechanisms by which a START or a STOP
function can set the state of an interval for the next cycle t + 1. This was included to facilitate
some constructions. In the diagram of fig. 5.11, this is show as a dashed arrow bringing results
from the run of the START and STOP functions to St +1 .

5.5 Handling More Complex Structures
After examining the internal structure of the run-time engine for interval scripts we want to go
back to the issue of expressiveness. In this section we introduce, through two examples, more
advanced constructions that can be used to handle more complex scripting structures. Some of
those constructions are not intrinsically part of the basic concept of interval scripts but were
included in the definition of the interval script language because they were often needed in
practice.

5.5.1 Nested Intervals
The first example refers to a segment of a scene to be incorporated to the installation “It” in
which if the user makes a waving gesture and the computer character reacts by pretending to
throw computer graphics rocks towards him/her. Before generating the animation, the computer
waits about 3 seconds to create some suspense about its reaction.

Figure 5.14 shows the interval script of this scene, while fig. 5.15 displays a diagram of the
temporal structure. It basically consists of one interval corresponding to the reaction of the
system called “annoy user” and another that detects the “waving gesture”.

Chapter 5 Interval Scripts 144

“annoy user” = (1)

{ (2)

“wait” = timer (2,4). (3)

“throw CG rocks at user” = { …. }. (4)

better-if “wait” meet “throw CG rocks at user”. (5)

DURATION (5,7). (6)
 START: start “wait”. (7)

STOP: stop “wait” ; stop “throw CG rocks at user” . (8)
STATE: if “wait” is now OR “throw CG rocks at user” is now (9)

set-state now (10)
else if “wait” is past AND “throw CG rocks at user” is past (11)

set-state past (12)
else if “wait” is future AND “throw CG rocks at user” is future (13)

set-state future (14)
endif endif endif. (15)

FORGET: forget “wait” ; forget “throw CG rocks at user”. (16)

}. (17)

(18)

“waving gesture” = { …. }. (19)

(20)

when “waving gesture” is now try-to start “annoy user”. (21)

Figure 5.14 A script including nested intervals, a timer, functions defined on intervals, and an example of a
sequence.

waving gesture

annoy user

wait

throw CG rocks at user
meet

only-during

Figure 5.15 Diagram of the temporal structure of
the script in fig. 5.14.

Chapter 5 Interval Scripts 145

We have seen before that an interval can refer to other intervals for its definition. It is possible
to go beyond that and define intervals inside other intervals as it is the case of “wait” and
“throw CG rocks at user” (lines 3 and 4 of fig. 5.14). There is no limit in the number of levels
of these nested intervals. The effect of doing so is that the nested intervals become restricted to
occur only when the major interval is happening, that is, in this example they are constrained to
happen in the context of “annoy user”. In practice, this is accomplished by the computer
automatically setting a constraint only-during (equivalent to start OR equal OR i-start OR
during) between each nested interval and the container interval.

Notice that unlike most programming languages, the nested intervals can be referred to outside
the scope of the container interval; they are just prohibited to occur during run-time outside of
it. Moreover, the engine computes the current state of those intervals before the state of the
container interval; in the case that their state is used in the definition of the STATE function of
the container (as it is the case of 5.14, lines, 9-15), the engine employs the current state of the
nested intervals in the computation. This avoids the waste of propagation cycles that would be
needed otherwise.

We are also considering using the nested structure as a way to recover from errors and
contradictions. As mentioned before, it is hard to determine the source of contradiction in
constraint satisfaction. Our plan is to run PNF restriction separately in each group of nested
intervals, from the most inside intervals up to the higher level. If a contradiction is detected, all
the intervals in the group are assigned PNF and restriction is run again. In this way we can
explore a structure that is naturally provided by the designer to exclude potential causes of
conflict.

5.5.2 Timers and Duration
Controlling duration is often important when scripting. We incorporate two simple mechanisms
to facilitate the handling of the length of the intervals. First, it is possible to declare an interval
to be a timer; that is the case of “wait” (line 3 of fig. 5.14). Inside parenthesis the programmer
specifies the minimum and maximum duration of the timer. When a timer is started, the
corresponding interval is set to the N state and a duration value is randomly selected between
the minimum and maximum value. When the time expires the interval assumes the P state.

A similar construction can be used to specify the duration of an interval. By using the
declaration DURATION in fig. 5.14, line 6, the interval “annoy user” is defined to last
between 5 and 7 seconds. That is, after the time allotted to run expires, the interval is set to P,
and due to constraint propagation, all the nested intervals will start to call their STOP functions
in order to satisfy the implicit only-during constraint (as explained above). Notice that the
duration of the interval is not used in any way in the process of propagating temporal
constraints. For that, it would be necessary to base the run-time engine in a more powerful —
and computationally expensive — temporal reasoning than PNF propagation.

5.5.3 START and STOP Functions Based on Intervals
As much as STATE functions can be based on previously defined intervals, the interval script
language also allows START and STOP functions to be purely described in terms of other

Chapter 5 Interval Scripts 146

intervals. The interval “annoy user” is a typical case. Its START function simply calls for the
execution of the interval “wait” (see line 7 of fig. 5.14); similarly the STOP function asks for
the two nested intervals to stop (line 8).

In our initial designs we have distinguished between the kind of commands that could be used
in STATE functions and in START and STOP functions. Currently there is no such distinction
but commonly a STATE function includes a command set-state that actually sets the current
state of the interval. We commonly found it necessary to set the state of an interval directly by
the START functions because many times there is no easy way to create a STATE function that
actually senses the state of the world.

5.5.4 WHEN Statements
The last lines of fig. 5.14 define the “waving gesture” interval (based on C++ code not shown
here) and establish its connection with the interval “annoy user”. According to the scene,
“annoy user” should be started whenever “waving gesture” happens. The statement shown in
line 21 accomplishes this.

Why not simply put a temporal constraint (start OR equal OR i-start) between the two
intervals? The problem is that in many cases the condition is a Boolean expression of states of
intervals that can not be translated into a simple temporal constraint. Also, we wanted a simple
mechanism to describe a series of start and stop actions. Our solution is to make the translator
automatically generate a new interval with a STATE function equivalent to the condition of the
when command.

If the when statement triggers the start of an interval, the system sets up the temporal constraint
start OR equal OR i-start between the interval corresponding to the condition of the when
statement and the interval to be started. If the statement asks for the stop of an interval, the
imposed constraint is meet OR before. Notice that when statements may only command the
start and the stop of intervals; in particular, execute commands can not appear inside when
statements (refer to the complete syntax of the interval script language in appendix D).

Going back to the example of fig. 5.5 , we could have avoided the definition of “ready to
click” entirely and simply written

when “camera zooms” is past AND “user is posing” is now

try-to start “camera clicks”.

If declared inside an interval, a when statement is affected by only-during constraints, that is, its
condition is not evaluated if the container interval is either in F or P state. That makes the
control of the context of when statements extremely easy, unlike in many event-loop-based
languages.

5.5.5 Sequences
In fig. 5.14 the interval “annoy user” is defined as composed of two consecutive, nested
intervals. Since sequences of two or more intervals are fairly common, we defined a special

Chapter 5 Interval Scripts 147

kind of interval to automatically create and manage sequences. The whole definition of “annoy
user” (lines 5 to 16 of fig. 5.14) can be created simply by writing:

“annoy user” = sequence “wait”, “throw CG rocks at user”.

This definition automatically creates a new interval containing the members of the sequence,
defines the corresponding STATE, START, and STOP functions, and establishes the only-
during constraints. To assure the sequential run of the intervals composing the sequence, the
system automatically sets up a constraint meet between each pair of consecutive intervals.

5.5.6 Forgetting Intervals
Let us now examine another example that is a continuation of the script of fig. 5.14. The
corresponding interval script is shown in fig. 5.16 and its temporal diagram is displayed in
fig. 5.17. This script deals primarily with the recognition of an action of the human user:
picking up a block from the floor. In chapter 4 we have already discussed the typical problems
and difficulties in detecting human action. This example is, in fact, very similar to those
examined in chapter 4. However, it is interesting to see how the interval script run-time engine
handles such situations.

The main cause of complexity in this script is the limitations of the vision system used in the
actual system of the installation “It”. Described in detail in chapter 7, the vision system works
solely based on rough silhouettes of the users and of the wood blocks used in the scenario. We
will discuss this in further detail soon. But before going ahead, it is important to examine first
the concept of forgetting intervals that occurs in this script.

Until now, all the examined intervals were supposed to happen only once, going from the F
state, to N, and finally becoming P. Although this is the correct model of what happens in the
world, conceptually it is simpler for the designers to consider that an action or sensory state can
happen again. Figure 5.16 shows two of such intervals, “block is seen” and “block is not seen”
(lines 1 to 6).

The interval “block is seen” corresponds to the situation where the silhouette of a small object
is detected isolated from the silhouette of a person. The definition of the interval uses a C++
call to the vision system as shown in line 2. There is no equivalent function for “block is not
seen” whose definition in fig. 5.16 is empty. However, through the mutually exclusive
constraint of line 3, we assure that the end of “block is seen” triggers the beginning of “block
is not seen” and vice-versa (see also fig. 5.17).

The natural meaning of a statement like “block is seen” suggests that this is a state that
becomes true and false as time goes by. Strictly speaking, there is no semantic provision in the
PNF structure to support this: in formal terms, a new occurrence of an interval is a new
interval. However, due to the simplicity afforded by having just one interval to name a
sequence of states, we implemented a mechanism by which an interval can be forgotten, that is,
can go from the past state back to the future state. Notice that this mechanism is intrinsically
different from the definition of multiple sensor instances that we used in chapter 4.

Chapter 5 Interval Scripts 148

Forgetting mechanisms are defined by the FORGET function, which is syntactically similar to
the basic functions STATE, START, and STOP. In our language there is no difference in the
kind of commands allowed in the definition of any of those functions. Also, each interval has a
default FORGET function that simply moves the current state of the interval to F. If a
FORGET function is defined in the interval script, the default function is ignored.

Lines 5 and 6 show a simple method to forget an interval that is simply using the FORGET
functions to call the corresponding function whenever the interval goes to P. According to
lines 5 and 6, if either “block is seen” or “block is not seen” become P, it immediately returns
to F unless conflict is found (that is handled like the conflict of fig. 5.13). As we see in

“block is seen” = (1)
{ STATE: set-state pnf-expression [>(block.isSeen()?_N_:P_F) <]; }. (2)

“block is not seen” = { }. (3)

better-if “block is seen” meet OR i-meet “block is not seen”. (4)

when “block is seen” is past try-to forget “block is seen”. (5)

when “block is not seen” is past try-to forget “block is not seen”. (6)

(7)

“user same position as block” = (8)

{ STATE: set-state pnf-expression (9)

 [> (block.isSameAsUser() ? _N_ : P_F) <]; (10)

better-if “block is seen” before OR meet OR overlap “user same position as block”. (11)

}. (12)

“playing with blocks” = (13)

{ (14)

“user picks up block” = { }. (15)

“user has block” = (16)

{ STATE: if “user same position as block” is past (17)
AND “block is not seen” is now (18)

set-state now (19)
. endif }. (20)

better-if “user picks up block” only-during “user same position as block”. (21)

better-if “user picks up block” meet “user has block”. (22)

(23)

STATE: if “user has block” is past set-state past. (24)

}. (25)

better-if “waving gesture” only-during “user has block”. (26)

Figure 5.16 Example of a script with recycling intervals and user action recognition.

Chapter 5 Interval Scripts 149

fig. 5.17, the interval “block is seen” happens twice, the second time after being forgotten
once.

A more elegant solution for the problem would be to generate, during run time, new instances
of the interval to be forgotten as needed. This would require the running of Allen’s path
consistency algorithm after each new instance was incorporated to the main network what
would slow down the engine. Also, the size of the network would grow as time went by. In
practice, given that the architecture of the run-time engine is robust to conflicts, we have not
found the need to implement this version of forgetting, and have been successfully using the
simple method of moving an interval from P to F.

5.5.7 User Action Recognition
Let us now examine how interval scripts can facilitate the recognition of user actions. Although
these issues are addressed in detail in chapter 4, we present here a simple example that shows
how the interval script run-time engine deals with the same situation of recognizing what a user
is doing given incomplete information from the sensors. The task in question is to determine
that a user has picked up a block from the floor given just two bits of information: whether the
block is currently seen by the vision system, which is possible only if the block is far from the
user; and whether the user is in the same position that the block used to occupy. In particular,
after the user has picked up the block, there is no way to determine, from the human silhouette,
that the user actually has the block.

These constraints imply that, the pick-up action is detected only when the following sequence
of events happens: (i) the block is seen isolated; (ii) the user gets close to the block; (iii) the
block is not seen and the user has left the area where the block used to be; (iv) the user is
supposed to be carrying the block; (v) since the only way for the user to have the block is that
he/she has picked it up, the action of picking up is recognized to have happened in the past. The
reader may be surprised by how indirect and prone to failures such a method is. However, far

block is seen
block is seen

(recycled)

block is not seen

user same position as block

user has block

user picks up block

playing with blocks

meet OR i-meet
meet OR i-meet

before OR meet
OR overlap

meet
only-during

only-during

only-during

Figure 5.17 Diagram of the temporal structure of the script in fig. 5.16.

Chapter 5 Interval Scripts 150

from being an exception, this situation exemplifies what typically happens in computer vision
systems.

In the script of fig. 5.16 we initially define in lines 8-11 the interval “user same position as
block”. Following that, an interval called “playing with blocks” is defined, containing two
intervals: “user picks up block” which has no direct method to identify its occurrence; and
“user has block” which has a STATE function that checks if the condition described above in
(iii) is occurring. To determine the state of the interval “user picks up block” two temporal
constraints, lines 21 and 22, impose that picking up the block occurs while the user is in the
same position as the block; and that the action is finished when it is determined that the user
has the block.

Notice that both constraints are “natural”, in the sense that they arise as part of the structure of
the action itself. Although the detection occurs in a very indirect way, the definition of the
intervals themselves does not need to involve any complicated reasoning. This is a major
feature of non-procedural, constraint propagation-based systems such as the one employed in
interval scripts.

5.5.8 Contextualizing Action
Finishing the script of fig. 5.16, we show how simple it is to enforce that an action or sensory
state is only detected in a given context. In the scene, the waving gesture (referred in the
previous script) can only occur if the user has the block in his/her hands. This is guaranteed
simply by establishing the only-during constraint between the intervals as show in line 26.

5.6 Future directions
Although the interval script language has been fully implemented and intensively tested, there
is still work to be done in many different directions. First, we would like to get the system to a
state where it could be released to other researchers and designers interested in using interval
scripts to build interactive systems. We expect to reach this level soon. In this context it
becomes possible to evaluate the difficulty in learning the language and which features
different types of designers would like to have added to the language.

Designer’s Interface to Interval Scripts

We also want to investigate what is the ideal interface for the paradigm: text-based or
graphical. In the case of a graphical interface, a possible approach is to allow the user to
construct temporal diagrams similar to fig. 5.16. However, since we allow disjunction of
temporal constraints, there are always multiple possibilities for the graphical arrangement of
the intervals and therefore the visualization might prove to create more confusion than to
provide help. Nevertheless, we have found it is always useful to draw the diagrams while
thinking about the temporal constraints.

Chapter 5 Interval Scritpts 151

Interval Scripts and Plans

We would like to integrate into the interval script language mechanisms that represent actions
in forms that the machine can reason about. Currently, the run-time engine can only control the
execution of scripts of action plans but has no mechanisms to create them. In fact, the use of the
PNF formalism does not allow the system to perform almost any kind of planning or look
ahead.

Comparing, for instance, with the Hap system developed by Loyall and Bates [87], the interval
script paradigm can not predict the execution of actions in a situation, for instance, in which to
achieve a goal in the future, a determined sub-action is started in the current instant of time. In
other words, although interval scripts can run and control interactive plans with very
complicated temporal structure (certainly more complex than most planners can handle), the
formalism can not construct plans from goals. This limitation is partially due to the ideas
employed to reduce the complexity of temporal constraint propagation in Allen’s algebra (as
described in chapter 3) which compacts all the interval occurrences inside three intervals, past,
now, and future.

We have considered different mechanisms to overcome this limitation. In chapter 3 we show
that the bookkeeping of multiple threads of sensor values can be handled because most of the
threads are inconsistent after contradictory sensor values occur. In that chapter, this was done in
the context of keeping multiple possibilities for the events in the past. Similarly, we could use
multiple threads of sensor values to search the future for an activation pattern that achieve a
determined goal expressed as a combination of PNF-states for the different intervals of a script.

To accomplish this, it is necessary to incorporate mechanisms that forecast the likely duration
of actions and the likely delays in starting and stopping them, so the step-by-step PNF-style
exploration of the future becomes feasible. Traditional plan mechanisms [87, 116] avoid
dealing with these issues by assuming strictly sequential sub-actions and states, and therefore
they can search the future by ignoring the actual duration of the actions. In fact, those systems
examine the state of the world exactly before or after the performance of an action, ignoring the
possibility of other state changes while they are occurring.

The research question is how simplified a scheme of estimating the duration of actions in
interval scripts must be so that the estimation is at the same time realistic and computationally
feasible. Although it is likely that many of the threads representing sequences of future events
result in inconsistent states, there is no reason to expect the same degree of pruning in the
prediction of the future that we observed in the action recognition methods described in
chapter 4. Therefore, to allow a reasonable depth in the search, it would be necessary to assume
simplifying conditions for the sensors and actuators. The nature and actual pruning power of
such conditions is clearly an open and difficult research topic.

Using Interval Scripts to Describe Scenes in CG Movies

Finally, we want to apply the interval script paradigm to computer graphics animation
problems, especially the coordination of computer graphics scenes with multiple, behavior-
based characters. We see here a major chance to improve the current techniques used in the

Chapter 5 Interval Scritpts 152

movie industry and to allow the creation of scenes with vivid, interesting crowds that are able
to follow directorial directions at the scene level by modifying or suppressing their behaviors
when requested.

5.7 Summary
In this chapter we propose the interval script paradigm for scripting interaction that is based on
declarative programming of temporal constraints. Through the examples written in the interval
script language we have shown that the paradigm is expressive and significantly facilitates the
management of context, story, and history in an interactive environment. We also argue that the
use of PNF propagation as the basic propagation technique can make feasible real-time
temporal constraint satisfaction in a strong temporal algebra with mutually exclusive
constraints.

From the experience acquired in the use of the language for the implementation of three
different projects, we believe that scripting systems incorporating the interval script paradigm
can significantly ease the design and building of interactive environments. The projects are
described in full detail in chapter 7.

Chapter 6 Story-Driven Spaces 153

6. An Architecture and a New Domain for
Story-Driven Interactive Spaces

One defining characteristic of our work is an interest in interactive spaces that encompass a
narrative structure. The goal of this chapter is to address such story-driven interactive spaces
and to present a new idea concerning their control architecture —the story-character-device
architecture — and to introduce a new domain for experimentation — computer theater. In this
way, we can regard this chapter as a contribution for the science — and art — of building
interactive spaces.

But what we mean by a story-driven interactive space? In section 6.1 we discuss the more
general idea of interactive (computerized) spaces, reviewing some prototypes that have been
developed in recent years and presenting relevant technology. Instead of giving an exhaustive
review, the intention is to identify the critical aspects of a physical environment that condition
the development of interactive spaces. We then examine in more detail interactive spaces that
immerse their users in a story and the challenges in their design and implementation.

From our experience in developing story-driven interactive systems for entertainment ("The
KidsRoom" [18], and the three projects described in the next chapter, "SingSong", "It / I" , and
"It") we have concluded that stories require the interactive space to have a much more complex
control structure than those of traditional, exploratory, user-driven interactive systems.
Section 6.2 discusses control architectures for systems with multiple characters and narrative
structure. There, we propose a three-level architecture, the story-character-device architecture,
as the underlying structure for the control of story-based interactive systems. The main novelty
in our proposal is the differentiation between the control of the characters and the control of the
story. In particular, we argue that story-based interactive experiences need centralized story
control and the simplest way to achieve it is to have a specific module to manage the story.

We then identify a new domain for experimentation with interactive spaces: the theatrical stage.
In section 6.3 we examine this domain in the large context of the use of computers in theater.
Although there have been some experiences coupling theater and computers in the past, we
believe we were the first to examine systematically experiences aiming to integrate computers
into theater in [128]. This investigation resulted in the proposal of the term computer theater to

Chapter 6 Story-Driven Spaces 154

refer to these experiences. Computer theater is discussed in section 6.3 which also provides a
brief review of the history of computers in theater, proposes a categorization of experiences in
computer theater, and elaborates on why there have been significantly fewer experiments with
computers in theater than in other performing arts (music, dance). According to our view, the
main reason is the lack of good methods for computer representation of human action — the
ultimate element of theater.

We also see a convergence between computerized performances and traditional, user-based
interactive spaces. This is discussed in section 6.3 where we present the idea of immersive
stages, that is, interactive story-based spaces that double as stages for performances and as
narrative art installations for non-performers.

6.1 Interactive Spaces
In this thesis we restrict the use of the term interactive space to situations where human beings
interact with a computer in a physical space through digital input/output devices such as
cameras, microphones, video screens, and speakers. The classic example of interactive space is
the control room of spaceships as portrayed in science-fiction series and movies like “Star
Trek” and “2001:A Space Odyssey”. In these two cases, the computer that controls the
spaceship is omnipresent, interacting with the ship’s crew as an invisible, God-like figure that
can either access the most vital data or entertain the occupants with a game of chess.

Perhaps the most characteristic feature of an interactive space is precisely its omnipresence. It
is hard to identify the locus of agency in a physical space that speaks from different directions
and that observes from multiple cameras. In fact, there is something frightening about the idea,
especially if the interface is anthropomorphized like in “Star Trek” or “2001” . We explored
this fear as part of the theme of our computer theater play “It / I”.

We can see many different applications for systems that encompass the multiple devices and
uses of a room. For example, the concept of a house that is aware and responsive to its
inhabitants has been a constant in industry showrooms. Another application is specialized
physical spaces where critical activities take place such as control rooms of factories and
surgery rooms. More recently, the idea of spaces that immerse people in fantastic worlds and
adventures have become popular, heralded by the myth of the Holodeck in the TV series “Star
Trek”.

6.1.1 Characteristics of Interactive Spaces
Let us examine some common characteristics of interactive spaces. First, it is a physical space.
For instance, we do not consider either virtual reality or videogames as interactive spaces in our
definition. In other words, we are interested in systems that are required to assume the
existence of atoms, the physical interaction among them, and the difficulties in sensing real
matter (as opposed to checking the state of virtual entities).

We also assume the existence of a computer system controlling the interaction, discarding
human-controlled environments like a disco club (where the DJ manages the interaction
between the patrons and the dance area). Moreover, interactive spaces must be responsive, that

Chapter 6 Story-Driven Spaces 155

is, they must acknowledge the attempt of interaction by the users either by answering directly
or by producing a detectable transformation in the space.

Another aspect is that agency should be attributed not to particular objects in the space, but to
the space itself. Notice that in the case of entertainment spaces inhabited by virtual or
physically represented characters, the agency of the characters has clear locus, but the space is
still the non-localized source of the story, game, or narrative. Part of the appeal of the idea of
interactive spaces is exactly that, perhaps for the first time in history, we can see a space as
dialoguing entity. Although architecture theory sees spaces affecting people and vice-versa,
such interaction occurs in a time scale of months and years (see, for instance, Stewart Brand’s
work on how buildings “learn” with their occupants [28]). In contrast, computers and sensing
devices create spaces that are machines, that is, perceived as animated objects.

Given this context, it is important to examine the particular issues involved in the construction
of interactive spaces. The most relevant is the issue of sensing that, unlike in the virtual
domain, becomes extremely complicated. As it will become clear from the projects we built,
the most severe constraint on the design of an interactive space is which and how well the
activities, intentions, and wishes of its users can be detected. The four systems we built have
been carefully designed to make the detection of all the human actions possible using current
technology.

Another characteristic is that the activities happening in a physical world take time. Unlike
interaction in computers that is event-based, it takes time to move an arm, to walk around, or to
utter a sentence. A lot of research in multimedia systems has dealt with the problem that
producing output takes time (including here issues like delays, bandwidth, etc.), but the fact
that input can also extends in time has been mostly ignored. As we have already presented, a
central point of this thesis is the study of methods to represent, recognize, and control activities
with complex temporal structure, and that grew largely as a response the perception that the
currently-used simple models for time are insufficient to handle typical situations in complex
environments.

We can roughly divide sensing systems in interactive systems according to the modality being
sensed: vision, audition, touch, and presence. Cameras are very popular to track the presence
and the position of the occupants of interactive systems [18, 39, 79, 94], sometimes in the infra-
red spectrum [44]. Microphones have been used mostly associated with speech recognition
systems [39], but also to detect simple sound events like screams [18]. Pressure-sensitive floors
have been developed and employed in the context of interactive spaces [41, 119]. Besides that,
it is possible to make machines detect presence of objects and people by monitoring
disturbances in electric, optical, and magnetic fields [88, 119]. A good review of various
interactive spaces can be found in [15].

6.1.2 User-Driven Interactive Spaces
We employ the term user-driven to characterize interactive spaces where the user directs the
direction and goal of the overall interaction. This category, in fact, comprises the majority of
the work done in terms of creating actual interactive spaces. One of the pioneers of the idea is
Mark Weiser, who has been proposing the idea of ubiquitous computing for more than a

Chapter 6 Story-Driven Spaces 156

decade [179]. In its simplest form, ubiquitous computing advocates the disappearance of a
visible entity associated to computational power and its spread through space and everyday
objects. His view is clearly echoed in our previous discussion of how agency in interactive
spaces is associated to the space itself.

Alex Pentland has promoted the idea of Smart Rooms as a domain of perceptual
computing [122]. The most successful result was the ALIVE experience [94], where a user
could interact with a CG-generated dog (build by Blumberg [17]) by watching herself in a
virtual mirror — a large video screen showing a mirror-like image of the room with the user
and superimposed computer graphics objects. The Intelligent Room, being developed at the
MIT AI Laboratory [39], aims to create a room for crisis management that interacts with its
occupants and provides them critical information. It incorporates simple camera-based tracking,
gesture detection, and reacts chiefly by answering verbal commands. The control is distributed
according to Minky’s concept of society of mind [106]. Raskar et al. [141] suggested a design
for the Office of the Future where ceiling lights are substituted by computer controlled cameras
and projectors that, under the user command, display high-resolution images on designated
display surfaces.

Interactive spaces have been mostly developed in the context of entertainment and art, starting
with the pioneering work of Myron Krueger [79]. Krueger’s works are capable of creating
strong engagement using simple elements. For example, in his first major work people explored
an empty space that reacted with sound and imagery. We may credit his ability to design
enticing spaces to the fact that in earlier works he would personally control the room (instead of
a computer). As once observed by him, being in charge of the interaction makes designers
extremely aware of the diversity of the users’ behavior and the many different ways to relate to
a space.

Tod Machover created a large-scale interactive space with multiple music-producing objects,
the Brain Opera [89, 119]. Although the room itself was not interactive, the final effect created
in practice a feeling of agency, somewhat related to the theme itself — the emergence of
intelligence as postulated by Marvin Minsky in “The Society of Mind” [106]. Jim Davis and
Aaron Bobick, also at the MIT Media Laboratory, created the Virtual Aerobics environment
[44] where the room becomes the personal trainer of the user, demonstrating and motivating the
user to exercise, and making sure that the user actually works out.

The review of the innumerous other projects involving interactive space is beyond the scope of
this thesis. As we commented in the introduction of this chapter, our real goal here is to discuss
in depth some methods and concepts we have developed that facilitate the building of real-
world interactive spaces, and, in particular, for spaces that are driven by a story.

6.1.3 Story-Driven Interactive Spaces
Narrative and story structures are very common in computer games. However, the number of
physically interactive spaces with such elements is very restricted, although the interest in the
area has considerably increased in the last years. We use the term story-driven interactive
spaces to refer to spaces that immerse the users in a story that develops partially in response to

Chapter 6 Story-Driven Spaces 157

the users’ actions and partially as a consequence of a sequence of events pre-determined by the
designers of the space.

Interactive stories and narratives is still a genre to be born. In [109], Janet Murray analyses
different aspects and experiences about how to create a story that changes in response to user
actions and/or wishes. She observes that there are particular narrative genres that are more
suitable for interaction, such as journey narratives. In particular, Murray studies multi-threaded
stories where the user has mechanisms to choose different paths in a web of events, creating an
individual, personal story as a result of the interaction.

In the realm of interactive spaces, the first experiments were also created by Myron
Krueger [79], although most of his “narrative” installations portrayed very simple stories. Larry
Friedman and Glorianna Davemport’s Wheel of Life was one of the first works to include
complex and rich narrative elements in an interactive space [41]. In this piece, the users would
go through four different worlds, interacting with computer creatures and multimedia spaces
representing water, air, earth, and fire. However, the level of control required was beyond the
technology of its time and the system relied on human “guides” controlling the activities of the
computers.

Placeholder, a project by Brenda Laurel, Rachel Strickland, and Rob Tow [84], aimed to
integrate physical and virtual reality elements through a narrative about indigenous peoples of
Canada. Although it is not clear if the project was ever completed, their description of the
creation process [84] is one of the best discussions in literature about the issues involved in
story-driven interactive spaces.

Naoko Tosa and Ryohei Nakatsu, at the ATR Laboratory in Japan, have created two interactive
pieces with strong narrative structure. In the Interactive Poem, the user dialogues with a female
stylized face projected on a large computer screen [174]. The objective of the piece is to create
a poem by interchanging verses between the computer and the user. The computer says a verse
and prompts the user to choose among three verses displaying on the screen by reading the
verse aloud. Coupled with music and beautiful imagery, the final sensation is of integration and
fulfillment. Tosa and Nakatsu have also created Romeo and Juliet in Hades, where two users
take the roles of Romeo and Juliet after their death and, through speech and gesture interaction,
follow their journey towards rediscovering who they are and their love [173].

The work of Aaron Bobick at the MIT Media Laboratory has pushed the sensing and the
awareness envelope in the recent years. In “The KidsRoom” [18], a children bedroom-like
space takes a group of children through an adventure covering four different worlds inhabited
by friendly monsters. The interaction was very physical, involving running, dancing, jumping,
and rowing. The system relied almost exclusively in visual sensing and was able to provide
children with a complete and engaging experience with a narrative structure.

In many ways, three of the projects described in the next chapter, “SingSong”, “It / I” , and
“It” can be considered among the most compelling examples of the possibilities of story-driven
interactive spaces. They also differ from most of the examples mentioned above in our
emphasis in responsiveness as the key element of creating immersion in a story, instead of the
more commonly used device of choice among different story paths. Although choosing the path

Chapter 6 Story-Driven Spaces 158

of a story considerably empowers the user, it is very difficult to assure that all of the paths lead
to equally satisfying experiences. In contrast, we have created powerful stories where the user
is coerced, through mechanisms not explicitly visible, to remain inside the main path, while
carefully designed interaction and good responsiveness keep the illusion that the story is
unfolding in response to the user’s actions.

6.2 The Story-Character-Device Architecture
Our work in building interactive spaces has focused in spaces that move their users through a
story or interactive narrative. Not surprisingly, managing an interactive story with multiple
characters and different input and output devices proved to be quite challenging. For reasons
discussed later in this section, we decided to have the story managed by a single module,
instead of the more common practice of distribute it through the characters' control mechanisms
(for example in [14, 52, 125]).

In the project “SingSong” (described in the next chapter) the control is centralized in one
module that contains both the story and the control of the behavior of the different characters.
The control of the “The KidsRoom” [18], a project that we participated in the development,
was also similarly structured. Based on the experience of these projects, we have identified that
a common source of problems is an inadequate division between the control of a character and
the control of the story.

For example, in the “The KidsRoom” there is a scene where computer graphics monsters
interact with kids who are facing the screens where the monsters are projected, one kid per
monster. The children perform dance steps that, when recognized by the monsters, make the
system play audio files with the monster voices congratulating the corresponding child. A
common source of problem is that two monsters can not speak at the same time — otherwise
they are not properly heard. Managing this level of detail proved to be a difficult task for the
developers of the control module. In the example above, we believe that the right approach is to
make the character’s responsibility to assure that it communicates to the children: the control of
the story should be concentrated on getting the right succession of actions to take place.

To overcome these difficulties, we have developed an architecture for interactive, story-based
systems that separates the control of story, characters, and devices into different, isolated layers
— the story-character-device architecture, or SCD. This is basically a conceptual division but
we will argue that it simplifies considerably the development of story-based systems.

6.2.1 Centralized vs. Decentralized Control of Story
Most of interactive spaces [79, 94, 161, 172] and virtual reality experiences (for instance, [84])
are based on the concept of exploration. That is, the user enters a world populated by
characters, objects, and other users, and extracts most of its satisfaction from the encounter
with the new. There is no narrative structure unfolding during the experience and therefore no
need for story representation or control.

However, the existence of a story in an interactive system requires the management of multiple
characters and events in orchestrated ways. A good image of this distinction is to observe that

Chapter 6 Story-Driven Spaces 159

while exploratory worlds have creatures living in them, story-based interaction requires actors.
Actors know that a story must start, develop, reach a climax, and finish. Stories require the
coordinated efforts of a cast of characters played by actors and thus any story-driven interactive
system must have some mechanism to control the different actors.

An important question is where the story is represented and how it is controlled. For example,
in most story-based interactive systems created until now, like Perlin and Goldberg [125] and
Bates et al. [14], the story is carried by (semi-) autonomous computer-actors with partial
knowledge of the story contents and development. The story is seen as the natural result of the
interaction between the characters, the user, and the story traces in the character’s brains.

We believe that centralized story control is very important for an interactive system to achieve
successful story development. As pointed by Langer [83] and Murray [109], well-constructed
stories require coordination and synchronicity of events and coincidences. For example, in
Shakespeare’s “Romeo and Juliet”, if Romeo does not arrive at Juliet’s tomb before she wakes
up, we lose one of the most beautiful endings ever conceived. Coincidence is a powerful source
of drama and a fundamental component of comedy. However, the coordination required to
achieve coincidence, in our view, is only possible with centralized story control.

Also, as brilliantly pointed by Langer in her study of theater ([83], chapter 17), it is essential for
dramatic structure to forecast the future:

“Before a play has progressed by many lines, one is aware not only of vague conditions
of life in general, but of a special situation. Like the distribution of characters on a
chessboard, the combination of characters makes a strategic pattern. In actual life we
usually recognize a distinct situation only when it has reached, or nearly reached, a
crisis; but in the theater we see the whole setup of human relationships and conflicting
interests long before any abnormal event has occurred…(…) This creates the peculiar
tension between the given present and its yet unrealized consequent, “form in
suspense”, the essential dramatic illusion.” (Suzanne Langer,[83] , pg. 311).

If we agree with Langer, it is necessary for an interactive system with dramatic structure to
have, in some form, the ability to look ahead and sketch in the present the conflict of the future.
To leave this job for each character, separately, and to expect that they will all come up with
the same story structure is nonsense. A similar problem is faced by improvisational actors and
the common solution is for an improv troupe to have well-defined story structures in stock and
to choose one of the stories in the beginning of an improvisational performance (see [73]).
Centralized control of story is the necessary answer to guarantee “form in suspense”.

Finally, if we want also to change a story as it progresses (as a truly interactive narrative), the
imperative of central story control becomes even stronger. It is hardly feasible to alter the story
if each character has its own beliefs about the current situation of the narrative and its future
developments.

Chapter 6 Story-Driven Spaces 160

6.2.2 An Architecture for Interactive Story-Based Systems
Interactive spaces are normally complex structures involving multiple inputs, outputs, and
control sources. In the interactive space “It” described in the next chapter we have used a
particular software architecture called the story-character-device architecture, or simply, the
SCD architecture. The concept was developed to overcome some difficulties observed in the
construction of “SingSong”, “The KidsRoom” [18], and, to a lesser extent, in “It / I” .

Like most of the work in software architecture, it is hard to characterize the success and even
appropriateness of a particular model. We do not claim that SCD is the right or best
architecture for a story-based interactive system. The reasoning presented below clearly shows
that the model addresses issues that have been neglected by most of previous proposals,
although it would certainly be possible to use other models (like Cohen’s [39]) in the systems
we built. However, our experience in “It” has shown that the SCD architecture provides a good
framework for design and implementation of interactive spaces.

Figure 6.1 shows the basic elements of the SCD architecture that is composed of five levels.
The world level corresponds to the actual sensors and output generators of the system. The
device level corresponds to low-level hardware and software to track and recognize gestures
and speech from users, and to control the output devices and applications (including low-level
control of the movement of computer graphics characters). The character level contains
software modules that control the actions of the main characters — including here the users and
the virtual crew (e.g. cameraman, editor, and light designer) — by considering both the story
goals and constraints and the actual events in the real space. The story level is responsible for
coordinating characters and environment factors, aiming to produce the interactive structure
contained in an interaction script. Finally, it is possible to have a meta-story level that
dynamically changes the story as a result of the on-going interaction; such a module should
encompass knowledge about how stories are structured and told [30].

The fundamental distinction with previous architecture models ([14, 125] is the existence of a
distinct story level, separated from the character level. As discussed above, we do not believe
that story development is achievable simply by character interaction but rather that central
control is necessary. On the other hand, preserving the distinction between story and characters
simplifies considerably the management of the story. Notice that in the SCD architecture the
characters are semi-autonomous since they receive commands from the story control module.
However, they still possess the ability to sense the on-going action and to coordinate the
accomplishment of their goals according to the reality of the interactive space.

The best analogy to the story level role in the SCD architecture is the old theatrical figure of a
whisperer or prompter, the person who used to sit underneath a small canopy in the front of
stage, facing the actors, and whispering to them the next lines to be said. In this model, the
actors are responsible for determining how the lines are uttered and for making up the
accompanying action; the whisperer’s job is to assure that story proceeds according to the
script, that is, to determine which and when the lines are said. In the SCD architecture, the
story level watches the user actions (regarding the user as just another character) and tries to
adjust the story to match his actions, according to a script that describes how the interaction is

Chapter 6 Story-Driven Spaces 161

supposed to happen. If the meta-story level is present, the script itself can change — as if the
printed text in front of an old-timer prompter suddenly shuffled its words into a new plot.

Since the SCD model segments the story components into different levels and assuming that
actions are the main component of stories, the issue of action representation becomes
extremely important because the modules have to communicate among themselves. Notice that
to exchange messages between the story and the character levels it is necessary to use
languages able to express goals, requests, and failures. Similarly, the encapsulation of the user
monitoring in a module isolated from story and from the sensing devices requires methods to
explicitly label actions (unlike in story-free reactive systems where sensor and actuators can be
linked directly [172]), strengthening the need of action recognition.

user

cameras
microphones

lights
video screens

speakers

DEVICE LEVEL

context

action
recognizer

goals
behavior

script

character
controller

CHARACTER LEVEL

WORLD LEVEL

interaction
script

interaction
manager

story
manager

story
model

user
model

narrative
models

output
controler

sensor
processor

sensor
processor

STORY LEVEL

META-STORY LEVEL

output
controler

user
module

character
module

story control
module

user
script

Figure 6.1 The SCD architecture for interactive story-based systems.

Chapter 6 Story-Driven Spaces 162

Although the project “It / I” was designed with the concept of SCD architectures in mind (the
idea predates the project), our first work that fully followed the model is the art installation “It”
described in the next chapter. Since the story behind “It” is basically the same as the story in
“It / I” , we can compare the impact of the different architectures in the process of building the
systems. As described later, we found that separating story and characters considerably
simplified the development of “It” .

6.3 Computer Theater
A common problem of traditional interactive spaces is that their users have to learn how to be
seen, heard, and understood while the interaction is happening, and many times end up by
getting lost. Detecting that the user is lost and providing adequate help is a major challenge
faced by designers of interactive spaces given the still primitive state of sensor systems.

We found that an interesting type of environment where this problem is not present is a
performance space, that is, a space where “… an activity [is] done by an individual or a group
(performers) in the presence of and for another individual or group (audience).” (as defined by
Schechner [151], pg. 30). Typical examples of performance spaces are classrooms, conference
rooms, churches, sport arenas, cinema and TV studios, and theatrical stages.

In particular, we have been exploring the notion of transforming the stage of a theater play
into an interactive space. Recent developments in image processing and speech recognition
now permit that basic aspects of the live action performed on a stage to be recognized in real
time by a computer system. Also, computer graphics and multimedia technology are achieving
a state where live control of graphics and video on a stage screen is possible. These
technological breakthroughs have opened the stage for artistic experiences involving computer-
synthesized characters and environments that were virtually impossible less than half a decade
ago.

In [128] we proposed the term computer theater to refer to live theatrical performances
involving active use of computers on the stage and directly involved in the performance.
Implicit in the concept is assumed that the performance happens in a physical space (not in a
virtual stage), in a situation that transforms the stage into an interactive, computerized space.

Our work has focused on both the development of solid foundations for computer theater
technology and on the exploration of the artistic possibilities enabled by inserting electronics
and computers into the world of theater and performance art. Besides that, we have developed
some theoretical work aiming to understand how computers can be used in theater.

This section develops a basic classification scheme for computer theater experiences and
discusses their different aspects, artistic possibilities, and impact on performance arts. We also
explore the relations between the research on action representation and recognition (such as the
work presented in this thesis) for the development of computer theater projects. We finish by
commenting on the possibility of creating immersive stages, that is, interactive spaces that can
be used both by performers and audience, and by telling part of our story and involvement with
computer theater.

Chapter 6 Story-Driven Spaces 163

6.3.1 A Classification for Computer Theater
One of the reasons for the term computer theater as used in this thesis (and previously in [131]
and [129]) is to highlight the similarities to computer music and to the development of inter-
relations between music and computers in the last three decades. In particular, we consider the
classification of interactive computer music systems proposed by Rowe in [147] as the starting
point for the understanding of the possibilities of computer theater.

Rowe [147] classifies music systems according to three dimensions, two of which naturally
extend to theatrical systems. The first dimension of analysis is the differentiation between
interactive music systems that take the role of a player from those which act as an instrument
(to be controlled by a human player). The second dimension distinguishes between systems that
are score-driven from those that are performance-driven.

Inspired on his classification, we propose the classification of computer theater systems
according to two dimensions. The first dimension categorizes systems according to the role the
computer plays in the performance: electronic puppets, hyper-actors, computer-actors, and
computerized stages. The second dimension relates to the source of control, and distinguishes
between story-driven and improvisational computer theater systems. Figure 6.2 displays a
diagram that visualizes the two dimensions of the classification. The following paragraphs
describe the different components of each dimension.

Electronic Puppets

Computers can be used to construct an electronic puppet, that is, a non-human body controlled
by a human puppeteer who does not appear on the stage. In this situation, the computer has the
role of mediating between the puppeteer and the puppet, for situations where only a
computer can produce the “body” of the puppet. For instance, a puppeteer can control a
computer graphics character displayed on a stage screen.

Examples of use of electronic puppets are more common in the context of performance
animation, a technique used in computer graphics where 3D positional and attitude-sensors are

role of the computer source of control

electronic puppet

hyper-actor

computer-actor

computerized stage

story-driven

improvisational

Figure 6.2 The two dimensions of the classification of computer theater systems.

Chapter 6 Story-Driven Spaces 164

attached to the body an actor/puppeteer. Typical examples are the work of the company
Protozoa who once wired the actor Symbad into the body of a CG-cockroach. The French
performance group D’Cuckoo has included in its performances a character called Rigby
(controlled off-stage by two puppeteers) that comments and dances with the music. Robots
have also appeared on stage, as in the experimental dance piece “Invisible Cities” by Michael
McNabb, Brenda Way, and Gayle Curtis, performed in Stanford in 1985.

In a short performance at the Sixth Biennial Symposium for Arts and Technology in
Connecticut, in 1997, Flavia Sparacino [162] used animated, bouncing text lines projected in a
background screen to illustrate the thoughts of the main character. The movement of the text
was pre-choreographed and during the performance she cued the appearance of the text lines
manually, making it into a simple form of puppet. A more interesting idea, bridging traditional
puppetry and performance animation, can be seen in the work of Bruce Blumberg at the MIT
Media Laboratory, where a sensor-loaded plush chicken is used to control the movements of a
CG character in a virtual world [71]. Unfortunately, this system has not yet been used in
performance.

Hyper-Actors

Rowe [147] classifies an interactive musical system as following the instrument paradigm if the
basic objective is to construct an extended musical instrument. For instance, in the
hyperinstruments project led by Tod Machover [88], musical instruments were built that sensed
a virtuoso musician’s gestures, enabling her to control and modulate a computerized
counterpart to the acoustic sound produced by the instrument.

An actor’s instrument is his body — including voice and facial expression. “Virtuosi” actors
are able to control their bodies in extraordinary and different ways. For example, the actress
Roberta Carreri of the Odin Theater is famous for her ability to control the movement of her
long hair using a hand fan (see [13], pg. 111). Through the centuries actors have relied on
masks, make-up, and costumes to alter their bodies

We suggest the term hyper-actor to denote a situation where the actor's body is enhanced by a
computer. In this situation, the computer's role is to expand the actor's body through the use
of electronic technology. A hyper-actor may be able, using body movements, to trigger lights,
sounds, or images on a stage screen; to control his final appearance to the public if his image or
voice is mediated through the computer; to expand its sensor capabilities by receiving
information on earphones or video goggles; or to control physical devices like cameras, parts of
the set, robots, or the theater machinery.

Another possibility is having the actor not on stage and providing him the means to control the
physical appearance of his own image to the audience. Mark Reaney’s “The Adding
Machine” [142] is a curious illustration of this concept. In a typical scene an actor on stage
plays with an off-stage actor whose image is seen by the audience on two large stereographic
video screens (the audience wears special 3D-goggles). The off-stage actor’s images on the
screens expand and contract according to the play events and are used to symbolize and enrich
the power struggle between the characters.

Chapter 6 Story-Driven Spaces 165

The idea of expanding the performer's body has been more explored in dance than in theater.
Body suits wired with sensors having been widely explored in the pioneering work of Benoit
Maubrey with his audio-ballerinas [100], and recently in the works of the New York based
Troika Ranch. George Coates’ experimented with actors receiving the script from Internet users
during the live performance of "Better Bad News". In Christopher Janney and Sara Rudner’s
piece “Heartbeat:mb”, Michail Baryshnikov danced to the sound of his own heart.

Computer-Actors

The player paradigm in interactive music systems corresponds to situations where the intention
is to build “...an artificial player, a musical presence with a personality and behavior of its
own...” ([147], pg. 8). In the computer theater realm this paradigm corresponds to the idea of a
computer-actor, a computer system that automatically interacts with human actors in the role
of one of the characters of the play. In this case the computer character displays its actions
using output devices such as video screens, monitors, speakers, or physical actuators.

We believe that our work in the performance "SingSong" and in the computer theater play
"It / I" (described in the next chapter) pioneered the idea of having automatic computer
controlled creatures interacting on a theatrical stage with a human actor. There a number of
reasons for the absence of prior experiences with computer-actors: the lack of appropriate
hardware for real-time interaction and CG-generation; the fact that real-time visual tracking and
recognition of human motion was almost impossible until the middle of the 90s; and the lack of
systems to script interaction, that is, to tell the computer-actor how the story must develop.

Sul et al. [168] built a Virtual Stage for a karaoke system where a user appears superimposed
on a virtual space populated with computer-generated and controlled music players and singers.
It is interesting that this is one of the few interactive systems that was built for performance
situation. The variety of the behavior of the members of the virtual band is very limited, but the
system explores the “script” of the performance, that is, the sequence of MIDI notes that
correspond to the music being sing.

Most of the work related to computer-actors comes, in fact, from the research oriented towards
user-driven interaction with computer-generated characters for game-like systems. Ken Perlin,
working at New York University, has developed dancers and opera singers [125], and more
recently a virtual performance, “Sid and the Penguins”, with autonomous CG-penguins that
not only perform the story but also have basic notions of stage presence [126]. Particularly
important is the work of Bruce Blumberg [16, 17, 94] in building a computer graphics
generated dog, “Silus” , that interacts with the user, not only obeying simple gestural
commands (“sit”, “catch the ball”) but also having its own agenda of necessities (drinking,
urinating).

A computer-actor must be able to follow the script (if there is one) and react according to its
own role. Here, the issues of action recognition and automatic control of expressiveness seem
to be more relevant than in the case of hyper-actors.

Chapter 6 Story-Driven Spaces 166

Computerized Stages

The last category of computer theater, in relation to the role played by the computer, is
concerned with the expansion of the possibilities for the stage, set, props, costumes, light, and
sound. In a computerized stage, the computer takes the role of controlling the physical space
where the story develops. The fundamental distinction between computerized stages and hyper-
and computer-actors is that in the former the computer does not play characters neither is
involved in representing characters or their bodies.

A stage can react by changing illumination, generating visual and special sound effects,
changing the appearance of backdrops and props, or controlling machinery. An example is the
Intelligent Stage project at Arizona State University [86], that enables the mapping of volumes
in the 3D space to MIDI outputs. Movement and presence are monitored by 3 cameras,
triggering music and lights accordingly.

Kevin Atherton used a non-interactive computer generated stage in a very clever way in his
performance “Gallery Guide”. In this piece, a human guide takes the audience through a
computer-generated gallery where impossible artworks (generated in CG) are described with
wit and humor. George Coates has also extensively used 3D scenarios in his long-term work
involving theater and computers in San Francisco. Recently, the theater icon Bob Wilson
ventured in this direction in “Monsters of Grace”, a joint piece with Phillip Glass. Oddly
enough, although the final version featured only non-interactive, timed 3D imagery, many
people seemed to prefer the "work-in-progress" versions where some of the scenes used live
actors.

6.3.2 Scripts and Improvisations
The second dimension we propose for the classification of computer theater systems relates to
the source of control information. This distinction is roughly equivalent to the second
dimension of classification of computer music systems considered by Rowe that distinguishes
between score- and performance-driven computer music [147]. In our classification, we map
these concepts to scripted and improvisational computer theater.

Scripted computer theater systems are supposed to follow totally or partially the sequence of
actions described in a script. During the performance the system synchronizes the on-going
action with the script, giving back its “lines” as they were determined during the rehearsal
process or by the director. Improvisational computer theater relies on well-defined characters
and/or situations. This type of computer theater has immediate connections with the research on
developing characters for computer games and software agents [14, 16], as we have already
observed.

However, good improvisation requires recognition of intentions (see [73]). Knowing what the
other character wants to do enables interesting and rich counteracting behavior. Otherwise, the
resulting piece is flat, structurally resembling a “dialogue” with an animal: the sense of
immediacy dictates most of the actions. We consider that building computer-actors able to
improvise with human actors in a performance to be an extremely difficult goal that will
require the solving of many AI issues related to contextual and common sense reasoning.

Chapter 6 Story-Driven Spaces 167

6.3.3 Computer Theater and Human Action Representation
It is certainly possible to have a computer theater system that just produces output following a
timeline of pre-determined responses. Although human actors (and especially dancers) can
adjust their performances to such situations, the results normally are devoid of richness and life.
Computer theater seems to be worthwhile only if the computer system follows the actions of its
human partners and reacts accordingly.

In the case of scripted theater the computer system must be able to recognize the actions being
performed by the human actors and to match them with the information from the script.
Minimally, the computer can use a list describing mappings between sensory inputs and the
corresponding computer-generated outputs. The list can be provided manually by the “director”
or technical assistants and, during performance, the recognition consists in synchronizing live
action to the list according to the sensory mappings.

Although the “simple” system just described is hard to implement in practice due to noisy
sensors and performance variability, we believe there is a much more interesting approach to
computer theater based on action representation and recognition. Instead of providing a
computer theater system a list of sensor-reaction cryptic mappings, the challenge is to use as
input the actions and reactions as determined by the script or by the director.

As discussed by Suzanne Langer in [83], action is the basis of theater and, as such, we believe
it needs to be fully incorporated in whatever model a computer is running during a computer-
based theatrical performance. In fact, it is conceivable that the lack of good models for action
has been one fundamental reason for the relative absence of experiments involving theater and
computers. The relative ease of automatic translation of musical scores to a computational
representation (MIDI, for example) seems to have played a major role in the development of
computer music. Theater scripts capture many aspects of theater by describing the action and
interaction among the characters but there is no method to translate characters’ lines and stage
directions written in natural language into something useful for a computer engaged in a
performance. In our view, a fundamental goal is to use the textual description of actions in the
script as input to a computer theater system. According to this view, such systems should be
instructed by words like “shout” or “whisper” and be able to recognize automatically an action
described simply as “actor walks to the chair”.

The concept of action is essential to the vitality of theatrical performance and must be
incorporated, implicitly or explicitly, into any computer theater system. We do not foresee
widespread use of computers in theater until a language paradigm is established which is
expressive enough for computer manipulation and simple enough to be used by performers,
directors, and play-writers.

6.3.4 Immersive Stages: Putting the Audience Inside the Play
We are particularly fascinated by the idea of using computerized environments and characters
to make plays where a member of the audience is able to experience the feeling of being one of
the characters from the play. This excitement drives us towards the development of interactive
spaces that are able both to be part of a performance together with human actors and also to

Chapter 6 Story-Driven Spaces 168

control an interactive re-enacting of the play with members of the audience playing the main
characters — what we call an immersive stage.

Techniques for character creation in theater often rely on extensive physicalization of activities
and situations (for example, in Grotovsky’s method [143, 185]). The movement of an actor’s
body tells her about feelings and emotions that can not be simulated by reasoning or
imagination. Physically living a scene is usually a much richer experience than to imagine
yourself in that situation, especially if the enactment develops continuously, that is, if the
suspension of disbelief is kept. This is precisely the kind of experience we would like to give to
the members of a theater audience: to get deeply involved in the story they have just watched,
with mind and body.

The duality of the immersive stage, both a performance and a private space, contributes to add
mystery and magic to the re-enactment of the play. Suddenly, the spectator is inside the very
same space that until recently was occupied by the actor in a full-bodied incarnation of the
character. We envision immersive stages as spaces that can be used by actors during the
evening for performances and are open to the public for role-playing during the rest of the day.

To accomplish this kind of experiences, it is necessary to concentrate on fully automatic
computer-actors “living” in a computerized stage. The experience between the user and the
machine should unfold smoothly, taking in consideration what the user is accomplishing and
how immersed she is estimated to be. Although there are certainly many challenges to realize
this dream, we believe that carefully chosen stories matching the state-of-the-art of the sensing
technology can create, today, immersive and complex worlds that can be explored by both
actors and audience. The art installation "It" , described in the next chapter, is precisely an
experiment on transforming the theater play “It / I” into an interactive space for users.

6.3.5 Making Theater with Computers
Our interest in computer theater started in the fall of 1994 when we considered the creation of
an interactive space based on the play “Waltz #6” by Brazilian writer Nelson Rodrigues. The
project would use the sensor technology employed in ALIVE [186] and would provide
experiences both for performers and users through the construction of computer-actors for the
characters imagined by “Sonya”, the main character. However, after some consideration, it
became clear that the available hardware at that time would not be cope with the requirements
of play.

A year later we considered again using the same technology in a computerized stage for the
short theatrical piece “e-Love”, by Claudio Pinhanez, to be performed in Claire Mallardi’s
workshop at Radcliffe College. Unfortunately the computer part of the project ended up being
abandoned due to logistic considerations. Immediately after, we start studying more carefully
how to overcome the technological difficulties and the research potential of using computers in
theater, leading to the proposal of the term computer theater and our first categorization of
theatrical experiences with computers [128].

In the summer of 1996 at the ATR Laboratory in Kyoto, Japan, we conceived, developed, and
performed the short computer theater piece “SingSong”. The primary intention of this piece

Chapter 6 Story-Driven Spaces 169

was to experiment with the technological and aesthetic limitations of theater with computer-
actors. In November of 1997 we premiered the play “It / I”, thematically examining the
relation between people and technology through the creation of an environment dominated by a
truly computerized creature. The play, 40 minutes long, was performed 6 times at the Villers
Facility of the MIT Media Laboratory, for a total audience of about 500 people. Both projects
are detailed in the next chapter.

In 1998 we reconceived the “Waltz #6” project, taking in consideration the increasing power of
hardware and the technology and the experience acquired in "SingSong" and "It / I" . Figure 6.3
shows sketches of the project that includes a “Y”-shaped stage with three screens and employs
both vision and speech technology. “Waltz #6” tries to fully realize the concept of immersive
stage by a story that offers multiple narrative paths and by enclosing the user in semi-
transparent screens that hide the user from the other viewers (see fig. 6.3). The project was
submitted to the Cyberstar’98 international competition in Germany and was selected among
the finalists. We are currently working on obtaining funding for the realization of the project in
the summer of 2000.

6.4 Summary
This chapter presented two novel concepts in the realm of story-driven interactive spaces. The
first contribution of this chapter is the story-character-device architecture for interactive, story-
based systems. Based on the observation that story requires centralized control, we argue that
interactive systems with narrative structure should separate the control of characters and story,
viewing the characters as actors. That is, a story-based system requires not creatures but actors
that are able to follow high-level directives as needed to unfold the story while keeping the
consistency and behavior specific of their characters. The SCD architecture was partially

Figure 6.3 Two sketches for the “Waltz #6” project. The left figure shows a diagram of the stage
space. The right figure shows the installation version (for audience) when the stage is enclosed
into semi-transparent screens to increase the feeling of immersion.

Chapter 6 Story-Driven Spaces 170

realized in the computer theater play "It / I" and fully implemented in the art installation "It" , as
described in the next chapter.

This chapter also discussed the use of computers in theater, proposing basic classification
mechanisms and arguing that computer theater technology is intimately related to the issue of
representing and recognizing human action. In particular, we have been focusing in the
development of automatic computer-actors and computerized stages, aiming to realize the idea
of an immersive stage, that is an interactive space that can be alternatively used for
performance and personal use. Both the theory of computer theater as described in this chapter
and the computer theater projects described in the next seem to have decisively raised the level
of public and artistic awareness of the possible future roles of computers in theater and
performance.

Chapter 7 Building Interactive Spaces 171

7. Building Interactive Spaces

In this chapter we present four different interactive spaces we built using the elements
described in the previous chapters. We have two goals for this presentation: first, the
description of each project demonstrates the effectiveness of the paradigms and algorithms
described in previous chapters in large, complex, real-life applications. Second, we believe that
in the process of building these interactive spaces we have developed interesting ideas
concerning the architecture and the technology of such spaces.

The first project — the Intelligent Studio — is a system to automatically control cameras in a
TV studio. The second and third projects are computer theater experiments, that is, theatrical
performances employing computer systems: the performance “SingSong” and the play “It / I” .
The last project is an interactive art installation, “It ”, based on the play “It / I” .

Four common elements permeate the four different projects. First, we have only worked in real
physical spaces inhabited by real people. Although many results of our research apply to
virtual worlds and avatars, we found it important to ground our experiments — in particular,
when action recognition was involved — in noisy, real-world data. Second, the basic sensing
elements in all four projects are video cameras. Third, not surprisingly, the four projects
involve people performing actions. And fourth, the interaction in the developed projects has
always a narrative structure, available in a script that is represented in the computer.

We start in section 7.1 by describing the Intelligent Studio project, the basic testbed for the
research on representation and reasoning on human actions described in chapter 2. Our first
experiment with the idea of computer theater and immersive stages was the performance
“SingSong” presented in section 1.1. Besides probably being the first time that autonomous
computer characters were used in a theatrical performance, “SingSong” also started our work
on interval scripts.

Section 1.1 examines our most ambitious project, the computer theater play “It / I” . The play
was fully produced and publicly performed in November of 1997, and presented a human actor
and an automatic computer-actor in a complex interaction that lasted for about 40 minutes. We
discuss both the artistic and the technical aspects of the project which employed most of the

Chapter 7 Building Interactive Spaces 172

recognition and scripting methods described in this thesis. In fact, “It / I” was the major testbed
for these methods.

The last project, the art installation “It” , is a study about the issues surrounding the creation of
an immersive stage. In particular, we examine how to adapt performance material (in this case,
the play “It / I”) into an interactive installation for users. “It” was also the testbed for the final
versions of ACTSCRIPT, of the PNF-based action recognition method, of the interval script
paradigm, and the story-character-device architecture described in the previous chapters. In
fact, most of the examples presented in the previous chapters come from “It” .

We opted for structuring this chapter as a narrative describing our experiences, and how some
ideas evolved through time. In particular, we use this approach when we describe the process of
scripting the interactive spaces and how the concept and implementation of interval scripts has
been progressively refined. For instance, in the description of scripting issues in “SingSong”
we employ the original syntax and semantics of interval scripts as it was used in the
development of the space. Although this may somewhat increase the difficulty of reading the
thesis, we find it important to describe our results in their original setting.

Moreover, by examining how the paradigms and methods have evolved through time, we hope
that we will make clear the reasons why particular solutions have been adopted and also why
alternative options were discarded. For the same reason we include in this section comments
about the success and failure of particular technologies used in different parts of our systems,
from communication packages to computer graphics features. We hope that this collection of
decisions, results, mistakes, and small ideas is insightful and useful to other people involved in
the building of interactive spaces.

7.1 The Intelligent Studio Project
The goal of the Intelligent Studio project was to create a TV studio that could automatically
control robotic cameras to produce the images for a TV show. In our concept, the Intelligent
Studio is monitored by fixed, wide-angle cameras watching the basic objects and actions.
Together with the script, the cameras are able to maintain a model of the objects and events in
the studio. The model is used by automatic, high-quality, mobile cameras — SmartCams —
responsible for the generation of the televised images under the command of a human TV
director (see fig. 7.1).

The Intelligent Studio concept does not fit perfectly in our definition of interactive spaces as
stated in the previous chapter. Although the computerized system monitors the actions in the
studio, it interacts with the TV director who is outside of it. In spite of this, the basic structure
is similar to the normal structure of an interactive space where the subject of interaction is
inside in the space. Moreover, as it will become clear from the description, the control system
faces similar tasks and conditions of any interactive space: it has to understand human activity
through sensing and to respond to user commands within the context of the physical activity.

From a systems point of view, the Intelligent Studio project featured two main ideas:
approximate world models as a repository of information for vision systems and the use of
linguistic information from the script as source of information for the control module. In

Chapter 7 Building Interactive Spaces 173

chapter 2 we discussed how scripts can be represented and how they can be augmented by
simple common sense reasoning inference procedures. Here, we will describe how that
information is actually used by the vision system of a SmartCam.

The main component of our approach is to model the different elements of a TV studio with
relaxed accuracy requirements and thereby gain the use of qualitative information from the
script. The result is an approximate model that can provide basic information about position,
attitude, movement, and action of the people and objects in the studio (see [23] for more details
about approximate models).

The approximate model of the studio is used to control the automatic cameras. Basically, the
vision system of each SmartCam uses the approximate model to select, initialize, and control
task-specific vision routines that are able to produce the accuracy required for framing. The
existence of the approximate model considerably reduces the complexity of the required vision
routines [23].

On the other hand, the approximate nature of the approximate world model facilitates the use of
linguistic information about the scene, available in our case from the script of the show. It is
important to note that without the constraints imposed by the script, most of the computer
vision techniques would be likely to fail in a complex environment like a TV studio.

A “cooking show” is the first domain in which we have experimented with our SmartCams.
Throughout this section, examples drawn from the cooking show domain are used to illustrate
some concepts, although most of the ideas apply to the general problem of modeling an
interactive space. These ideas first appeared in [19], where the system partially worked without

wide angle
camera

TV qual i ty
camera

TV director

SmartCam
cont ro l le r

sw i tcher

Figure 7.1 The concept of an Intelligent Studio which uses wide-angle imagery to
understand the events happening in the studio.

Chapter 7 Building Interactive Spaces 174

accessing information from the script. In [130], we presented for the first time the full system,
which is further detailed in [133].

The system described in this thesis does not use real moving cameras, but simulates them using
a moving window on wide-angle images of the set. Several performances of a 5-minute scene
as viewed by three wide-angle cameras were recorded and digitized. The SmartCam output
image is generated by extracting a rectangular window of some size from the wide-angle
images. The calling of the shots is truly responsive: the TV director watches the show develop
and issues calls for the different cameras. The response is based only on the past information
(no look-ahead to the future) and to which shot is being called.

7.1.1 The Intelligent Studio Concept
“Camera 3, ready for close-up of the chef. — More head-room. — Take camera 3. — Camera
1, ready for close-up of the bowl. — Take camera 1. — Follow the hands.” This is how a TV
director usually communicates with his cameramen in a TV studio. The TV director asks each
camera for specific shots of the scene, or calls, and the “take” command signals that the
camera is entering on air.

After receiving a call, the cameraman looks for the appropriate subject, adjusts the framing, and
waits, keeping the best possible framing. After the shot has been used, the cameraman receives
a new call. This is the standard procedure for most TV programs including news, talk shows,
sitcoms, and cooking shows. It is important to notice that such procedures are quite different
from those used in movies or more elaborate TV programs where the images from each camera
direction are shot separately and later assembled during editing.

Framing is a quite complex task, requiring different kinds of information. For instance, a call
for a close-up demands not only the information of the subject head’s position and size but also
the subject’s direction of sight and the position of the eyes. Knowledge of the direction of sight
is required because profiles are always framed leaving some space in front of the face (called
“nose room”). The height of the eyes is used, for instance, in a rule of thumb that states that
eyes in a close-up should be leveled at two thirds of the height of the screen (see [188], pp.111-
122, for this and other simple rules).

Moreover, framing changes according to the current action of the subjects. If an object is being
manipulated, either it is fully included or it is put outside of the frame. Also, subjects in the
background must be either framed completely or removed from the picture. The information
required in these cases involves considerable understanding of the actions happening on the set.

However, each camera’s information about the world is constrained by its current framing. A
camera providing a close-up is unable to detect changes outside the image area, significantly
reducing its ability to understand activity. A simple solution to this problem is to use extra
cameras in the studio whose only purpose is to monitor the scene. The resulting system, which
we call an Intelligent Studio, is thus composed of coarse, fixed, wide-angle cameras watching
the basic objects and actions and automatic, high-quality, mobile cameras blind to anything not
inside their field of view. These high-quality cameras are the ultimate responsible for the
generation of the show’s images (see fig. 7.1).

Chapter 7 Building Interactive Spaces 175

7.1.2 SmartCams
One of the objectives of having an “intelligent” interactive space is to have it react to the
occurrence of actions by controlling physical devices that act in the space. In the case of the TV
studio, we have focused in the task of building robotic cameras that are able to produce images
acceptable for TV viewers. The task requires not only sophisticated image processing but
considerable understanding of the actions happening in the studio.

Moreover, we want our robotic camera to be compatible to the normal structure of TV
production. That means that the camera should not be responsible for the decision of what to
frame and when. As in a normal studio, determining what is to be framed is the function of the
TV director, the person ultimately responsible for the show. Our SmartCam is thus conceived
as a robotic camera for TV that can operate without a cameraman, changing its attitude, zoom,
and position to provide specific images upon the verbal request of the director.

The basic architecture of a SmartCam is shown in fig. 7.2. The main component is the
approximate world model [23] that represents the subjects and objects in the scene
geometrically as 3-D blocks, cylinders, and ellipsoids, and symbolically with frame-based
representations (slots and keywords). The symbolic description of an object includes
information about to which class of objects the object belongs, its potential use, and its roles in
the current actions. The 3-D representations are positioned in a 3-D virtual space corresponding
to the TV studio. The cameras’ calibration parameters are also approximately known. The
precision can be quite low: in our system the position of an object might be off by an amount
comparable to its size.

For example, if there is a bowl present in the studio, its approximate world model is composed
of a 3-D geometric model of the bowl and a frame-like symbolic description. The 3-D
geometric model approximates the shape of the bowl and is positioned in the virtual space
according to the available information. The objects in the approximate world model belong to
different categories. For example, a bowl is a member of the “handleable objects” category. As
such, its frame includes slots that describe whether a human is handling the bowl and, in this
case, there is also a slot that explicitly points to him/her.

APPROXIMATE
WORLD MODEL

wrapping

chef chicken plastic

approximate
world model

manager

visual
routinesdata

script

wide-angle images
"Close-up chef"

TV director

SmartCam

view representations

camera

task
control

actions

apply

visual
routines

Figure 7.2 The architecture of a SmartCam. The bottom part of the figure shows the structure of the
modules responsible for maintaining the approximate world models.

Chapter 7 Building Interactive Spaces 176

7.1.3 The Approximate World Model in The SmartCam
In our implementation of the SmartCams the 3D models of the subjects and objects were
initialized and positioned manually in the first frame of each sequence. All changes to the
models after the first frame are accomplished automatically using vision and by processing the
linguistic information.

To track small changes in the approximate world model and especially in its 3D
representations, the Intelligent Studio employs vision tracking routines capable of detecting
movements of the main components of the scene, i.e., the chef and his hands. As shown in the
right side of the diagram in fig. 7.2 this is accomplished directly by processing the wide-angle
images of the scene, simulating the wide-angle, monitoring cameras described in fig. 7.1, and it
is completely independent of whatever is occurring inside each SmartCam. The two-
dimensional motions of an object detected by the different cameras are integrated to determine
the movement of the object in the 3D world. The calibration parameters of the cameras are
approximately known and, although as imprecise as the positional information in the
approximate world model, they proved to be enough for the approximate 3D reconstruction of
the scene.

To keep track of major changes in the scene, the approximate world manager also uses the
information contained in the script of the show, which is represented using action frames. For
this, the approximate world manager uses the inference system described in chapter 2 to extract
visual-related information.

7.1.4 Results for Two Different Shows
The final version of our SmartCams handled three types of framing (close-ups, medium close
shots, medium shots) for a scenario consisting of one or two chefs and about ten objects. All the
results obtained employed only very simple vision routines based on movement detection by
frame subtraction. The position of the objects was given in the first frame of the sequence. The
system also employed a simple, dialogue-free version of the TV script composed of simple
statements describing 10 different actions written in the action frames syntax (as explained in
chapter 2).

The Influence of the Approximate World Models

In fig. 7.3 we can see that the inaccuracy of the approximate world models does not affect the
final results of the vision routines. Two SmartCams, side and center, were tasked to provide a
close-up of the chef. The geometric model corresponding to the chef is quite misaligned, as can
be seen by its projection into the wide-angle images of the scene (left side), and in the images
seen by the SmartCams. In those pictures, the projections of the approximate geometric models
of the head and the trunk are displayed as rectangles.

However, the projection of the approximate models provides a good starting point for motion-
based perceptual routines that ultimately succeed in finding the target of the shot. The results of
the perceptual routines are shown as highlighted areas in the right side of fig. 7.3.

Chapter 7 Building Interactive Spaces 177

Figure 7.3 Example of response to the call “close-up chef”
by two different cameras, side and center (see text).

Figure 7.4 Example of response to the call “close-up hands” by two
different cameras, center and upper (see text).

Chapter 7 Building Interactive Spaces 178

Figure 7.4 shows a situation where the approximate world models avoid the application of a
routine in an unsafe condition. In this case, both cameras were asked to provide a close-up of
the hands. In this situation the hands are approximately modeled by an ellipsoid in front of the
trunk. This model comes from the information contained in the script indicating that a “mixing
ingredients” action is happening at the current frame. Based solely on knowing the current
action, it is possible to predict that the hands are likely to be in the front on the trunk and at the
height of the waist.

In these conditions a routine that detects moving blobs can be applied to the upper camera
images, resulting in the highlighted area on the bottom-right of fig. 7.4. However, in the case of
the center camera, the predicted region for the hands is in front of the region of the trunk (see
top-right image of fig. 7.4). Therefore it is not safe to apply a simple routine that extracts
moving blobs, because there is a risk of detecting the movement of a background object (the
trunk) instead of the movement of the hands. If all other applicability rules also fail, the system
knows that it can not robustly determine the position of the hands from that particular
viewpoint.

The Vismod Cooking Show

Our initial set of data came from staging a cooking show in the laboratory space. A set
resembling a typical TV cooking show was built and three cameras were positioned in standard
center/side/up positions. The selected recipe involved mixing breadcrumbs and spices in a
bowl, flattening a piece of chicken with a meat-mallet, and rolling it over the crumbs. The
whole action lasted around 8 minutes, of which 5 minutes were digitized. Two complete
sequences were recorded and digitized, correspond to two different performances of the same
script. In the second sequence the chef was wearing glasses and the actions were performed in a
faster speed.

Figure 7.5 shows typical framing results obtained by the system. The leftmost column of
fig. 7.5 displays some frames generated in response to the call “close-up chef”. The center
column of fig. 7.5 contains another sequence of frames, showing the images provided by the
SmartCam tasked to provide “close-up hands”. The rightmost column of fig. 7.5 is the
response to a call for a “close-up hands”. In this situation, the action “chef pounds the chicken
with a meat-mallet” is happening. This action determines, through the inference system
described in chapter 2, that the hands must be close to the chopping board. This information is
used by the system to initialize expectations for the hands in the beginning of the action (both
in terms of position and movement), enabling the tracking system to detect the hands’ position
based solely on movement information.

Chapter 7 Building Interactive Spaces 179

Figure 7.5 Responses to the calls “close-up chef”, “close-up hands”, and “close-
up hands”. Refer to background objects to verify the amount of correction
needed to answer those calls appropriately. The gray areas to the right of the
last frames of the first “close-up hands” sequence correspond to areas outside
of the field of view of the wide-angle image sequence used by the system.

Chapter 7 Building Interactive Spaces 180

Table 7.1 shows the sequence of calls for different cameras during one of the runs of the
system. The three short segments displayed in fig. 7.5 correspond to the calls with gray
background in table 7.1. The whole sequence lasts about 80 seconds and comprises 14 different
shots.

Table 7.2 shows the distribution of the 14 calls according to three different criteria. First, we
can see the center camera is active about half of the sequence, which is typical of TV shows.
More interestingly, we have selected close-up shots about 50% of the time. Since close-ups
require much more camera control and precise tracking than medium-close-shots or medium-
shots, we can say that, in this example, half of the time the SmartCams were working under the
most difficult conditions. Also notice that most of the time the cameras were framing moving
objects: either the chef (65%), the hands of the chef (20%), or the bowl (4%), a total of 89% of
the time of the sequence.

Table 7.1 Example of sequence of calls during the “Vismod Cooking Show”.

time camera type of shot target duration
0.0 center medium-shot chef 13.0

13.0 side close-up chef 6.0
19.0 center close-up ready-dish 2.0
21.0 side close-up chef 5.8
26.8 center medium-shot chef 5.2
32.0 upper close-up hands 3.0
35.0 center medium-shot chef 3.0
38.0 upper close-up hands 9.0
47.0 center medium-close-shot chef 3.0
50.0 upper close-up bowl 3.0
53.0 center medium-shot chef 11.0
64.0 side medium-close-shot chef 5.0
69.0 upper close-up chopping-board 7.0
76.0 side close-up hands 4.0

Table 7.2 Distribution of calls in the example sequence of the “Vismod Cooking Show”.

center side upper close-up med-close medium chef hands objects
number 6 4 4 8 4 2 8 3 3
total shot length 37.2 20.8 22.0 39.8 32.2 8.0 52.0 16.0 12.0
% of sequence 47% 26% 28% 50% 40% 10% 65% 20% 15%
avg. duration 6.2 5.2 5.5 5.0 8.1 4.0 6.5 5.3 4.0

camera called type of shot target of shot

Chapter 7 Building Interactive Spaces 181

The results for the second sequence, portraying a different performance of the same script, were
quite similar, with the exception of two brief intervals where the cameras did not frame
correctly due to poor tracking.

By observing the generated image sequences, it can be clearly seen that the framing and the
camera movements are as good as those in a standard cooking show. The two sequences
demonstrate that acceptable results can be obtained by our SmartCams despite the simplicity of
the vision routines employed.

The Alan Alda Cooking Show

In June of 1996 the SmartCam system was invited to appear in a special program of the TV
series “Scientific American Frontiers”, hosted by the actor Alan Alda. We took the opportunity
to record a second set of data in a more complex cooking show involving two chefs in the same
kitchen. The recipe was selected among Alan Alda’s favorites, an artichoke pasta sauce based
on a recipe from his friend chef Giuliano.

We employed the same basic three-camera setup for the “Alan Alda Cooking Show”. Two
sequences of about 10 minutes were recorded and we selected the second half of the first
sequence to be digitized. In this sequence, Alan Alda demonstrates how to clean and cut the
artichokes and explains how to assemble all the ingredients (artichokes, garlic, parsley, and
basil) in a frying pan. The other chef discusses the making of the dish and occasionally helps
with the manipulation of the objects.

In this situation, the system had to successfully track two persons who often occluded each
other and to react to more complex actions. The approximate models simplified considerably
the handling of occlusion by avoiding the call of motion-based vision routines in occluded
views. Figure 7.6 shows some images from the “Alan Alda Cooking Show”. In the instant
depicted by the images, one of the chefs is partially occluding the other. In spite of this, the two
SmartCams successfully respond the calls for “medium-close-shot alan” and “close-up
claudio”.

The script of the “Alan Alda Cooking Show” contains 86 descriptions of actions. This second
experiment was performed some time after the first and we were pleased to verify that the
inference system required only minor adjustments and extensions to successfully extract visual
information from the show’s script. This was particularly satisfying since the two cooking
shows depict quite different actions.

Using the interactive interface, we were able to act as the TV director and to produce a high
quality video sequence where the cameras successfully answered all the 38 commands in spite
of occlusions and a complex set of actions. Table 7.3 lists the calls used in the sequence and
demonstrates the variety of responses allowed by the system. The complete sequence lasted for
160 seconds, with one shot lasting an average of 4 seconds. The calls corresponding to the
images of fig. 7.6 are marked with a gray background in table 7.3.

Chapter 7 Building Interactive Spaces 182

Table 7.4 summarizes how the shots were distributed according to different criteria. In this
example, the side camera is on air half of the time since this is the camera used by Alan Alda to
address the audience. In comparison with the previous example there are fewer close-up shots,
since with two chefs there is a need for shots where they can be seen talking to each other. This
is also reflected in the amount of time devoted to framing people (72%), and hands (14%), for a
total of 86% of the time tracking moving targets. This data clearly demonstrates that our
Intelligent Studio can handle different situations with varying degrees of complexity with only
minor adjustments.

In both the “Vismod” and in the “Alan Alda” cooking shows we had to manually enter when
each action was happening. During that time it became obvious that the next step in the
development of the system would be to incorporate mechanisms for automatic detection of the
actions in the script. Although our initial work in action recognition was based on the
Intelligent Studio domain and data, when we finished the work on the “Alan Alda” sequence
we started to look for interactive spaces where the result of the recognition would have a more
directly impact on the interaction. At that time we began to realize that theatrical plays with
automatic, computerized characters on stage would be an interesting domain.

Figure 7.6 Images from the Alan Alda Cooking Show, showing on the top part the wide-
angle images and on the bottom part the framing provided by two different SmartCams
responding to the calls for a medium-close shot of Alan and a close-up of Claudio.

Chapter 7 Building Interactive Spaces 183

Table 7.3 Sequence of calls during the “Alan Alda Cooking Show”.

time camera type of shot target duration
0.0 center medium-shot all 6.0
6.0 upper close-up chopping-board 2.2

10.2 side close-up claudio 2.8
13.0 center medium-close-shot alan 5.0
18.0 side medium-shot all 6.0
24.0 upper close-up alan-hands 6.0
30.0 center medium-close-shot alan 3.0
33.0 side close-up claudio 5.0
36.0 center medium-close-shot alan 4.0
40.0 upper close-up alan-hands 5.0
45.0 center medium-shot all 7.0
52.0 side close-up alan-hands 6.0
58.0 center medium-close-shot all 2.0
60.0 upper close-up chopping-board 4.0
64.0 center medium-close-shot all 5.0
69.0 side close-up claudio 2.0
71.0 center medium-close-shot alan 3.0
74.0 upper close-up juice-bowl 1.8
75.8 side medium-shot all 5.2
81.0 upper close-up alan-hands 4.0
85.0 side close-up alan 5.6
90.6 center close-up claudio 2.4
93.0 side medium-close-shot alan 9.8

102.8 center medium-shot all 2.0
104.8 side medium-shot alan 2.2
107.0 upper close-up frying-pan-1 4.0
111.0 center medium-shot all 4.0
115.0 side medium-shot alan 10.0
125.0 center medium-shot all 2.6
127.6 side medium-close-shot alan 2.2
129.8 upper close-up frying-pan-2 2.6
132.4 side medium-shot alan 4.0
136.4 upper close-up frying-pan-2 3.0
139.4 side medium-close-shot alan 4.6
144.0 upper close-up alan-hands 2.0
146.0 side medium-shot all 3.0
149.0 upper close-up pasta-dish 4.4
153.4 side medium-close-shot alan 6.6

Table 7.4 Distribution of calls in the example sequence of the Alan Alda Cooking Show.

center side upper close-up med-close medium people hands objects
number 12 15 11 17 10 11 26 5 7
total shot length 46.0 75.0 39.0 62.8 45.2 52.0 115.0 23.0 22.0
% of sequence 29% 47% 24% 39% 28% 33% 72% 14% 14%
avg. duration 3.8 5.0 3.5 3.7 4.5 4.7 4.4 4.6 3.1

camera called type of shot target of shot

Chapter 7 Building Interactive Spaces 184

7.2 “ SingSong”
“SingSong” is a short theatrical play produced in the summer of 1996 at ATR Laboratories in
Kyoto, Japan. The goal of the project was to experiment with interactive spaces involving
human performers interacting with automated computer-actors. The piece is a comical skit
portraying a clown who is trying to conduct a chorus of computer-controlled (but not-so-well-
behaved) singers.

The objective — more than just to produce a theatrical play — was to construct an interactive
space where the dramatic concept of action was embodied in the computer. Within this
framework, “SingSong” unfolds more as a result of the computer and the human actors acting
upon each other than as a consequence of gestures or direct commands.

Figure 7.7 shows the basic structure of “SingSong”: a large video screen with four computer
graphics-animated characters which can “sing” musical notes (produced by the synthesizer).
There is a CG-object — a tuning fork — that the user employs during one of the scenes.
Sounds of applause can also be generated by the system. A computer vision system processes
the input from a video camera, determining the position of the performer’s head, hands, and
feet. Both the computer system and the performer (or user) know the story of the play. The
computer has a model of the story represented as an interval script, using the first
implementation of the concept. The differences between this version of interval scripts and the
version described in chapter 5 are discussed later.

camera
image

processing
(pf inder)

synthesizer

video
pro jec tor

CG
engine

image

posit ional data

video

MIDI commands

sound speaker

user /
performer

Figure 7.7 The basic setup of “SingSong”.

Chapter 7 Building Interactive Spaces 185

7.2.1 The Story
The entire interaction of “SingSong” is nonverbal: the user or performer moves and mimes
actions and the CG-characters sing notes, move, and make faces. “SingSong” is an interactive
space that immerses the user or performer in a simple story.

"SingSong"

a skit for a clown and computer creatures

by Claudio Pinhanez

Singers of a chorus (the CG-creatures) are animatedly talking to each other.
The conductor enters and commands them to stop by raising his arms. One of
the singers — #1 — keeps talking until the conductor asks it to stop again.
Singer #1 stops but complains (by expanding and making grudging sounds). The
tuning fork appears and the conductor starts to tune the chorus: he points to a
singer and “hits” the tuning fork by moving his arm down. Any singer can be
tuned at any time. However, singer #1 does not get tuned: it keeps giving the
conductor a wrong note until the conductor kneels down and pleads for its
cooperation. After all the singers are tuned, a song is performed. The conductor
controls only the tempo: the notes are played as he moves his arms up. When
the song is finished, applause is heard, and when the conductor bows back the
singers bow together with him. Just after that, singer #1 teases the conductor
again and the singers go back to talking to each other.

“SingSong” was conceived as a tribute to the early days of movies which employed comedy
and pantomime as a creative solution to cope with the absence of sound and with undeveloped
editing techniques. In our view, we are in a comparable state of knowledge and technological
apparatus for designing and building interactive, immersive spaces and systems.

7.2.2 The Technology
“SingSong” was produced at a time when the necessary hardware for an interactive space
started to become available. In our case, the system was comprised of a “cheap” machine for
real-time video processing (an SGI Indy) and a “not-so-cheap” real-time computer graphics
engine (an SGI Reality Engine). It is interesting to note that just two or three years before this,
it would have been extremely difficult to find hardware with these capabilities. Coupled with a
large-scale video projector and a Yamaha MIDI-synthesizer (controlled by the SGI Indy), it
was possible to build the computer theater play in about six weeks.

At the same time, basic software for computer vision was also available. We employed the
pfinder [186] program that extracts the silhouette of the performer by background subtraction.
Like any vision system based on background subtraction, it must be calibrated with the room
completely empty. The program computes the position of the hands and the head of the
performer based on the curvature of the silhouette and on local color histograms. In the closed

Chapter 7 Building Interactive Spaces 186

context of “SingSong”, this tracking information could be safely translated into actions like
pointing, requests to stop, and conducting.

The CG-creatures were created using the software SoftImage and the resulting files were
converted into SGI Inventor format. During run-time, the animation is generated based on the
commands coming from the interval script engine which are translated into matrix
transformations. Sound is generated as the result of commands directly issued by the interval
script which are translated into MIDI signals through the serial port of the SGI Indy. The script
issues individual commands for each note of each singer.

To communicate between processes running in different machines, we employed the RPC
protocol. Although efficient, this mechanism has some inconveniences: it is necessary to
explicitly name the hosts of the processes; also, the binding among processes is based on the
processes’ pid, requiring re-starting all client processes whenever a server dies (making the
debugging process quite cumbersome).

At the time of its production, interactive spaces technologically similar to “SingSong” had
already been built [79, 94, 161, 172]. The technical innovation present in this interactive space
was its control structure based in interval scripts. The real conceptual innovation was the idea
of computer theater and the centrality of action as the chief carrier of the interaction.

7.2.3 The Scripting Process
The paradigm of interval scripts was conceived to satisfy the scripting needs of “SingSong”.
Although “SingSong” portrays a very simple, quasi-linear story, there is a large number of
parallel actions and conditional interaction during the performance.

Interval Scripts: the “SingSong” Version

“SingSong” used the first version of the concept of interval scripts, described in detail in [137].
The “SingSong” version of interval scripts already included the important idea of separating
the desired action from the actual action. However, in that version, this had been implemented
using two implicitly defined intervals instead the simpler use of START, STOP, and STATE
functions. The use of two intervals required a more complicated model of the situation, making
scripting more difficult than in the subsequent versions.

To ease these problems, the “SingSong” version of interval scripts pre-defines three categories
of intervals (referred to as externals): actuators, sensors, and timers. As shown in fig. 7.8, an
actuator automatically defines a desired interval, corresponding to the interval in which the
action is supposed to happen and an actual interval, that is, the actual occurrence of the action.
A timer is a particular case of an actuator that automatically goes to P after the schedule time
expires. A sensor has an activity interval describing when the sensing is being performed and
an event interval corresponding to the actual occurrence of the sensed event (refer to fig. 7.8).

Chapter 7 Building Interactive Spaces 187

With these primitive categories, basic functionality to control the interaction is provided. For
example, when a desired interval becomes N, the system tries to start the action corresponding
to the interval. In the final version of the interval scripts, the desired interval corresponds to the
START and STOP functions and the actual interval to the STATE function. The idea of this
simplification came only later and it was first implemented in the version of interval scripts
used in “It / I”.

Other basic concepts already were present in this version, including here the idea of
“forgetting” an interval (referred as resetting the interval). However, the “SingSong” version of
interval scripts did not provide any scripting language but instead a group of C++ classes that
were used to define functions corresponding to each interval in the script. Compiling interval
script-like language into C++ code was implemented for the first time in the “It / I” version.

Script Example from “SingSong”

Let us examine an example from the interval script of “SingSong”. In spite of the differences in
the script syntax and in the structure of an interval script it is interesting to see that the basic
method of scripting is very similar to the one discussed in chapter 5. This is not the most
complex scene in “SingSong” but it provides an idea of the control issues in the scripting
process.

In the first scene of “SingSong”, the four singers are chatting until the conductor commands
them to stop by raising his arms. Singer #1 acts differently from the other singers: it does not
obey the conductor promptly and, after being commanded to stop, it complains. After the
singers stop chatting, they start to stare at the conductor, following him around the space. The
following are the externals used to define this scene:

• Chatting (actuator): 4 copies, one for each singer, controls the sound and the mouth
movements that simulate chatting;

• BeQuiet (sensor): fires if the user raises both arms above his head;

N

N

N

NPF PF

PF PF

PF PF

F P

desired interval

actual interval

activity interval

event interval

actuator

sensor

Figure 7.8 Intervals associated with an actuator and a sensor.

Chapter 7 Building Interactive Spaces 188

• BeQuiet2 (sensor): identical to BeQuiet;

• StareConductor (actuator): 4 copies, implements the behavior that makes the eyes of the
creatures follow the conductor around the space;

• ReactionTime (timer): provides a pause of 3 seconds between the conductor’s gesture
and the complaint from singer #1;

• Complain (actuator): only for singer #1, controls the sounds and graphics related to the
complaining action.

The diagram of fig. 7.9 shows the relationships for singer #1 and singer #2 in the first scene of
"SingSong". The relationships for the other two singers are identical to those of #2. To facilitate
the understanding of the diagram, we use the same visual representations for desired, actual,
activity, and event intervals as those employed in fig. 7.8. Figure 7.10 shows the temporal
constraints that define the interval script corresponding to the first scene.

The desired interval of all Chatting actuators (the top interval in fig. 7.9) and the actual interval
of BeQuiet should start together. This is shown in the first part of fig. 7.10 that states that the
actual interval of the sensor BeQuiet must start OR equal OR i-start with the desired interval of
Chatting#1 and Chatting#2. In fig. 7.9 we represent this definition by the dashed line joining
the beginning of both intervals. The beginning of these intervals is triggered by other intervals
not shown here.

The next block in the script states that the event interval of BeQuiet — BeQuiet.event —
terminates the desired interval of Chatting#2, i.e., the singers stop chatting when the conductor
raises his arms. BeQuiet.event also turns off the activity of BeQuiet. Also, this event starts
StareConductor#2.desired. The turning on and off of intervals is described by the start OR
equal OR i-start and the meet OR before relationships, respectively, as shown in fig. 7.10.

BeQuiet

Chatting#2

Chatting#1

StareConductor#2

StareConductor#1

BeQuiet2

Complaim
ReactionTime

Singers
#2 #3 #4

Singer #1

Figure 7.9 Diagram of the temporal relations in the first scene of “SingSong”.

Chapter 7 Building Interactive Spaces 189

However, since singer #1 does not stop chatting till the conductor raises his arms for a second
time, and BeQuiet.event neither turns off Chatting#1 nor turns on StareConductor#1. Instead,
BeQuiet.event triggers (start OR equal OR i-start) BeQuiet2.activity. A detection of an event by
BeQuiet2 shuts off the sensor’s activity, and starts the StareConductor#1 and the desired
interval of the timer ReactionTime. The end of ReactionTime.actual starts the Complain
actuator, finishing the first scene.

The detailed examination of the complete script of “SingSong” is beyond the scope of this
thesis. However, it is useful to mention typical cases of interaction that were addressed during
the development of “SingSong”. For example, the tuning scene is basically a loop of short
tuning interactions between the conductor and one of the singers until all the singers are tuned.
To implement the loop, we used a forgetting mechanism similar to the one defined in chapter 5.
In the “SingSong” version of the interval scripts, however, the forgetting scheme is handled by
a third interval associated with all externals, the reset interval. Whenever a reset interval
happens, the other intervals associated with that particular external are set to PNF.

The Complexity of the Interval Script

The complete script of “SingSong” includes many different constructions that are handled
conveniently by our time interval relationship paradigm. The final script contains 92 externals,
each comprised of three intervals, and therefore the whole script involves a PNF-network of
276 nodes. Table 7.5 shows the composition of the interval script of “SingSong”. Among the
externals, 52 were actuators, 19 were sensors, and 21 were timers. There were 210 constraints
explicitly imposed on the nodes of the network. Running PNF propagation on this network was

BeQuiet.activity start OR equal OR i-start Chatting#1.desired

BeQuiet.activity start OR equal OR i-start Chatting#2.desired

Chatting#2.desired meet OR before BeQuiet.event

BeQuiet.activity meet OR before BeQuiet.event

BeQuiet.event start OR equal OR i-start StareConductor#2.desired

BeQuiet.event start OR equal OR i-start BeQuiet2.activity

BeQuiet2.activity meet OR before BeQuiet2.event

BeQuiet2.event start OR equal OR i-start ReactionTime.desired

BeQuiet2.event start OR equal OR i-start StareConductor#1.desired

ReactionTime.event meet Complain.desired

Figure 7.10 Interval script corresponding to the first scene of “SingSong”.

Chapter 7 Building Interactive Spaces 190

hardly noticeable on the SGI Reality Engine: the majority of the computer power was spent on
graphics processing.

The script of “SingSong” is simple and its implementation using traditional event-loops would
certainly be possible. However, we do not believe that it would be possible to implement
“SingSong” as fast as we did without the interval script structure. The interval script provided a
flexible method to change the script as we designed new routines and tested the interaction.

Problems in the Scripting Process

The main problem with the “SingSong” version of the interval scripts ideas was that the script
had to be coded implicitly in a long and complex piece of C++ code. Although the conceptual
model avoids extremely complex and undebuggable control structures, after a while it became
quite difficult to read the C++ file, as it contained not only the interval script code but also all
the calls for Inventor and MIDI routines.

Also, it is not possible to express Boolean constructions as temporal constraints. In
“SingSong”, triggering conditions depending on more than one interval forced the definition of
new externals. We also felt limited by the existence of only three categories of externals. For
example, there were no simple ways to define a “loop” external, a quite common structure,
except by creating a sensor detector that detected the end of the interval and reset the external
through an actuator.

However, the some of the most important ideas were already present in the “SingSong” version
of the interval script paradigm. Among them, we found very convenient the distinction between
desired and actual intervals; the codification of loops as sequences of intervals that are
forgotten; and the possibility to express mutually exclusive intervals.

7.2.4 The Experience
“SingSong” was produced in the summer of 1996 in the Advanced Technological Research
Laboratories (ATR) in Kyoto, Japan, with direction, art direction, and performance by Claudio
Pinhanez. The design of the computer characters was inspired by masks created by Isamu
Noguchi. The song sung by the computer characters was based on a melody executed every day
in Japanese schools to mark the end of the classes.

“SingSong” was designed to be enjoyed both as a user experience and as a computer theater
performance, that is, as an immersive stage. The story lived by the performer and the user is
identical, enabling the user to experience the story as lived by the performer. The performer
was able to produce a more vivid and interesting result for those observing from outside the
system because he could clearly react to the situations and expressively displays his emotions.

Table 7.5 The composition of the interval script of “SingSong”.

nodes externals constraints

276 92 52 57% 19 21% 21 23% 210

actuators sensors timers

Chapter 7 Building Interactive Spaces 191

“SingSong” was initially performed twice inside ATR for an
audience composed of artists and technicians from ATR and
NTT. The interactive space was rebuilt at the MIT Media
Laboratory and the piece was performed during an open
house of the laboratory in September 1996. Figure 7.11
displays some images from a performance of “SingSong”.
From top to bottom: singer #1 complains; the conductor
pleads to singer #1 get in tune; the conductor raises his
arms, triggering a new note in the song; the conductor keeps
conducting while dancing; the grand finale of the song.

As a performance, “SingSong” was very successful,
underscoring our interest in computer theater. In spite of the
short length, the audience was engaged and emotionally
involved with the story. Many factors contributed to this:
first, the choice of a clown costume, complete with red nose,
seemed to produce an interesting effect of blending the real
and the CG world. The performer’s characterization as a
clown seemed to put him in a world as fantastic as the
singer’s virtual world. Second, the strong story created a
space where interaction unfolded at the right pace,
contributing to the immersion of the performer and the
engagement of the audience. Third, there was true
“dialogue” between the human and the computer actors as a
result of the action-based structure. Finally, pantomime and

Figure 7.11 Scenes from “SingSong”.

Figure 7.12 Audience playing with “SingSong”.

Chapter 7 Building Interactive Spaces 192

clowning produced a mixture of simplicity and appeal that enticed the audiences.

Figure 7.12 shows a user reacting to singer #1’s complaints (just after it was commanded to
stop chatting). Users seemed to be quite comfortable in assuming the role of the conductor.
Sometimes they talked back to the characters and they always laughed when forced to kneel
down to attend to singer #1. In particular, users appeared to have a great time conducting the
chorus. The simplicity of the interface coupled with the joy of generating interesting music
provided a very pleasant experience. Also, the well-defined end to the interaction (signaled by
the applause) allowed “SingSong” to terminate with a dramatic climax.

7.3 “It / I”
Our experience with “SingSong” showed that it was possible to create an interesting
performance with computer-actors. However, after its completion, we became interested in
determining whether a computer character on stage could keep its effectiveness in a long and
more complex story. Also, we wanted a more challenging environment to develop and explore
the newly conceived idea of interval scripts. In the beginning of 1997 we began thinking about
a new piece of computer theater, “It / I”.

“It / I” is a two-character theater play where the human character I is taunted and played by the
autonomous computer-graphics character It . “It / I” is about the feeling of being trapped by the
fantasy produced by technology.

Figure 7.13 depicts a diagram of the different components of the physical setup of “It / I” . The
sensor system is composed of three cameras rigged in front of the stage. The computer controls

cameras

video
projector

props

speaker
performer

back-projected
screen

stage ligths

CG-object

MIDI synthesizer

MIDI light board

Figure 7.13 Physical setup of "It / I".

Chapter 7 Building Interactive Spaces 193

different output devices: two large back-projected screens; speakers connected to a MIDI-
synthesizer; and stage lights controlled by a MIDI light-board.

The play was written considering the sensory limitations of computer vision. That is, the
actions of I were restricted to those that the computer could recognize automatically through
image processing. In many ways, It 's understanding of the world reflects the state-of-art of real-
time automatic vision: It 's reaction is mostly based on tracking I 's movements and position and
on the recognition of some specific gestures (using [43]).

It is relatively easy to create pieces with technology that dazzles the audience for some time,
but typically the novelty wears off after ten minutes or so. Among other targets, we wanted to
create an experience that lasted for a significant amount of time (at least half an hour) so that
we could evaluate whether the audience engagement could go beyond the novelty level. We
also wanted the play to be good theater and to be interesting both as theme and story. For this,
we were particularly concerned about creating a true “dialogue” between the human and the
computer actor. Too often in performances with on-stage screens the performers are upstaged
by the screens.

We also wanted to experiment with the idea of immersive stages in “It / I” , and we initially
aimed at making the play completely “livable” by audience members. In fact, in the initial
script of “It / I” we included audience participation during the performance but later we
decided that the intended scene was too disruptive to the progression of the play.

In terms of technology we were interested in testing our paradigm of interval scripts in a long
and complex interaction to determine its effectiveness and possible shortcomings. Also, we felt
it would necessary to evaluate whether our action-based approach to interaction (as opposed to
gesture-based approaches used in other interactive spaces, [94]) could facilitate the
development of interactive spaces.

Finally, we wanted to test a method based on stereo vision (previously developed in our
laboratory by Ivanov, Bobick, and Liu [66]) to segment the actor from the background. The
main benefit of using this method was that we would be allowed to use stage lighting
(including color) and to have large displays in the background of the stage. Until that time,
most of the vision systems used in interactive spaces required either uniform background [79],
or at least, constant color and luminosity [186].

7.3.1 The Story
The play “It / I” is composed of four scenes, each being a repetition of a basic cycle where the
human character I is lured by the computer character It , is played with, gets frustrated, quits,
and is punished for quitting. It has a non-human body composed of CG-objects projected on
screens. The CG-objects are used to play with I . It can also “speak” through images and videos
projected on the screens, through sound played on stage speakers, and through the stage lights.
There is also a live pianist who plays a piano situated in the middle of the audience. “It / I” was
inspired by three plays by Samuel Beckett, “Act Without Words I”, “Ghost Trio”, and
“Waiting for Godot”.

Chapter 7 Building Interactive Spaces 194

“It / I”

a pantomime for a human and a computer actor

by Claudio Pinhanez

Prologue

I is at the center of the stage, screens are dark, I ’s eyes are fixated on an
electric cable in front of him. After some time, I picks up the cable and connect
it to a plug in his bellybutton. A piano, off-stage, plays repetitively excerpts from
a Beethoven sonata.

Scene I

I is sitting at the center of the stage, distracted by the music played by the
pianist. It attracts I 's attention by displaying a beautiful image of the sun on the
left stage screen. When I stands up the image moves away, and It projects a
movie clip with a stopping gesture. The movie plays continuously until I
executes the gesture. Following, another two movies showing gestures are
projected, one depicting a hanging gesture and the other showing a person
shooting himself. When I performs these gestures the movies stop. A CG-clock
appears, running a countdown. I tries to hide from what he believes is an
imminent explosion. It projects again the first movie clip, implying that the clock
can be stopped by the stopping gesture. When I executes the gesture the clock
disappears, immediately being replaced by a new one. I tries the stopping
gesture, it doesn’t work. However, the hanging gesture stops the clock. Clocks
continue to appear at a faster rate than I can stop them. After some time I gives
up and protects himself from the explosion he believes is coming. The explosion
does not happen. The clocks disappear and the piano music returns.

Scene II

I is listening to the piano but It again attracts his attention with an image — a
picture of a family. When I stands up the image moves away. This time, a CG-
object similar to a photographic camera appears on the right screen and follows
him around. When I makes a pose, the camera shutter opens with a burst of light
and a corresponding clicking sound is heard. On the other screen a CG-
television appears and, when I gets close, the television starts to display a slide
show composed of silhouette-images of I as if they were “taken” by the CG-
camera. After some pictures are shown, the camera “calls” I to take another
picture. This cycle is repeated until I refuses to take yet another picture and
stays in front of the television, provoking an irate reaction from It , which throws
explosions of CG-blocks into I while flickering the lights and playing really loud
noise. The camera and the television disappear. Piano music returns.

Chapter 7 Building Interactive Spaces 195

Scene III

I is attracted again to play by an images of angels. When I stands up the image
moves away. An agitated, restless electric switch-like CG-object appears on the
left screen. Whenever I gets close to the screen the switch moves up, always
staying far from the reaching of I 's hands. I is then told (by video clips) that he
can control the switch's position by standing on the top of blocks and making
special gestures. When I finally gets close enough and seems to be able to turn
the switch off, I discovers that the objects are only projections on a screen. In a
Beckettian way, I tries to hang himself — without success — and provokes
another round of explosions of CG-blocks from It . The switch disappears and
the piano plays repetitively a very sad and short segment of Beethoven’s Ghost
Trio.

Scene IV

An image of flowers succeeds again to attract I ’s attention. But this time, after
the image disappears, I decides to ignore It and disconnects the plug from his
bellybutton. Nothing changes. It then brings all the objects to the screen, trying
to force I to play. It also plays all the movie clips with the gestures trying to
motivate I to interact. Finally, given the lack of response, It brings the switch to
the screen and turns it off, leaving I in an empty, silent, dark world.

Epilogue

I is at the center of the stage, screens are dark, I ’s eyes are fixated on an
electric cable in front of him. After some time, I picks up the cable and connects
it to a plug in his belly-button. A piano, off-stage, plays repetitively excerpts
from a Beethoven sonata. Light fades.

Notice that the basic sensory capacity in scene I is the recognition of body shapes. The
information that I has stood up triggers the disappearance of the image of the sun and the
arrival of the clocks. The stopping gestures control the turning off of the clocks and their
absence causes the explosion.

The actions of It in scene II are solely based on the position of I . I 's interest in It is assumed
when he gets close to either the camera or the television. For instance, the refusal to continue
taking pictures is detected when the camera “calls” three times and I does not move from the
front of the TV screen. However, the sensing allows quite flexible interaction in this scene. The
number of “take-picture-watch-tv” cycles is not pre-determined: the human actor decides to
refuse to play when he — as a performer — believes the character (and maybe the audience)
has reached the emotional potential to do that. Also, there is a great deal of room for
improvisation in terms of when and how the pictures are taken since the camera clicks only
when the actor has been still for some seconds.

Chapter 7 Building Interactive Spaces 196

In scene III, the interaction is based on a more complex set of elements. Initially just I ’s
position relative to the screen is used to control the height of the switch on the big screen. But
to lower the switch, a complex action must be recognized. First, the human character has to
bring a block close to the screen, then he has to pick up another block and then execute special
gestures while standing on top of the first block. To recognize such complex structure using
only information from the silhouette — as detailed later — we employ a method based on the
action recognition scheme developed in chapter 4. In the last scene and in the epilogue, the play
relies mostly on the actions of the computer character It .

From the script it is evident that the complexity of the interaction in “It / I” is quite beyond
previous full-body interactive systems. For example, in ALIVE [94], although the main
character (the dog-like CG-character “Silus”) had quite a complex internal structure, the
meaning of the user’s gestures remained constant as the interaction proceeds. In addition,
“It / I” has a clear dramatic structure not present in most previous interactive spaces as, for
instance, the spaces designed by Krueger [79] and Sommerer and Mignonneau [161].

7.3.2 The Technology
The major technical novelties in “It / I” are the interval script paradigm used to describe the
story, the interaction with the human actor, and the behavior of It . Before examining in more
detail how the story described above is represented using interval scripting, we want to describe
other technological solutions we used in the play that can be employed in other interactive

Figure 7.14 Moment from scene II of “It / I”. The actor is interacting
with the TV-like object projected on the screen behind him.

Chapter 7 Building Interactive Spaces 197

spaces. In particular, in “It / I” the architecture of the system was based on creating a special
module corresponding to the character It .

System Architecture

Figure 7.15 displays the control architecture used in the performances of “It / I” . It is a 2-layer
architecture in which the upper layer contains information specific to the computer character
and the bottom layer is comprised of modules directly interacting with the actual input and
output devices. This control model is a simplification of the 3-layered architecture, called story-
character-device architecture, or SCD, that was described in chapter 6.

As shown in fig. 7.15, the computer character control system is composed of one active
element, the interaction manager, that processes the interaction script. The interaction script
contains three types of information: the description of the story in terms of actions to be
performed by the computer and the human characters; the specification of It ’s actions, that is,
what the computer character actually does when trying to perform the actions needed by the
story; and the description of how the human actor’s movements are recognized according to the
current moment in the story, or of I ’s actions.

cameras

lights
video screens

speakers

DEVICE LEVEL

CHARACTER LEVEL

interaction

 script

interaction
manager

output
controller

vision
module

output
controller

character module

storyIt's actions I's actions

 basic

interplayoutput to

be generated context for

recognition

Figure 7.15 System architecture of “It / I”.

Chapter 7 Building Interactive Spaces 198

For instance, in a scene where the computer attracts the attention of the human character by
displaying images on the screen, the basic interplay is the goal of attracting I ’s attention. As
part of the description of It ’s actions there is a method that associates attracting the human
character’s attention with the displaying of particular images, each moving with a particular
trajectory on the screen, accompanied by music and warm light. This is how the action “It
attracts I’s attention” is translated into output to be generated. At the same time, the story sets
up the context for recognition of a movement of I walking towards the screen as “I is paying
attention”; in most other situations of the play, such movement is not recognized as so.

The Vision System

The vision module shown in fig. 7.15 performs basic tracking and gesture recognition. The
tracking module answers queries about the number of persons on stage (none, one, more than
one); the position (x,y,z coordinates) and size of one person (when present) and three large
blocks; and the occurrence of the five pre-trained gestures.

In the performance setup we employed a frontal 3-camera stereo system able to segment the
actor and the blocks and to compute the silhouette image that is used to track and recognize
gestures. The stereo system, based on the work of Ivanov et al. [66], constructs off-line a depth
map of the background — stage, backdrops, and screens. Based on the depth map, it is possible
to determine in real-time whether a pixel in the central camera image belongs to the
background or to the foreground, in spite of lighting or background screen changes.

This is an considerable improvement over vision systems based on background subtraction
used before in many previous interactive spaces [18, 94, 161] because it enables lighting
change, an important dramatic element. During the performances of “It / I” in 1997, the
segmentation part of the vision system ran at 8 frames per second on a SGI Indy 5000. The
analog video signals from the three cameras were compressed into a single video stream using
a quad-splitter and then digitized into 640x480 images (a video quad-splitter is a device that
takes 4 input analog video streams and produces a single analog signal composed of the four
images in half-size and tiled).

Figure 7.16 shows a typical visual input to the system and the silhouette found. Using the
silhouette, a tracking system analyses the different blobs in the image to find the actor. The
analysis is performed under assumptions about the continuity and stability of movement,
position, and shape of the actor. Smaller blobs are labeled as blocks only when isolated from
the person’s silhouette.

The vision system also must recognize the five different gestures shown in fig. 7.17. To
perform gesture recognition we employ a simplification of the technique described by Davis
and Bobick in [43]. During the performances we also employed manual detection of some of
the gestures that could not be detected by the system with enough reliability. We had to resort
to manual detection due to an absolute lack of time to improve the reliability to performance
levels, which must be very high, since during a performance accuracy is essential to avoid
confusion in the actor or breaking the flow of the performance.

Chapter 7 Building Interactive Spaces 199

Figure 7.16 The 3-camera input to the vision module and the computed
silhouette of the human actor (enclosed in the rectangle).

Figure 7.17 The 5 gestures used in “It / I”.

Chapter 7 Building Interactive Spaces 200

Because the recognition of this type of gesture has already been demonstrated in computer
vision (see [43]) and in a real-time environment [44], we believe that there were no real
technical obstacles for a fully autonomous run of the play. Also, three of the scenes of the play
could be run completely without human help.

The Computer Graphics Modules

The computer graphics modules control the generation and movement of the different objects
and flat images that appear on the two stage screens. Each CG module basically processes
ACTSCRIPT requests (whose format we exemplify later) translating them into Inventor
commands.

In our system, whenever an object or image moves, sound is produced. The importance of
sound to enhance image is well known in the movie industry but, surprisingly, only a few
interactive CG characters and environments seem to have explored this facet of animation.
Here we are not talking about the inclusion of sound effects in the post-production phase of CG
videos, or about synchronizing speech to talking characters. Rather, we are interested in the
automatic generation of pre-defined sound effects as the objects move around the world.

We implement sound production through an interesting method. The sound effects are
contained in short MIDI-files that are associated with each object's translational and rotational
movements through an Inventor Engine object. The MIDI-file is sent to the synthesizer —
through a request command to the sound module — according to a threshold function
describing when the file must be played. Typical examples of such functions used in “It / I”
are: a function that plays the sound periodically while the movement lasts; a function that looks
for peaks in the velocity of the CG-object; and a function that triggers the MIDI-file whenever
there is a peak in the derivative of the curvature of the path. The last function is used quite
successfully to automatically play swiveling sounds when the CG-camera is performing fast
rotational movements.

The Sound Module

All the sounds and music in “It / I” are produced by a Korg X5DR MIDI-synthesizer. To
control the production of the sounds, we have developed a module that could send the MIDI
events corresponding to the different MIDI files associated to each sound and piece of music.
In particular, this module can produce the sound of multiple files simultaneously. Since the
synthesizer had only 16 channels, we had to constrain all the sounds to use the same 16
instruments, or MIDI patches. This constraint ended up producing the positive effect of
creating a common theme and a similar sonority among the different sounds, like a “palette” of
basic colors in a painting.

The Light Control Module

In general, light boards employ DMX protocol to communicate with the light dimmers and
with external devices. In our case, however, the light board was able to accept MIDI commands
to trigger pre-defined light cues. We used this MIDI interface to connect the light board to our
computers. Each light wash was associated to a cue and the light control module had a look-up

Chapter 7 Building Interactive Spaces 201

table with the correspondence between a state of the stage lights and a MIDI note. When a cue
was requested, the module simply fired the MIDI-note corresponding to the cue. Notice that all
the control of intensity of lights and change speed was done by the light board, as well as
simple effects such as flickering lights.

Communication Between Modules

For the communication among modules we employed the ACTSCRIPT language described
earlier in chapter 2. As noted there, ACTSCRIPT is able to represent actions, requests, queries,
and goals in a physical environment. Unlike previous work in languages for CG characters (for
example, [77, 125, 170]), ACTSCRIPT allows recursive decomposition of actions, specification
of complex temporal relationships, and translation to/from natural language.

The communication is done by the exchange of ASCII strings between the modules. The actual
transmission of the text strings among machines used the communication package PVM [54],
modified to make sure that only one version of each module was running on all the machines at
all times. Compared to our previous experience using the RPC protocol (in “SingSong”), we
noticed a significant improvement in the reliability of the communications and in the easiness
of use. For instance, it is trivial to kill a module, restart it, and keep the communication with
other modules working seamlessly.

Upon receiving a message, the string is parsed by an interpreter that identifies the interesting
components for that particular module. The expressiveness of the ACTSCRIPT language was the
main reason for its use. Besides that, we notice that it is very convenient to use a language
where calls and messages can be easily simulated, composed, and read. In fact, in some
rehearsals we were able to use manually controlled interaction whenever it was needed, simply
by typing ACTSCRIPT requests and questions.

Figures 7.18 shows examples of a movement as expressed in ACTSCRIPT. Figure 7.18 is an
example of a request from the It module to the left-cg-module to move the computer
graphics camera (the object that appears on the screen) from one determined location to other
going through a specified path position. The movement is determined to take 5 seconds, start
immediately, and follow the pre-defined velocity profile curve called “crescendo” . Upon
receiving this request, the CG module checks if the object is available for movement, and in the

(request
(action "left-cg-module"

(move (object "camera")
(direction

to (location (0.0 0.4 0.5))
from (location (0.0 3.0 -1.0)))

(path
(location (0.0 -0.03 0.0)))

(when NOW)
(velocity (special "crescendo"))
(interval (timed duration 5.0)))))

Figure 7.18 Example of a request for a movement of the camera
in ACTSCRIPT.

Chapter 7 Building Interactive Spaces 202

positive case, the movement is started. A message — also in ACTSCRIPT — is sent back to the
It module in both cases to communicate the actual state of the request. When the movement is
finished, another message is sent to It .

7.3.3 The Scripting Process
“It / I” was conceived from the beginning to be a full-length play with multiple scenes and
complex interactive structures. This made the play a great test for our paradigm of interval
scripts. However, as soon as the project started in January of 1997, it became clear that the
interval script paradigm needed to be improved and, especially, that a better interface should be
provided.

By the end of May of 1997 a new version of interval scripts had been developed and it proved
to be essential for the accomplishment of our goals of having an interesting and responsive
automatic computer character on stage. Here we present excerpts from the script of one of the
scenes of the play, covering from the middle-level control structures to the highest level
structure of the scene. We believe that those examples decisively support our claim that interval
scripts are a powerful paradigm to script interactive spaces.

Interval Scripts: the “It / I” Version

There are major differences between the interval scripts of “SingSong” and “It / I” . First, the
initial version employed C++ classes to interface the interval structure. Since we found that the
resulting code ended up being difficult to read, we decided to develop a language to describe
intervals and their constraints. Interval script files in this language are converted into C++ code
through a special compiler that encapsulates the different intervals in function calls. “It / I” was
developed using this compiler.

By this time, we had also found that a better way to represent the distinction between wish and
occurrence is the START, STOP, and STATE functions (as opposed to the double interval
concept that founded the “SingSong” version). Using this structure, the triggering of the
functions needs to be accomplished by comparing the current and the desired state of all
intervals, as explained in chapter 5.

The biggest difference between the version described in chapter 5 and the “It / I” version of
interval scripts is in the way that when statements are handled. In the current version, when
statements are translated into an interval containing the condition and, whenever the condition
becomes true, it becomes “desirable” that the resulting action happens. In the “It / I” version,
when statements are implemented as functions that are called after the current state of all
intervals is determined and PNF propagation is run. Although conceptually simpler, in the
“It / I” implementation the ability to forecast the next state is not present, weakening the
control power of the temporal constraints.

There are other differences between the “It / I” version and the described in chapter 5 (the
current version). In particular, the former allowed the declaration of conditions sensitive to
changes of state. For instance, in the “It / I” version it is possible to declare that an interval
should be started exactly when another interval changes its state — using the special syntax

Chapter 7 Building Interactive Spaces 203

becomes. After the performances, we realized that it is conceptually simpler to think only
about states of intervals and never about changes since it makes the run-time engine more
robust to errors and unexpected situations.

The “It / I” version also did not allow the declaration of nested intervals and therefore all sub-
actions of an action needed to be manually constrained (by only-during constraints). The
incorporation of nested structures into the interval script language considerably simplified the
definition of those situations.

Finally, there are other small differences in syntax between the “It / I” version and the current.
To set the state of the current interval, the “It / I” version used the keyword assert instead of
set-state. Also, we used the structure repeat if-after instead of the simpler concept of cycle
intervals.

Script Examples from “It / I”

In chapter 5 we have covered the basic syntax and semantics of interval scripts. Our goal here
is to examine three segments of the interval script of scene II of “It / I” to have a better idea of
how the interaction described in the script of the play is mapped into the control code.

Our first example corresponds to the beginning of scene II when It brings an image of a family
to the screen and moves it away when I shows interest on it by standing up. Figure 7.19 shows
the definition of the interval “family image scene” that controls this short scene. As we saw in
chapter 5, interval scripts allow complex combinations of start and stop functions of different
intervals when describing higher level functions, as it is the case of “family image scene”.

According to fig. 7.19, the definition of the interval “family image scene” is composed of the
definitions of START, STOP, and STATE functions, and two when statements. The associated
meaning is that when the interval “family image scene” is started (by a when statement not

"family image scene" = (1)

{ START: tryto start "bring family image". (2)

STOP: tryto start "remove family image". (3)

when "bring family image" is past (4)
tryto start "minimum time of family image". (5)

when "I is seated" is past (6)
AND "minimum time of family image" is past (7)

tryto start "remove family image". (8)

STATE: (9)
if "bring family image" is now (10)

OR "remove family image" is now assert now, (11)
if "remove family image" is past assert past. (12)

"bring family image", "remove family image", "minimum time of family image" (13)
only-during "family image scene". (14)

}. (15)

Figure 7.19 Example of a definition of an interval from scene II of “It/I”.

Chapter 7 Building Interactive Spaces 204

shown in the figure), the executed action is to call the START function of the “bring family
image” interval (in this case, executing its corresponding C++ code) as stated in line 2.
Similarly, to stop the scene, the image is removed from the screen by a call to start the interval
“remove family image”. The STATE function of “family image scene” is also defined based
on previously defined intervals. If either “bring family image” or “remove family image” are
happening now, the PNF-state of the interval is defined to be now; if “remove family image” is
over, the state is past; otherwise, an undetermined PNF-state is assumed as default.

Notice that when the STOP function is called, the interval does not immediately goes to the
past state, since it takes time to remove the family image from the screen. This is the typical
case of the distinction between desire and actual occurrence of an interval as discussed in
chapter 5. When the interval “family image scene” is asked to STOP, it starts the execution of
an action that eventually finishes the interval. This guarantees the designer that, no matter what
happens, a defined interval can be set to start and stop smoothly.

The scene of the family image involves bringing the image to the screen, waiting some time to
make sure that the image is seen by the audience and then checking if the human actor has
stood up. This succession of actions is controlled by two when statements. In lines 4 and 5, the
end of the interval “bring family image” is set to trigger the beginning of the timer “minimum
time of family image” (defined previously in the script). The end of the scene is triggered by the
other when statement that asserts that when both the timer “minimum time of family image” has
expired and the detector “I is seated” is no longer true then it is time to start removing the
family image. Notice that, once started, the interval has mechanisms to stop itself; it also can be
stopped at any moment by an external call to its STOP function.

Line 15 of “family image scene” is a statement that declares that “bring family image”,
“remove family image”, and “minimum time of family image” can only happen during “family
image scene”. This statement creates a temporal constraint linking the PNF-state of all these
actions and preventing, for instance, the call of the start function of “remove family image” if
“family image scene” is in the past state, even if all the conditions listed in the when
declaration apply.

This first example from the script of “It / I” shows how easily scenes composed of multiple
segments can be assembled in interval scripts. Also, as noticed above, it demonstrates how
simple is to create a scene that develops by itself but also has graceful finishing mechanisms.

Let us now examine a more complex segment of scene II. In this case, we want to define the
core of the scene, when It repetitively plays with I a “game” of taking and showing pictures.
Basically, the segment is composed of a loop where the It calls I to take a picture (by
“gesturing” with the camera), aims the camera, waits for the human actor to be still, takes the
picture, and displays all the pictures in a sort of “slide” show in a TV-like computer graphics
object. The cycle is finished when the human character refuses to attend the call of It by not
walking to the area in front of the screen where the camera is, provoking a series of explosions,
composed of CG-blocks, on the screens.

Chapter 7 Building Interactive Spaces 205

Figure 7.20 shows the part of the script of scene II that corresponds to the definition of
repetition cycle. This segment uses other intervals whose definitions are not included here. In
most cases these intervals simply encapsulate C++ code and their effects are easily understood
by their names.

The first lines of the script in fig. 7.20 define a repetition cycle based on the previously defined
action “It aims the camera” which corresponds to a rotation of the camera object so it points to
the area where I is. Basically, the action of aiming the camera is repeated as long as, at the end
of the cycle, the human character is not close to the big screen (what happens when he is
watching the “slide” show) and the camera is not taking a picture. This guarantees the
repetition of the aiming action while I wanders close to the small screen.

repeat "It aims the camera" (1)
 if-after NOT "I is close to big screen" (2)
 AND NOT "It takes picture" is past-or-now. (3)

"point and click" = (4)

{ (5)
START: tryto start "It aims the camera". (6)

STOP: tryto start “It takes picture”. (7)

STATE: if "It aims the camera" OR "It takes picture" assert now, (8)
 if "It takes picture" IS PAST assert past. (9)
}. (10)

"It aims the camera" only-during "point and click". (11)

"It takes picture" only-during "point and click". (12)

when "It aims the camera" becomes past (13)
 AND ((NOT "I is close to big screen") AND "I is in the same aiming area" AND "I is still") (14)
 tryto start "It takes picture". (15)

when "point and click" becomes past (16)
 tryto start "It brings tv". (17)

when "I is close to big" AND "It brings tv" is past AND "point and click" is past (18)
 tryto start "tv shows slide show". (19)

when "tv shows slide show" becomes past (20)
 tryto start "camera calls attention". (21)

"tvcamera cycle" = (22)
{ (23)
START: tryto start "point and click". (24)

STOP: tryto stop "tv displays pictures". (25)

STATE: if "point and click" OR "tv shows slide show" OR "camera calls attention" (26)
 assert now, (27)
 if "camera calls attention" is past OR "explosion cycle" is now (28)
 assert past. (29)

RESET: tryto reset “point and click”, “tv shows slide show”, :”camera calls attention”. (30)
}. (31)

Figure 7.20 Part of the script of scene II of “It / I”.

Chapter 7 Building Interactive Spaces 206

Following, in lines 4 to 10, the interval “point and click” is defined to control the occurrence of
the actions of aiming and clicking. In particular, this interval is used to guarantee that the
actions “It aims the camera” and “It takes picture” occur only when the interval is happening,
by the two constraints declared on lines 11 and 12. The when statement of lines 13 to 15
captures the moment when there is a chance to take a picture. Notice that the triggering of the
action “It takes a picture” will stop the repetition of “It aims the camera” but, according to the
when statement, this can happen only when one iteration of the aiming action is finished (as
written in line 13).

When the picture is taken, lines 16 and 17 trigger the bringing of the TV-like object to the big
screen. Although the action of taking pictures is repeated many times, the TV needs to be
brought only once. What happens is that, although the interval “It takes picture” goes to the
past state many times (and it is forgotten by the action of a repeat statement shown in the
excerpt), the action of bringing the TV goes to past and is not forgotten. Therefore, although
the condition of the when statement is true, the command tryto start has no effect on an interval
that has occurred.

To make the TV display the “slide show” of the pictures taken of I , we employ the when
statement of lines 18 and 19. Notice that it requires the TV object to be visible, the human
character to be close to the screen, and a picture to have already been taken. To complete the
cycle, lines 20 and 21 force the camera to make movements to attract I ’s attention, through the
action “camera calls attention”.

Finally, a complete iteration of the cycle is defined in “tv camera cycle” (lines 22 to 31). The
definition is quite similar to the action “family image scene” described in fig. 7.19, except for
the declaration of the RESET function that provides instructions about how to forget the
occurrence of an interval. In this case, it simply runs the resetting function of the action’s
constituent sub-actions.

The script in fig. 7.20 is a good example of scripting interaction of intermediate level. As we
see, the interaction is completely described using interval script structures and references to
low-level intervals. This ability to abstract into more complex actions proved to be extremely
helpful during the programming of “It / I” . Not only is the language cleaner than normal
programming code (i.e., C++), but it also avoids explicit references to what happens in the
periods of time when actions are starting or finishing. The START, STOP, and STATE
functions, by decoupling wish and occurrence of actions, prevent the designer from thinking
about intermediate states.

Finally, we want to examine the high-level script that controls the whole scene II of “It / I” , as
depicted in fig. 7.21. The first two lines ensure that after the “family image scene” happens, the
camera object is brought to the small screen, and starts to look for picture opportunities.

Chapter 7 Building Interactive Spaces 207

Lines 3 and 4 put constraints on the occurrence of some of the involved actions; these
constraints are important to prevent unexpected interactions during the development of the
script of the scene. In fact, these two constraints are typical examples of information that is
apparently redundant but in fact necessary to prevent run-time mistakes. These problems
typically arise from the fact that it takes different lengths of time for different actions to start
happening. In those conditions, weakly defined when statements may trigger and it is hard and
cumbersome to write down all the particular circumstances when they should not be activated.
Notice that these kind of “natural” constraints can always be added to the script if they are
redundant. Besides providing safety, they also make the script clearer.

The main piece of the script is the repeat cycle of line 5, which keeps repeating the action “tv
camera cycle” whenever the I character pays attention after being called (remember that the
last sub-action of “tv camera cycle” is “camera calls attention”). In the play, “I pays
attention” just by walking towards the camera and therefore, when that does not happen after
he is called, the condition of line 6 becomes true and It starts the “explosion cycle”, that is,
computer graphics rocks are thrown towards I in both screens. This cycle finishes automatically
and, after that, both the camera and the TV are removed from the screens according to line 10.

Figure 7.21 exemplifies the simplicity obtained by an interval script description of a complex
scene. This script is a compelling example of the level of abstraction achieved by our paradigm.
Without this power, we do not think it would be possible to manage the difficulty of creating a
script of a 40-minute interactive performance.

The Complexity of the Interval Script of “It / I”

For performance safety, we implemented each scene of “It / I” in a separate script, generating
four different executable files that were loaded in the beginning of the corresponding scene.
Table 7.6 summarizes the composition of the interval scripts of each scene of “It / I” ,
displaying the total number of intervals (i.e., the number of nodes of the PNF-network), the
number of those that were composed exclusively of C++ code, the number of intervals defined

when "family image scene" becomes past tryto start "It brings camera". (1)

when "It brings camera" becomes past tryto start "point and click". (2)

"family image scene" before OR meet "point and click". (3)

“It takes picture” before OR meet "explosion cycle". (4)

repeat "tvcamera cycle" if-after "I pays attention". (5)

when "tvcamera cycle" becomes past AND "I does not pay attention" (6)
 tryto start "explosion cycle". (7)

“tvcamera cycle” before OR meet "explosion cycle". (8)

when "explosion cycle" is past (9)
 tryto start "remove tv", "remove camera". (10)

Figure 7.21 Basic script for the whole scene II of "It / I".

Chapter 7 Building Interactive Spaces 208

based on previous intervals, the number of timers, and the number of when statements, repeat
structures, and explicitly defined constraints.

As can be seen in the table, we have approximately 100 intervals per scene, of which about half
are related to the interface to other elements of the system — the “C++”-only intervals. On
average, 20% of the intervals were constructed based on previously defined intervals (as
described in chapter 5 and exemplified above). In fact, in our experience we have found that the
ease of abstracting interval scripts to be extremely helpful for the design and development
process.

Notice that about 40% of the intervals are simply timers. This does not come as a surprise to
anyone who has actually built an interactive space, since it is extremely important to have
pauses and “beats” to smooth and connect the different pieces. Table 7.6 also shows that the
primary mechanism for controlling the experience in “It / I” ended up being the when
statements and not the temporal constraints. However, their role of avoiding undesired
situations is very important, as we could see in the excerpts of the script shown in figs. 7.19,
7.20, and 7.21.

In general, we found that the two most important contributions of the interval scripts to the
development of “It / I” were the ease of defining composite actions from previously defined
intervals; and the separation of wish and reality provided by the START, STOP, and STATE
functions and the when statements.

Problems in the Script Process

The problems with intervals scripts detected during the implementation of “It / I” informed the
design of the current version of the interval script language. For example, it was tedious to set
manual constraints for sub-actions of every action and, in practice, we ended up only declaring
those constraints whose lack resulted in a failure of a particular run. In the current version,
some constraints are automatically defined by the concept of nested intervals, i.e., by the
definition of an interval inside another. We also solved a similar problem with when
statements: in our current version, if they are defined inside an interval, their condition
automatically requires the inclosing interval to be happening now.

Although simple, the design of the run-time engine of the “It / I” version of interval scripts was
not able to take full advantage of the prediction powers of constraint propagation as discussed
in chapter 5. In particular, there were no recovery mechanisms and therefore constraints had to
be carefully placed to avoid unexpected interactions that could, sometimes, stop all actions
until some sensed state changed again. The idea of computing the desired state by PNF-

Table 7.6 The composition of the interval scripts for the different scenes of “It / I”.

total number
of intervals

when repeat constraints

scene I 120 51 43% 31 26% 38 32% 77 7 11
scene II 80 33 41% 17 21% 30 38% 52 8 18
scene III 92 46 50% 18 20% 28 30% 55 8 11
scene IV 115 41 36% 27 23% 47 41% 77 2 20

"C++"-only
intervals

intervals defined on
previous intervals

timer intervals

Chapter 7 Building Interactive Spaces 209

propagation and thinning (as described in chapter 5) considerably improved the robustness of
the run-time engine, allowing, for instance, the graceful survival of conflicts. In particular, the
new engine eliminated the need of implementing the call of the when functions in a separate
segment of the running cycle, resulting in a more homogeneous and stable system.

7.3.4 Action Recognition in “It / I”
To recognize the actions of the character I , the script of “It / I” employs techniques similar to
the ones described in chapter 4. Although the situations in the play are in general quite simpler
than the cooking show cases we discussed in chapter 4, it was necessary to make sure that any
tracked movement or detected gesture considers the current context of the play. For instance, if
the human actor approaches the right screen, this movement is recognized as “I pay attention to
camera” in the middle of the second scene and as “I tries to attract the camera attention” at
the end of the same scene. The only difference between these two situations is the context in
which they happen.

Such conditions are easily expressed in interval scripts by only-during constraints and/or
STATE functions. Similarly, we implemented the recognition of pieces of interaction using the
same mechanisms. For instance, in fig. 7.2 the interaction “tv camera cycle” is detected when
either of its sub-actions happens and finishes when either the last action is finished or a
subsequent action — “explosion cycle” — starts to happen. Although we do not see an explicit
IA-network representing the action, the definition is implicitly provided by the temporal
structures of the interval script and, in practice, the detection of the occurrence of the action
follows the same principles as the ones described in chapter 4.

Notice that in the previous example that we are not recognizing an isolated human action, but
the interaction process between the machine and user. That example typifies our view that, in
an interactive space, it is important to model and recognize not only the user actions, but also
the computer actions and the interaction itself. In fact, “It / I” has been an interesting domain
for recognition research precisely because the high level actions are in reality, dialogues
between the man and the machine.

7.3.5 The Experience
“It / I” was produced in the summer/fall of 1997 by Aaron Bobick with direction of Claudio
Pinhanez. Raquel Coelho was responsible for the design of the set, the costumes, and the
creation of the computer creature It . All the CG-objects that compose It have a non-realistic
look and are composed of the same basic CG-elements assembled in different proportions.
Freedom Baird composed the special sound effects associated to the movements of It ,
preserving the non-realistic concept, and based on a common ensemble of 15 MIDI
instruments.

John Liu and Chris Bentzel built the vision system and also contributed for the implementation
of the run-time system. Richard Marcus designed the light considering not only the motifs of
the play but also making sure that there was enough light for the vision system to operate.
Monica Pinhanez selected and arranged the excerpts from Beethoven’s piano sonatas and from
the “Ghost Trio”, and played the piano during the performances. Joshua Pritchard performed

Chapter 7 Building Interactive Spaces 210

as I , creating a character based on the idea of tragic clowns. The production was advised by
Prof. Janet Sonenberg from the MIT Music and Theater Arts Department.

“It / I” was performed six times at the MIT Media Laboratory for a total audience of about 500
people. We clearly noticed that the audience easily understood the computer character’s actions
and intentions. Particularly, the play managed to keep the “suspension of disbelief” throughout
its 40 minutes. The sound effects played a key role on creating the illusion that It was alive and
to convey the mood and personality of the character.

We were very pleased to see that the highly interactive structure of “It / I” seemed to avoid the
problem, mentioned earlier, of on-stage screens attracting excessive attention. The play
unfolded as a dialogue between the two actors, with the initiative and preeminence shifting
from one character to the other.

We did not expect that the audience would react to the theme and the story of the play as
strongly as they did. In general, as the play approached its end, there was a deep silence in the
house, in what seemed to be an expression of sadness and worry. Talking to the audience after
the performance revealed that the people found it disturbing to see a human being, even a
comic clown, to be treated in such a way by a machine. We believe that the play stroke a fear
that is hidden in our everyday interaction with computers: the fear of being dominated by
machines.

Each performance was followed by an explanation of the workings of the computer-actor. After
the explanation, we invited the audience to go up on stage and play scene II — the scene where
It plays with a camera and a television in front of the audience. It was a lot of fun and most
participants actively looked for new ways of producing their pictures on the screen (see
fig 7.23).

Figure 7.22 Two moments from scene III of “It / I”.

Chapter 7 Building Interactive Spaces 211

However, we never observed the audience-transformed-into-actors to get deeply involved in the
story. One of the reasons for this is that they performed in front of an audience and it is hard —
for non-actors — to become emotionally engaged in front of a large group of people. Besides
that, the control system was not really designed to handle normal users. In particular, it had
poor ways to handle user confusion and no strategies to provide help or suggestions. To solve
the first problem we thought about creating pieces of scenario that would materialize the fourth
wall (that is, cover the front of the stage), as we envisioned in the “Waltz #6” project described
in chapter 6. To address the confusion problem, we decided to rethink the play as an interactive
space for users in what became the project “It” described in the next section.

In the performances held in November of 1997 the recognition of gestures was not robust
enough and the occurrence of some gestures in two of the five scenes had to be manually
communicated to the system. Otherwise, the 40-minute performance was completely
autonomous, especially during the audience part. To our knowledge, “It / I” is the first play
ever produced involving a character automatically controlled by a computer that was truly
interactive.

7.4 “It”
Although in “It / I” we experimented with the idea of putting the audience inside a theatrical
play, we felt that it was necessary to develop further the automatic control system to allow full
dramatic immersion. Moreover, the open stage proved to be a hard place for non-actors to
experience the story of the play, mostly due to the discomfort of being watched.

To overcome these problems we decided to re-create the environment of the play “It / I” in a
version for users that we called “It” . Using the same visual and sound material, basic
story/theme, and conception, a new interactive space was created. Inhabited by the It character
the space tries to trap the user inside the space, under the disguise of a game of taking and

Figure 7.23 Audience participation in "It / I".

Chapter 7 Building Interactive Spaces 212

showing pictures. The installation was first run in March of 1999, during an open house for
sponsors of the MIT Media Laboratory.

Figure 7.24 shows the basic physical setup of “It” . It consists of two facing screens inside an
enclosed, dark room. Three cameras, in a stereo vision configuration similar to one employed
in “It / I”, monitor the space, detecting the user’s presence and position. The installation only
admits one user each time. Two independent sets of audio speakers are associated to each
screen, reproducing the sound generated by a MIDI synthesizer. Theatrical fixtures illuminate
the space, controlled by MIDI power devices.

7.4.1 Objectives and Context
We had many different goals and ideas to experiment with in “It”. The main objective was to
create a story-driven interactive space where users could experiment some of the feelings and
ideas previously developed in “It / I”. By revisiting the thematic of the play we also wanted to
explore different treatments for the same experience — for performers and for users — in a
situation where we somewhat could compare the two different experiences with the same
underlying structure.

Considering that our two previous projects in interactive spaces have relied in performers, we
also believed that some of our ideas about scripting were due to be tested in user-centric spaces.
Also, we wanted to address the issue of working with non-performers, who require automatic
characters to actively understand their actions and to provide help when confusion or inactivity
is detected.

cameras

TV screen

projector

block

speaker

user

front-projected
screen

MIDI-controled

 ligths

CG-object

MIDI synthesizerMIDI power boards

speaker

speaker

MIDI-controled

 ligths

curtain

Figure 7.24 Physical setup of “It”.

Chapter 7 Building Interactive Spaces 213

In terms of technology, we had three goals for the project “It”. First, we wanted a complex
testbed to test the new versions of the interval script language and its run-time engine. Second,
we want to develop an interactive system fully based in the layered story-character-device
(SCD) architecture. Finally, there were improvements in the expressiveness and run-time
parsing of the ACTSCRIPT language that we wanted to check in a real communication situation.

The “It” project also contains a great deal of experimentation with user-oriented interactive
elements. In particular, we were seeking to examine how to make a character pro-active in a
space, that is, a character that pushes the user into performing some actions and actively tries to
change the user mood. Among other means, in “It” we investigated changes of lighting
(including color changes) as a dramatic and immersive element.

7.4.2 The Story
The theme of “It” is the same of “It / I” , the entrapment of people by technology. However, in
“It”, we want the user to be actually attracted by narrative devices, seduced to play with the
machine, gradually start to feel uncomfortable about the situation, and suddenly discover that
he has no way to escape. The interactive story is basically described by the following script.

“It”

an interactive installation

by Claudio Pinhanez

A large space containing two screens in the opposite walls and wood blocks on
the floor. One of the screens (named as the left screen) is high enough so people
can not reach a significant portion of it. When there is nobody in the space, It
(the computer character that inhabits the space) is dormant: green lights, soft
machine sound in the background. When I (an individual user) enters the space,
It wakes up, switching the lights on and stopping the music. It tries to attract
and manipulate the attention of I by displaying beautiful images (of suns,
families, angels, flowers) on the left screen, and then removing them through the
right screen, as if the images have gone through the space, trying to make I to
focus on the right screen. It then surprises I by bringing a camera-like object to
the left screen. If at any moment I leaves the space, It tries to bring her back by
playing loud sound and fast switching color lights, as if complaining about I ’s
actions. The camera on the left screen follows I around the space and when she
stops moving, zooms in and “take a picture” (flashing the lights). Immediately
after, It moves a TV-like object to the right screen displaying the silhouette of
the picture taken by the camera. This silhouette is shown for some moments. The
goal of It is to involve I in this game of taking and seeing pictures, in a
“crescendo” frenzy of action. Each iteration of the taking-viewing cycle is
shorter than the previous but all the pictures are shown by the TV. I can be
encouraged to use the wood blocks to make more interesting silhouettes. After
the game reaches a very fast pace, It looses interest in I , removes the camera

Chapter 7 Building Interactive Spaces 214

and the TV from the screens and starts trying to push I out of the space. Initially
It switches different sets of color lights to create an uncomfortable atmosphere
but if I persists inside the space, It simulates on the screen the action of
throwing blocks into I ’s direction, together with very loud sound. When I leaves
the space, It goes back to the dormant state, ready for the next victim.

“It” uses the same visual (images, computer graphics) and sound elements as “It / I”, but it
was designed to be a self contained, stand-alone piece that can be enjoyed by users completely
unfamiliar with the play.

7.4.3 The Technology
Most of the technical structure of “It” is based on the technology built for “It / I”. The major
improvements to the play are in the architecture of the control modules that fully implement the
story-character-device (SCD) model; and the final version of the interval script language, that
removed most of the weak structures and assumptions of the version used in “It / I” .

“It” uses the same computer vision, sound control, and computer graphics modules employed
in the play, with the exception of minor improvements. To control the lights we employed two
4-channel MIDI-controlled TOPAZ power bricks in a daisy configuration, providing 8
independent dimmer channels. This proved to be a very simple and inexpensive solution to
control light in an interactive environment, avoiding altogether the expensive dimmer
controllers and light boards used in theater.

One of the reasons for building “It” was to experiment with the idea of implementing an
interactive space using the SCD architecture. Unlike in “It / I”, in this work the control is
clearly divided in three levels. Figure 7.25 diagrams the architecture of “It” . The device level
contains the software modules responsible for the direct control of the computer graphics,
sound, lights, and vision system. The character level implements three modules: one
corresponding to the It character, one for the user (or I character), and a third that corresponds
to a crew member, a light designer.

There are two reasons for singling out light control at the character level. First, unlike the other
actuators such as the computer graphics modules, light is controlled both by the character It and
by the top-level story module. Second, the user module changes its behavior according to the
light conditions in the space. For instance, when strong, dark color lighting is used, the
positional data becomes unreliable. We found it conceptually easier to have the user module
sending a single query just to the light designer module, asking whether the light conditions are
normal, instead of checking every dimmer of the low-level dimmer control module.

In this view, all the modules in the character level exchange middle-level information about
their activity and state. The It module questions the I module directly about the position of the
character: it is the user module responsibility to analyze the information coming from the vision
system and to decide if there is a user in the space and where she is.

Chapter 7 Building Interactive Spaces 215

The basic distinction between the story-level module and the character and crew modules is
that the latter contain a great deal of information about how to perform an action while the
former is mostly concerned about when and why to do it. For example, the story module has to
decide when it is the time for the It character module to attract I ’s attention using the images,
when to play I with pictures, and when to expel him from the space. In this last situation, a
request for expelling I from the space is translated by the It module into a request to the light
designer module to flash the lights from red to white, continuously, and, after some seconds, in
a sequence of commands to the computer graphics modules to generate explosions on the
screens.

Our experience using the SCD model has been extremely positive. Although it increases the
amount of communication between modules in a system, it reduces the conceptual complexity
and the flexibility for making changes. For instance, it becomes trivial to experiment with
different ordering for the story events, since the character level responds to the change without
the need for alterations.

However, the nature of the communication between the story and the character models require
a protocol where goals, actions, and intentions can be easily expressed. Conventional

user

cameras
microphones

lights
video screens

speakers

DEVICE LEVEL

context

action
recognizer

goals
behavior

script

character
controler

CHARACTER LEVEL

WORLD LEVEL

story

script

 story
manager

output
controler

sensor
processor

STORY LEVEL

output
controler

I (user)
module

It character
module

story control
module

user
script

 goals

light
controlerlight

script

module
light designer

Figure 7.25 System architecture of “It”.

Chapter 7 Building Interactive Spaces 216

procedural calls can hardly satisfy these conditions, making it important the use of a high level
language for actions such as the one we employed, ACTSCRIPT. Not surprisingly, we found the
ACTSCRIPT much more appropriate for the communication at this level than to exchange data
with the device modules. We could even observe a synergy between the two ideas, where the
SCD architecture created the need of expressive communications, while the ACTSCRIPT made it
easy for the story module to control the experience.

7.4.4 The Scripting Process
In “It” we employed the version of interval scripts described in detail in chapter 5. The major
differences between that version and the one used in “It / I” are, as pointed above, threefold.
First, in “It” we eliminated conditions based on change, allowing a much clearer handling of
the control structure. Second, when statements in the current version are translated directly into
constraints expressing occurrence relationships between the condition and the action to be
performed. And third, the current version allows the declaration of nested intervals and
automatically establishes containing relations between the declared intervals. In particular,
when statements declared inside an interval are only effective when the interval is happening.

The result is a language where the explicit declaration of temporal constraints is almost never
necessary. Instead, the designer writes the script file considering inclusion relationships,
triggering conditions, sequences, cycles, and timers. With such structures it is easy to describe
the basic structure of an interactive story and to refine it by explicitly incorporating constraints
to describe specific situations that must or must not occur, independently of the story sequence.

In other words, in “It” we could experiment with a scripting language closer to what we
consider the ideal paradigm where both procedural and constraint-based elements can be used
seamlessly. In our model, both are ultimately translated into the temporal constraint structure of
a PNF-network, allowing the run-time engine to reactively look for globally consistent states of
the intervals describing the script.

In table 7.7 we summarize the composition of the interval scripts used for the different modules
of “It”. First, notice that although the number of constraints in the network is quite large, the
number of explicitly declared constraints is quite low. This demonstrates the hiding of
constraints into language structures (such as when statements and nested intervals) as discussed
above.

Table 7.7 The composition of the interval scripts for the different modules in “It”.

number of
nodes

total number of
constraints

declared
constraints

when
statements

sequences cycles timers

story 59 101 4 23 0 0 6
it character 224 355 4 62 5 7 32
ic character 8 8 2 1 0 0 0
light designer 94 133 0 33 0 2 5

Chapter 7 Building Interactive Spaces 217

Table 7.7 also shows that interval scripts can be used to construct and control large and
complex collections of actions. For example, the It character module employs 224 intervals, 62
when statements, and 32 timers, for a total of more than 350 constraints. During run-time, we
apply PNF propagation on this network at the rate of 20 Hz without any visible impact on the
performance of the SGI R10000 machine used in the installation. In fact, all four modules run
simultaneously in one machine, consuming at most 15% of the CPU time, including here the
communication overhead.

In the current state of the installation “It” there is no complex case of action recognition, as
shown by the simplicity of the interval script for the I character. However, as discussed in
chapter 4, we have been using the “It” structure in our experiments in action recognition, and
future extensions of the installation are sought to contain more complex actions for the user,
including the manipulation of the wood blocks in situations similar to the ones depicted in
“It / I” .

The most major shortcoming of the current version of the interval scripts, based on our
experience with “It”, is the lack of a better interface for the designer of the space. Although for
the implementation we have implemented a graphical interactive display for the monitoring of
run-time execution, we still rely on writing long script files to describe the story and the
behavior of the characters. We envision as the next step of the development of interval scripts
the implementation of a graphical user interface or a management system for the script files
that could provide, for instance, the hiding of nesting intervals and the visual manipulation of
temporal constraints.

7.4.5 The Experience
We concluded the present installation of “It” in March 1999, in a laboratory space at the MIT
Media Laboratory. Since then we have had dozens of users experiencing the feeling of being
trapped by It . The current site is far from ideal, since one of the walls is made of glass and there
is a considerable amount of surrounding noise. Nevertheless, we are very pleased with the
reaction of the users and with the easiness that the interaction is understood. In particular, we
had some very interesting runs with children.

Like in “It / I” , sound proved to be a key component to provoke reaction in the users.
However, in “It” we introduced a great deal of intention and expression by changing lighting
conditions. We designed the light in “It” using three different colors, a white wash for the
normal interaction, a green wash when the creature is dormant, and a red blinking light used to
warn the user of inappropriate behavior (such as living the story in the middle). Combined with
sound, we witnessed an impressive impact of the lighting changes on people’s feelings.

Our current goal is to keep developing “It” by observing people’s reactions to the piece and
aiming to a future installation in a museum or gallery where a wider audience can be reached.

Chapter 7 Building Interactive Spaces 218

7.5 Summary
In this chapter we demonstrated the effectiveness of the use of the methods and ideas described
in this thesis in the context of real, complex interactive spaces. In the first project described, the
Intelligent Studio, we were able to apply the action frames scheme for human action
representation (detailed in chapter 2) in a system to automatically control cameras in a TV
studio. Based on the information contained in the script of a cooking show we could guarantee
that a 3D model of the scene was always reasonably correct. Good results were obtained in
three different sequences in two different scenarios.

The following three projects, “SingSong”, “It / I” , and “It” demonstrated the expressive power
and appropriateness of our idea of interval scripts, as can be seen from the examples collected
in this chapter. The three projects also brought evidence that PNF propagation is a sound and
efficient foundation for real-time temporal reasoning. “SingSong”, as our first experiment in
computer theater, showed that the concept of automatic computer-actors in performance was
feasible. Later, “It / I” proved that it is already possible to perform long and complex stories
with a computer partner. “It / I” and “It” furthered the development of ACTSCRIPT as a
communication language and assured us of the power of a human action-based language for
inter-module communication. Finally, the experience of building “It” based on the story-
character-device architecture was very rewarding, showing that there are advantages in
separating the character level from the story control.

Finally, we would like to say that computerized characters and plays have been our personal
path to explore the frontier between real and virtual worlds that is increasingly blurred by
technology. We have consciously explored the idea as theme of our work as part of the paradox
of fusing machine and creature, computer and actor. “SingSong”, “It / I” , and “It” are,
however, still simple, first experiments about designing, scripting, rehearsing, and performing
with characters — and “actors” — which are born virtual, truly inhabit a non-physical world,
interact with human performers and with computer entities, and tragically disappear with the
click of a switch.

Chapter 8 Conclusion 219

8. Conclusion

The fundamental observation that guided this thesis is that the temporal structure of actions can
often be complex, involving multiple parallel threads that can not be adequately represented by
finite-state machines. This is especially true in the domain of interactive spaces where there are
multiple sources of agency for the actions. Therefore, the likelihood of concomitant and at the
same time loosely synchronized action is very high, making very large the potential number of
individual states of the system.

The second reason for complex temporal structures in interactive spaces is precisely their
physicality. Unlike in desktop interaction, both the users’ physical movements and the devices’
actuation and control take time and therefore it is necessary to move from a basically discrete
space of events (or sets of events) into a much denser space composed of time intervals (and
configurations of intervals).

Such shift in the complexity of the temporal space must be matched by an increase in
sophistication and expressiveness of the temporal structures. This thesis investigates feasible
alternatives to finite-state machines in the context of real-time recognition of actions and
interaction control.

Our revision of classic AI methods such as conceptualizations and IA-networks has been
informed by our work on creating real interactive spaces. By doing so, we avoided the pitfall of
elegant but exponential theories of time or action. Besides being formally well rooted, our work
emphasized simpler but efficient formulations that preserve some desired properties of the
original theory. For instance, PNF-networks are certainly less expressive than IA-networks but
the 3-valued nodes eliminated completely a major source of exponential growth, that is, the
arithmetic of disjunct intervals. Nevertheless, we preserved the ability of determining whether
nodes are happening or not, which is the fundamental information for a control system of an
interactive space.

At the same time, our work also explored new domains for interactive applications and, in
particular, performance spaces. Both TV studios and theatrical stages have not been regarded
before as spaces for experiments in action recognition and representation. In fact, we took
advantage of some simplifications brought by performances in interactive spaces, the most

Chapter 8 Conclusion 220

prominent of them being the availability of some type of script that describes the actions which
are likely to occur.

However, our interest in interactive, story-driven space transcends their adequacy for our
scientific experiments. Particularly in the case of computer theater, the work described in this
thesis is a genuine effort to look for new media for art, entertainment, learning, and social life.
We believe that as important as developing tools that accommodate the needs of these new
media is to advance the understanding of their language and the impact that they have on
people.

In the rest of this chapter we review the main results and contributions of this thesis. We
conclude by examining future directions for our work.

8.1 Results and Contributions
The first contribution of our thesis is the action frames formalism to represent human action.
In many ways, the more important aspect of this part of our work is the “redemption” of
Schank’s conceptualizations [149]. Although having several limitations when applied in the
original domain (natural language processing), our approach proved to be well suited to the
purpose of providing a framework for action recognition. In particular, we have augmented the
original proposal by expressing the temporal structure of the action as constraints in an IA-
network where the nodes are the action’s basic units.

We have shown that it is possible to implement simple inference systems (in our case, based on
Rieger’s work [144]) that analyze an action frame into its simpler component sub-actions and
identify states of the world that, in theory, can be empirically tested. For instance, in one of our
examples from the cooking show domain, we were able to infer, from the description of an
action of “pounding chicken”, that the hands of the chef would be in the proximity of the
chopping-board.

Our representation of the temporal structure of an action is based on mapping all the
component units of the action into nodes of an interval algebra network and then determining
the temporal constraints that exist among these nodes. For each particular sensing situation, we
map the state of perceptual routines into new nodes of the network (constrained by sets of
temporal constraints). During run-time, the interval of activation of the sensor nodes can be
propagated to the other nodes and we have shown in examples that this is sufficient to allow the
recognition of the action provided that the constraints and perceptual routines are adequate.

However, constraint propagation in IA-networks is basically exponential. We circumvented this
problem by proposing a new class of temporal networks, PNF-networks, where each node
assumes one of the three values: past, now, or future. These networks are built so that their
solutions are conservative approximations of the solutions of the original IA-network. The
main advantage of PNF-networks is that the minimal domain of the network can be
conservatively approximated using arc-consistency [90], which is linear in the number of
constraints. The approximation is shown to have some nice properties and its application in
practice has been extremely successful.

Chapter 8 Conclusion 221

To recognize actions whose temporal structure is represented by a PNF-network (a projection
of the original IA-network), we developed the PNF propagation method that combines the
current information coming from perceptual routines with a compact representation of the past
occurrences of the action units. In the core of the method we employ the arc-consistency
algorithm to eliminate all the values from the PNF-state of the nodes that can not be consistent
with the rest of the network. This is a global procedure that is independent of node ordering and
that reaches a solution for the whole network.

In the thesis we have examined the PNF propagation in different conditions, first assuming that
all the sensors are always correct. In such cases it is possible to study the impact of different
constraints and sensors on the ability of a recognition system to detect an action. We then
developed a formulation that enables handling of sensor errors by keeping track of all different
threads of events that have solutions.

In this case we can not assure linear time or memory requirements except by arbitrarily
imposing a limit on how many threads are kept. However, when applied to practical problems
of action recognition, we have observed that the number of consistent threads tends to be stable
for a given action and that the recognition of an action with a larger number of units does not
necessarily require the keeping of a larger number of threads. This can be justified by the fact
that the set of consistent IA-networks is not dense in the set of IA-networks, particularly for
networks with more than 15 nodes [82].

Another contribution of this thesis is the interval script paradigm for the control of interaction.
First we observed that, since interaction is a special case of multi-agent action, the same sort of
complex temporal structures should be expected in the description of an interaction. In fact, it is
even worse if we consider the fact that actuators often take time to respond, if they respond at
all.

According to our proposal, an interval script describes, for each action and state, how to
determine its current state and how to start and stop (in the case of actions). Such descriptions
can be specified by considering previously defined actions, thereby providing a nice framework
for system development. During run-time, the interval script engine determines the current state
of all actions of the script and, using a variation of the PNF propagation method, predicts and
selects a consistent, “desired” state for all actions. In our implementation, we always select
states that minimize the amount of change in the sensed world. Given the current and the
desired state of each action, the interval script run-time engine can correspondingly determine
whether the action should start, stop, or remain in its current state. A feature of the interval
script paradigm is that it does not assume that an action starts because it was commanded to do
so.

On the other hand, a limitation of interval scripts is the lack of mechanisms to explicitly
construct plans. Since the PNF propagation algorithm does not distinguish between actions
happening in different times in the future, it is impossible to automatically reason about steps to
achieve a certain goal. Notice, however, that this does not impede the system to follow pre-
defined, scripted sequences with quite complex patterns of activation and reaction, departing

Chapter 8 Conclusion 222

from the traditional assumption of sequential actions employed in most planner-based
interaction control systems.

We have employed interval scripts to develop large-scale interactive spaces running in
performance situations. Our own experience of using the paradigm has been extremely
rewarding and we believe that the implementation of some of our interactive spaces would be
virtually a nightmare if we had not used interval scripts, particularly in the case of the computer
theater play “It / I” .

Two other contributions described in this thesis are the story-device-character architecture
(SCD) for story-driven interactive spaces; and the systematization of the ideas concerning
computer theater. We also believe that the interactive systems we built have also answered
some questions in the research community. In particular, the Intelligent Studio project showed
that high-level linguistic information not only can be incorporated into a vision system (through
adequate representation and inference) but also that its presence can significantly enhance the
capabilities of real-world system.

With “It / I” and, to some extent with “SingSong”, we demonstrated that computers can
control automatic actors in theater plays. Moreover, the experience with “It” has shown that
immersive stages can be quite appealing.

8.2 Directions to Explore
Having examined the multiple facets of our contributions, it is important to look at different
opportunities for research that have been left unexplored by our work.

In terms of action representation, it is certainly arguable whether the action frames formalism is
appropriate for the description of actions. The reduced number of primitives, although very
convenient when designing inference systems, sometimes produces long and difficult to read
descriptions of an action. Similarly, we have not investigated the translation of natural language
sentences into action frames. Specifying actions directly in natural language would certainly
facilitate enormously the design of action recognition systems. That is probably possible in the
case of action frames given the prior work on translation of conceptualizations [150].

Notice that in this thesis we did not discuss automatic mechanisms of inferring the temporal
structure from the action frame representation of an action but only the inference of the action’s
component sub-actions. We believe that the implementation of such an inference system is not
only desirable but also possible, especially considering that in IA-networks the temporal
constraints are disjunctions of primitive relationships.

The main question remaining from our analysis of IA-networks is under which conditions the
result of the arc-consistency algorithm is exactly equal to the PNF restriction of a component
domain. That is, what the structure should the PNF-networks have such that it is always true
that R W AC W1 6 1 6= . In chapter 3 we have presented some of these conditions in very specific
scenarios but it would be very useful to have an algorithm that could evaluate whether arc-
consistency can determine all the solutions for a specific PNF-network.

Chapter 8 Conclusion 223

Many interesting directions arise from our idea of using PNF propagation for action
recognition. As pointed in chapter 4, it is important to investigate how to incorporate
confidence measures and probabilistic reasoning into the framework. Especially in the case of
visual recognition of actions, there is a clear trend in the computer vision community towards
probabilistic methods. In that chapter we sketched a method to include confidence measures
into PNF propagation but we have not tested yet those ideas. Also, it seems promising to
explore the possibility of including probabilistic reasoning inside the temporal constraint
propagation process, although going in this direction might remove one of the chief features of
PNF propagation, that is, the detection and removal of contradictory configurations of sensor
values.

We see many different ways to extend our interval script language. First, as mentioned in
chapter 5, we should investigate the appropriateness of a graphical user interface as the front-
end of the system. Another approach, especially for high-level scripting, would be to consider
the translation of natural language descriptions of interaction and story directly into interval
scripts. There is also room for the design of debugging tools for multi-module, interval script-
based interactive spaces.

A problem we have noticed while working with interval scripts is that it is hard to find the
cause of inconsistencies in a PNF-network. An inconsistency can be generated after any
number of steps of the arc-consistency cycle, making it impossible to find the original violation
that triggered the inconsistency. This is an intrinsic component of the constraint propagation
paradigm, in some ways corresponding to the price to be paid for the ability to find globally
consistent solutions. In the interval script framework, however, it is possible to better localize
and, more importantly, isolate sources of inconsistency by using the nested structure of the
intervals.

One idea is to implement the PNF-network of an interval script as a set of nested PNF-networks
where each sub-network corresponds to the intervals that are defined inside an interval. Instead
of running the arc-consistency algorithm in the whole network, we start by applying it to the
sub-networks, following the temporal order implicit in their definition. If a sub-network is
inconsistent, it is possible to avoid the spread of the problem by simply assigning PNF to all the
nodes of the sub-network. We have not yet experimented with this method in practice but we
believe it can alleviate considerably the occurrence of large-scale propagation of
inconsistencies.

Another approach we want to explore in the future is the use of the error recovery methods
described in chapter 4 in the run-time engine of interval scripts. In other words, we believe the
reliability of the execution of an interval script can be improved if we explicitly model the
possible failure of sensors and track the multiple threads of sensor events as we did for action
recognition. Also, the method to compute likelihood of component domains presented in
chapter 4 can be used to assure smoother runs of interval scripts.

A much more complex problem is the lack of means for reasoning about plans and goals in the
interval script structure. As discussed in chapter 5, this relates to the fact that PNF propagation
lumps together all the intervals to happen after the current instant of time. We would like to

Chapter 8 Conclusion 224

incorporate to the language mechanisms that would allow it to check for globally consistent
solutions not only for the instant of time immediately after the current but for some reasonable
amount of time afterwards. To achieve this, it is necessary to include the concept of action
length into the language and to investigate fast algorithms that approximate solutions to the
network.

Finally, it is necessary to make the interval script tools available to a larger audience, so it
becomes possible to evaluate if designers of interactive spaces and systems can use the interval
script paradigm to develop real world applications.

In terms of application and domains, we believe that there is an incredible potential yet to be
realized in computer theater. Although our work has been quite effective in raising the attention
and interest in the use computers in theater among the art and technology community, our next
step should involve computer theater productions that reach the theater community and the
general public. Our current plan is to professionally produce the “Waltz #6” project described
in chapter 6 in the summer of 2000. We are also interested in developing further the concept of
hyper-actors, that is, electronic, controllable expansions of the actor’s body, in particular using
wearable computers [123] and affective computing [127] technology.

We also see a great deal of potential in our concept of immersive stages. The experience with
“It” , although extremely rewarding, could not demonstrate conclusively the public acceptance
of the idea of an interactive space designed both for performance and for private enjoyment.
The project “Waltz #6” includes in its concept, as shown in chapter 6, the conversion of the
performer’s space into an interactive art installation when performance is not happening.

Finally, we want to explore applications for interactive spaces beyond the art and entertainment
domain. We see the technology discussed in this thesis being ported first to other performance
spaces: auditoriums, classrooms, showrooms, live TV shows, sport arenas, maybe even
churches. Beyond that, action recognition and interaction scripting can be applied in more
generic interactive spaces, such as meeting rooms, stores, customer service areas, libraries,
parks and other leisure areas, airport terminals and train stations, and hospitals. And, of course,
at home.

8.3 A Final Word
Much of the work presented in this thesis can be characterized as an effort to recycle the
artificial intelligence research done in the past. After the hype of 70s and the downfall of the
90s, we believe it is time to re-evaluate the proposals and ideas introduced by AI in the light of
the changes brought by the widespread of personal computers and the emergence of the
Internet.

This does not mean that we should all go back to develop expert systems. In our view, the
correct approach is to re-read the vast AI literature with new applications and approaches in
mind. For instance, the amount of personal information available today in digital form (through
consumer profiles, personal schedulers, computerized documents, etc.) can not be compared to
the AI scenario of 20 years ago, making feasible to trade off deep reasoning by extra
knowledge (see, for example [93, 95]).

Chapter 8 Conclusion 225

Our work with conceptualizations follows this trend of revisiting AI. By considering Schank’s
paradigm not as a representation for communicative thought but instead as a formalism for
action, we were able to employ the theory effectively in a real interactive system. Similarly, we
approached temporal representation theory thinking not about reasoning but in real-time
recognition. That allowed us to abstract the interval concept into a three-valued structure that
could be used in real-time and still provide the information basically needed in the detection
problem.

A particular area where we see a potentially huge impact of artificial intelligence methods and
particularly, action representation and recognition, is human-computer interfaces. Current
computers treat us as if we were machines: no past, no individuality, no intentions, no
emotions, and no culture. By providing computers with action representation mechanisms, it
might be possible to make machines that can consider the context of their actions and therefore
provide much clear and responsive support for the user’s activities.

Such influence in the ways human and computer interact can be even greater if we consider that
more and more we will interact with computers outside the desktop paradigm. If ubiquitous
computing [179], wearable computers [123], and tangible interfaces [64] become a reality, we
are creating scenarios where the insertion of computer happens in more precise contexts and in
the presence of more information. At the same time, a computer’s actions, if not appropriately
controlled, can become as inconvenient as today’s indiscriminate ringing of cellular phones.
We believe that such technologies can have a place in the market only if the interface
recognizes what the user is doing and in which context she is, reacting appropriately.

Finally, we want to build the Holodeck (the imaginary space portrayed in the “Start Trek” TV
series where holography immerses people in interactive stories). However, we believe that we
do not need life-size holography or tele-transported matter but that immersion is less a product
of high-quality displays or physical stimuli than a consequence of responsive characters and
good stories. Building the Holodeck is a matter of creating believable worlds where the body is
transported by the mind.

I dream of being able to choose the dreams I will dream.

Appendices

Appendix A 227

A. Script and Inferences in the Cooking Show
Example

Action Frame Script

;;;======================================
;; class definitions

(chef sc::human-being)
(bread-crumbs sc::powdered-substance)
(parsley sc::powdered-substance)
(paprika sc::powdered-substance)
(basil sc::powdered-substance)
(bowl sc::handleable-object)
(chicken sc::handleable-object)
(plastic-bag sc::handleable-object)
(meat-mallet sc::handleable-object)
(chopping-board sc::static-object)

(hands sc::human-hands)
(mouth sc::human-mouth)

(public sc::virtual-human-being)
(sound sc::expression-medium)
(gestures sc::expression-medium)
(text1 sc::idea)
(text2 sc::idea)
(how-to-pound sc::idea)

(:side sc::camera-object)
(:center sc::camera-object)
(:upper sc::camera-object)

(ready-dish sc::handleable-object)
(cup sc::handleable-object)
(tomato-bowl sc::handleable-object)
(ham-bowl sc::handleable-object)

(table sc::static-object)
(oven sc::static-object)

;;;=======================================
;; list of actions

;; "chef greets the public (to center camera)"
(mtrans

(time (group (begin 1) (end 62)))
(actor chef) (to public)
(object text1)
(instrument

(speak (actor chef) (object sound)
(to (direction :center))
(from (location

(description
(object mouth)
(concept
(have

(object mouth)
(attribute

(part chef))))))))))

;; "chef turns to side camera"
(ptrans

(time (group (begin 63) (end 67)))
(actor chef) (object chef)
(result

(change (object chef)
(to (direction :side)))))

;; "chef talks about today's recipe (to side camera)"
(mtrans

(time (group (begin 68) (end 135)))
(actor chef) (to public)
(object text2)
(instrument

(speak (actor chef)
(object sound)
(to (direction :side))
(from (location

(description
(object mouth)
(concept
(have

(object mouth)
(attribute

(part chef))))))))))

Appendix A 228

;; "chef turns back to center camera"
(ptrans

(time (group (begin 136) (end 138)))
(actor chef) (object chef)
(result

(change (object chef)
(to (direction :center)))))

;; "chef mixes bread-crumbs, parsley, paprika, and basil in a
bowl"
(do-something

(time (group (begin 139) (end 275)))
(actor chef)
(result

(change
(object

(group bread-crumbs parsley
paprika basil))

(to (phys-cont
(group bread-crumbs parsley

paprika basil))))))

;; "chef wraps chicken with a plastic bag"
(do-something

(time (group (begin 276) (end 336)))
(actor chef)
(result

(change (object chicken)
(to (group (contain plastic-bag)

(phys-cont plastic-bag))))))

;; "chef shows how to pound the chicken (on the chopping-
board)"
(mtrans

(time (group (begin 337) (end 380)))
(actor chef)
(object how-to-pound)
(to public)
(instrument (group

(speak (actor chef)
(object sound)
(from (location

(description (object mouth)
(concept
(have

(object mouth)
(attribute (part chef))))))

(to (direction :center)))
(speak (actor chef)

(object gestures)
(from (location

(description (object hands)
(concept
(have

(object hands)
(group (attribute (part chef)

(proximity chopping-board))))))
(to (direction :center)))))

;; ""chef pounds the chicken with a meat-mallet (on the
chopping-board)"
(propel

(time (group (begin 381) (end 400)))
(aider

(group back-and-forth fast strong))
(actor chef)
(object meat-mallet)
(from (location

(description (object ?in-contact)
(concept (have (object ?in-contact)

(attribute

(phys-cont chicken)))))))
(from (location

(description (object ?not-in-contact)
(concept (have (tense negation)

(object ?not-in-contact)
(attribute

(phys-cont chicken)))))))
(result

(change (object
(description (object chicken)

(concept (have (object chicken)
(attribute
(phys-cont chopping-board))))))

(from (flatness ?X))
(to (flatness (greater ?X))))))

List of All Inferences for Each
Action

;;;=======================================
;; "chef greets the public (to center camera)"
(mtrans

(time (group (begin 1) (end 62)))
(actor chef) (to public) (object text1)
(instrument

(speak (actor chef) (object sound)
(to (direction :center))
(from (location

(description (object mouth)
(concept
(have

(object mouth)
(attribute

(part chef))))))))))

;; inferred actions and attributes
(have

(time (group (begin 1) (end 62)))
(object mouth)
(attribute (part chef)))

;;;=======================================
;; "chef turns to side camera"
(ptrans

(time (group (begin 63) (end 67)))
(actor chef) (object chef)
(result

(change (object chef)
(to (direction :side)))))

;; inferred actions and attributes
(propel

(time (group (begin 63) (end 67)))
(actor chef) (object chef))

(move
(time (group (begin 63) (end 67)))
(actor chef) (object chef)))

;;;=======================================
;; "chef talks about today's recipe (to side camera)"
(mtrans

(time (group (begin 68) (end 135)))
(actor chef) (to public)
(object text2)
(instrument

(speak (actor chef)
(object sound)
(to (direction :side))

Appendix A 229

(from (location
(description (object mouth)

(concept
(have

(object mouth)
(attribute

(part chef))))))))))

;; inferred actions and attributes
(have

(time (group (begin 68) (end 135)))
(object mouth)
(attribute (part chef))))

;;;=======================================
;; "chef turns back to center camera"
(ptrans

(time (group (begin 136) (end 138)))
(actor chef) (object chef)
(result

(change (object chef)
(to (direction :center)))))

;; inferred actions and attributes
(propel

(time (group (begin 136) (end 138)))
(actor chef) (object chef))

(move
(time (group (begin 136) (end 138)))
(actor chef) (object chef)))

;;;=======================================
;; "chef mixes bread-crumbs, parsley, paprika, and basil in a
bowl"
(do-something

(time (group (begin 139) (end 275)))
(actor chef)
(result

(change
(object

(group bread-crumbs parsley
paprika basil))

(to (phys-cont
(group bread-crumbs parsley

paprika basil))))))

;; inferred actions
(have

(time (group (begin 139) (end 275)))
(object (group bread-crumbs parsley

paprika basil))
(attribute (contain bowl)))

(ptrans
(time (group (begin 139) (end 275)))
(actor chef)
(object (group bread-crumbs parsley

paprika basil))
(to (location x70764)))

(have
(time (group (begin 139) (end 275)))
(object x70764)
(attribute (phys-cont

(group bread-crumbs parsley paprika
basil))))

(propel
(time (group (begin 139) (end 275)))
(actor chef)
(object (group bread-crumbs parsley

paprika basil))

(to (location x70764)))

(grasp
(time (group (begin 139) (end 275)))
(actor chef) (object bowl)
(to hands))

(have
(time (group (begin 139) (end 275)))
(object hands)
(attribute (part chef)))

(move
(time (group (begin 139) (end 275)))
(actor chef) (object hands)
(to (location x70764)))

(have
(time (group (begin 139) (end 275)))
(object (group bread-crumbs parsley

paprika basil))
(attribute (phys-cont hands)))

(have
(time (group (begin 139) (end 275)))
(object (group bread-crumbs parsley

paprika basil))
(attribute (phys-cont x70764)))

(have
(time (group (begin 139) (end 275)))
(object bowl)
(attribute (phys-cont hands)))

(have
(time (group (begin 139) (end 275)))
(object hands)
(attribute

(phys-cont (group bread-crumbs parsley
paprika basil))))

(have
(time (group (begin 139) (end 275)))
(object hands)
(attribute (phys-cont bowl)))

(have
(time (group (begin 139) (end 275)))
(object x70764)
(attribute

(proximity (group bread-crumbs parsley
paprika basil))))

(have
(time (group (begin 139) (end 275)))
(object (group bread-crumbs parsley

paprika basil))
(attribute (proximity hands)))

(have
(time (group (begin 139) (end 275)))
(object (group bread-crumbs parsley

paprika basil))
(attribute (proximity x70764)))

(have
(time (group (begin 139) (end 275)))
(object bowl)
(attribute (proximity hands)))

(have
(time (group (begin 139) (end 275)))
(object hands)

Appendix A 230

(attribute
(proximity (group bread-crumbs parsley

paprika basil))))

(have
(time (group (begin 139) (end 275)))
(object hands)
(attribute (proximity bowl)))

(have
(time (group (begin 139) (end 275)))
(object (group bread-crumbs parsley

paprika basil))
(attribute

(proximity (group bread-crumbs parsley
paprika basil))))

(have
(time (group (begin 139) (end 275)))
(object (group bread-crumbs parsley

paprika basil))
(attribute (proximity bowl)))

(have
(time (group (begin 139) (end 275)))
(object bowl)
(attribute
(proximity (group bread-crumbs parsley

paprika basil)))))

;;;=======================================
;; "chef wraps chicken with a plastic bag"
(do-something

(time (group (begin 276) (end 336)))
(actor chef)
(result

(change (object chicken)
(to (group (contain plastic-bag)

(phys-cont plastic-bag))))))

(ptrans
(time (group (begin 276) (end 336)))
(actor chef) (object chicken)
(to (location x70765)))

(have
(time (group (begin 276) (end 336)))
(object x70765)
(attribute (phys-cont plastic-bag)))

(propel
(time (group (begin 276) (end 336)))
(actor chef) (object chicken)
(to (location x70765)))

(grasp
(time (group (begin 276) (end 336)))
(actor chef) (object chicken)
(to hands))

(have
(time (group (begin 276) (end 336)))
(object hands)
(attribute (part chef)))

(move
(time (group (begin 276) (end 336)))
(actor chef) (object hands)
(to (location x70765)))

(have
(time (group (begin 276) (end 336)))
(object hands)

(attribute (phys-cont chicken)))

(have
(time (group (begin 276) (end 336)))
(object chicken)
(attribute (phys-cont hands)))

(have
(time (group (begin 276) (end 336)))
(object chicken)
(attribute (phys-cont x70765)))

(have
(time (group (begin 276) (end 336)))
(object plastic-bag)
(attribute (phys-cont x70765)))

(have
(time (group (begin 276) (end 336)))
(object x70765)
(attribute (phys-cont chicken)))

(have
(time (group (begin 276) (end 336)))
(object x70765)
(attribute (proximity plastic-bag)))

(have
(time (group (begin 276) (end 336)))
(object hands)
(attribute (proximity chicken)))

(have
(time (group (begin 276) (end 336)))
(object chicken)
(attribute (proximity hands)))

(have
(time (group (begin 276) (end 336)))
(object chicken)
(attribute (proximity x70765)))

(have
(time (group (begin 276) (end 336)))
(object plastic-bag)
(attribute (proximity x70765)))

(have
(time (group (begin 276) (end 336)))
(object x70765)
(attribute (proximity chicken)))

(have
(time (group (begin 276) (end 336)))
(object plastic-bag)
(attribute (proximity chicken)))

(have
(time (group (begin 276) (end 336)))
(object plastic-bag)
(attribute (proximity hands)))

(have
(time (group (begin 276) (end 336)))
(object x70765)
(attribute (proximity hands)))

(have
(time (group (begin 276) (end 336)))
(object chicken)
(attribute (proximity plastic-bag)))

(have

Appendix A 231

(time (group (begin 276) (end 336)))
(object hands)
(attribute (proximity plastic-bag)))

(have
(time (group (begin 276) (end 336)))
(object hands)
(attribute (proximity x70765))))

;;;=======================================
;; "chef shows how to pound the chicken (on the chopping-
board)"
(mtrans

(time (group (begin 337) (end 380)))
(actor chef)
(object how-to-pound)
(to public)
(instrument (group

(speak (actor chef)
(object sound)
(from (location

(description (object mouth)
(concept
(have

(object mouth)
(attribute (part chef))))))

(to (direction :center)))
(speak (actor chef)

(object gestures)
(from (location

(description (object hands)
(concept
(have

(object hands)
(group (attribute (part chef)

(proximity
chopping-board))))))

(to (direction :center)))))

(have
(time (group (begin 337) (end 380)))
(object mouth)
(attribute (part chef)))

(have
(time (group (begin 337) (end 380)))
(object hands)
(attribute

(group (part chef)
(proximity chopping-board))))

(have
(time (group (begin 337) (end 380)))
(object chopping-board)
(attribute (proximity hands)))

(have
(time (group (begin 337) (end 380)))
(object hands)
(attribute (proximity chopping-board))))

;;;=======================================
;; ""chef pounds the chicken with a meat-mallet (on the
chopping board)"
(propel

(time (group (begin 381) (end 400)))
(aider (group back-and-forth fast strong))
(actor chef)
(object meat-mallet)
(from (location

(description (object ?in-contact)
(concept (have (object ?in-contact)

(attribute

(phys-cont chicken)))))))
(to (location

(description (object ?not-in-contact)
(concept (have (tense negation)

(object ?not-in-contact)
(attribute

(phys-cont chicken)))))))
(result

(change (object
(description (object chicken)

(concept (have (object chicken)
(attribute
(phys-cont chopping-board))))))

(from (flatness ?X))
(to (flatness (greater ?X))))))

(have
(time (group (begin 381) (end 400)))
(object u65888)
(attribute (phys-cont chicken)))

(have
(time (group (begin 381) (end 400)))
(tense negation)
(object m65889)
(attribute (phys-cont chicken)))

(have
(time (group (begin 381) (end 400)))
(object chicken)
(attribute (phys-cont chopping-board)))

(grasp
(time (group (begin 381) (end 400)))
(aider

(group back-and-forth fast strong))
(actor chef)
(object meat-mallet)
(to hands))

(have
(time (group (begin 381) (end 400)))
(object hands)
(attribute (part chef)))

(move
(time (group (begin 381) (end 400)))
(aider

(group back-and-forth fast strong))
(actor chef) (object hands)
(to (location m65889))
(from (location u65888)))

(have
(time (group (begin 381) (end 400)))
(object hands)
(attribute (phys-cont meat-mallet)))

(have
(time (group (begin 381) (end 400)))
(object meat-mallet)
(attribute (phys-cont u65888)))

(have
(time (group (begin 381) (end 400)))
(object meat-mallet)
(attribute (phys-cont m65889)))

(have
(time (group (begin 381) (end 400)))
(object meat-mallet)
(attribute (phys-cont hands)))

Appendix A 232

(have
(time (group (begin 381) (end 400)))
(object chicken)
(attribute (phys-cont u65888)))

(have
(time (group (begin 381) (end 400)))
(object chopping-board)
(attribute (phys-cont chicken)))

(have
(time (group (begin 381) (end 400)))
(object u65888)
(attribute (phys-cont meat-mallet)))

(have
(time (group (begin 381) (end 400)))
(object m65889)
(attribute (phys-cont meat-mallet)))

(have
(time (group (begin 381) (end 400)))
(object u65888)
(attribute (proximity chicken)))

(have
(time (group (begin 381) (end 400)))
(object chicken)
(attribute (proximity chopping-board)))

(have
(time (group (begin 381) (end 400)))
(object hands)
(attribute

(proximity meat-mallet)))

(have
(time (group (begin 381) (end 400)))
(object meat-mallet)
(attribute (proximity u65888)))

(have
(time (group (begin 381) (end 400)))
(object meat-mallet)
(attribute (proximity m65889)))

(have
(time (group (begin 381) (end 400)))
(object meat-mallet)
(attribute (proximity hands)))

(have
(time (group (begin 381) (end 400)))
(object chicken)
(attribute (proximity u65888)))

(have
(time (group (begin 381) (end 400)))
(object chopping-board)
(attribute (proximity chicken)))

(have
(time (group (begin 381) (end 400)))
(object u65888)
(attribute (proximity meat-mallet)))

(have
(time (group (begin 381) (end 400)))
(object m65889)
(attribute (proximity meat-mallet)))

(have
(time (group (begin 381) (end 400)))

(object chicken)
(attribute (proximity m65889)))

(have
(time (group (begin 381) (end 400)))
(object chicken)
(attribute (proximity meat-mallet)))

(have
(time (group (begin 381) (end 400)))
(object chicken)
(attribute (proximity hands)))

(have
(time (group (begin 381) (end 400)))
(object chopping-board)
(attribute (proximity u65888)))

(have
(time (group (begin 381) (end 400)))
(object chopping-board)
(attribute (proximity m65889)))

(have
(time (group (begin 381) (end 400)))
(object chopping-board)
(attribute (proximity meat-mallet)))

(have
(time (group (begin 381) (end 400)))
(object chopping-board)
(attribute (proximity hands)))

(have
(time (group (begin 381) (end 400)))
(object u65888)
(attribute (proximity chopping-board)))

(have
(time (group (begin 381) (end 400)))
(object u65888)
(attribute (proximity m65889)))

(have
(time (group (begin 381) (end 400)))
(object u65888)
(attribute (proximity hands)))

(have
(time (group (begin 381) (end 400)))
(object m65889)
(attribute (proximity chicken)))

(have
(time (group (begin 381) (end 400)))
(object m65889)
(attribute (proximity chopping-board)))

(have
(time (group (begin 381) (end 400)))
(object m65889)
(attribute (proximity u65888)))

(have
(time (group (begin 381) (end 400)))
(object m65889)
(attribute (proximity hands)))

(have
(time (group (begin 381) (end 400)))
(object meat-mallet)
(attribute (proximity chicken)))

Appendix A 233

(have
(time (group (begin 381) (end 400)))
(object meat-mallet)
(attribute (proximity chopping-board)))

(have
(time (group (begin 381) (end 400)))
(object hands)
(attribute (proximity chicken)))

(have
(time (group (begin 381) (end 400)))
(object hands)
(attribute (proximity chopping-board)))

(have
(time (group (begin 381) (end 400)))
(object hands)
(attribute (proximity u65888)))

(have
(time (group (begin 381) (end 400)))
(object hands)
(attribute (proximity m65889))))

Appendix B 234

B. Grammar of A CTSCRIPT

message: '(' REQUEST message_name concept ')'
| '(' ANSWER message_name concept ')'
| '(' STATEMENT message_name concept ')'
| '(' QUESTION message_name concept ')';

message_name: '(' GENERATOR name number name response ')';

response:
| '(' RESPONSE name number ')';

concept: action | description | '(' NOT action ')'
| '(' NOT description ')' | INTERROGATION | WILDCARD;

name: string | INTERROGATION | WILDCARD;

action: '(' ACTION name action_description ')';

action_description: '(' action_primitive act_attribute_list ')'
| INTERROGATION | WILDCARD;

action_primitive: DOSOMETHING | MOVE | PRODUCE | ATTEND
| PTRANS | PROPEL | GRASP | ATRANS | MTRANS | MBUILD
| INTERROGATION | WILDCARD;

act_attribute_list: act_attribute | act_attribute_list act_attribute
| INTERROGATION | WILDCARD ;

act_attribute: '(' SPECIAL string_list ')'
| '(' OBJECT name ')'
| '(' OBJECTCONCEPT concept_list ')'
| '(' DIRECTION to_position from_position ')'
| '(' PATH position_list ')'
| '(' RECIPIENT to_name from_name ')'

Appendix B 235

| '(' LOCATION position ')'
| '(' INTENSITY value ')'
| '(' VELOCITY value ')'
| '(' INTERVAL time_interval ')'
| '(' WHEN time_description ')'
| '(' MODE string_list ')'
| '(' RESULT '(' CHANGE to_attribute from_attribute ')' ')'
| '(' INSTRUMENT concept_list ')'
| '(' REASON concept_list ')'
| '(' ENABLE concept_list ')'
| '(' ENABLEDBY concept_list ')' ;

concept_list: concept | concept_list concept ;

to_position: | TO position ;

from_position: | FROM position ;

to_name: | TO name ;

from_name: | FROM name ;

to_attribute: | TO description ;

from_attribute: | FROM description ;

description: '(' DESCRIPTION name attribute_description ')' ;

attribute_description: '(' ATTRIBUTE attribute_list ')'
| INTERROGATION | WILDCARD ;

attribute_list: attribute | attribute_list attribute
| INTERROGATION | WILDCARD ;

attribute: '(' SPECIAL string_list ')'
| '(' WHEREABOUT position ')'
| '(' SPEED measure ')'
| '(' SIZE measure ')'
| '(' NUMBEROF value ')'
| '(' BOUNDELLIPSE position measure measure measure ')'
| '(' WHEN time_description ')'
| '(' INTERVAL time_interval ')'
| '(' MENTALSTATE value ')'
| '(' PHYSICALSTATE value ')'
| '(' CONSCIOUSNESS value ')'
| '(' HEALTH value ')'
| '(' FEAR value ')'
| '(' ANGER value ')'
| '(' DISGUST value ')'
| '(' SURPRISE value ')'
| '(' KNOW concept_list ')'

Appendix B 236

| '(' UNDERSTAND concept_list ')' ;

position_list: position | position_list position ;

position: '(' SPECIAL string_list ')'
| '(' COORD measure measure measure ')'
| '(' measure measure measure ')'
| ORIGIN | INTERROGATION | WILDCARD ;

measure: value | '(' UNITS value unit ')'
| ZEROLENGTH | ONELENGTH ;

unit: '(' SPECIAL string_list ')' | UNITLENGTH | UNITTIME ;

value: number | ZERO | ONE | '(' SPECIAL string_list ')'
| INTERROGATION | WILDCARD ;

time_description: ___ | _N_ | P__ | __F | PN_ | _NF | P_F | PNF
| INTERROGATION | WILDCARD ;

time_interval: '(' TIMED time_start time_end time_duration ')' ;

time_start: | START time_unit ;

time_end: | END time_unit ;

time_duration: | DURATION time_unit ;

time_unit: value | '(' UNITS value UNITTIME ')' ;

number: <INTNUMBER> | <FLOATNUMBER> ;

string_list: string | string_list string
| INTERROGATION | WILDCARD ;

string: <STRING> ;

Appendix C 237

C. Action Frames for “Mix” and “Wrap”

Action Frame Representation
for “Mixing Ingredients”

;;==
;; "chef mixes bread-crumbs, parsley,
;; paprika, salt, and basil in a bowl"
;;=======================================

(do-something
 (c-time (interval ?chef-is-mixing))
 (actor chef)

 ;; the result of mix is physical
 ;; contact
 (result
 (to
 (have

(c-time
 (interval
 ?mixed-ingredients
 (relation
 (?mixed-ingredients
 (:oi) ?chef-is-mixing))))
(object (group bread-crumbs parsley
 paprika salt basil))
(attribute (phys-cont

 (group bread-crumbs parsley paprika
 salt basil))))))

;; mixing IN something

(instrument
(have
(c-time
(interval
 ?ingredients-in-bowl
 (relation
 (?ingredients-in-bowl (:oi)

?chef-is-mixing)
 (?ingredients-in-bowl (:s :o)

?mixed-ingredients))))
 (object (group bread-crumbs parsley

 paprika salt basil))

 (attribute (contained bowl))))

;; the physical mixing

(instrument
 (move
 (c-time
(interval
 ?physical-mix
 (relation
 (?physical-mix (:e :s :d :f)
 ?chef-is-mixing)
 (?physical-mix (:s :o)
 ?mixed-ingredients)
 (?physical-mix (:e :d :s :f)
 ?ingredients-in-bowl))))

 (actor chef)
 (object hands)
 (visual

(detector DET-chaos-front-chef)
 (relation ?physical-mix (:e)
 DET-chaos-front-chef)

(kinematic
 (motion-type :chaotic)
 (location (front-of (trunk-of chef)))))

;; instrument of physical mixing
(instrument
(have
 (c-time (interval ?physical-mix))
 (object hands)
 (attribute
 (physical-contact bowl))))))

;; picking up the bowl

(instrument
(grasp
(c-time
(interval
 ?pick-up-bowl
 (relation
 (?pick-up-bowl (:b :m :o :s :d)
 ?chef-is-mixing)
 (?pick-up-bowl (:b :m)

Appendix C 238

 ?mixed-ingredients)
 (?pick-up-bowl (:b :m)
 ?ingredients-in-bowl)
 (?pick-up-bowl (:b :m)
 ?physical-mix))))

 (actor chef)
 (object bowl)
 (to (location hands))

;; instrument for picking up the bowl
(instrument
(move
 (c-time
 (interval
 ?reach-for-bowl
 (relation
 (?reach-for-bowl (:s)
 ?pick-up-bowl))))
 (actor chef)
 (object hands)
 (visual
 (kinematic
 (motion-type :translational)
 (path-geometry ((location ?unknown)

 (location bowl)))))

;; instrument for moving the hands
(instrument
 (have
 (c-time
 (interval
 ?DET-hands-close-bowl
 (relation
 (?DET-hands-close-bowl (:f)
 ?reach-for-bowl))))
 (object hands)
 (attribute (proximity bowl))
 (visual
 (detector hands-close-bowl)

 (relation hands-close-bowl (:e)
 DET-hands-close-bowl)

 (static
 (position-type :proximity)
 (location bowl)))))))

 (result
(from
 (have
 (c-time
 (interval
 ?bowl-off-hands
 (relation
 (?bowl-off-hands (:b :m :o :s)
 ?chef-is-mixing)
 (?bowl-off-hands (:b)
 ?mixed-ingredients)
 (?bowl-off-hands (:b)
 ?ingredients-in-bowl)
 (?bowl-off-hands (:b :m)
 ?physical-mix)
 (?bowl-off-hands (:m :o :fi)
 ?pick-up-bowl)
)))
 (object bowl)
 (attribute
 (not (physical-contact hands)))

 (visual
 (detector DET-no-motion-of-bowl)
 (relation ?bowl-off-hands (:e)
 DET-no-motion-of-bowl)
 (kinematic
 (motion-type :none)))))
(to
 (have
 (c-time
 (interval
 ?bowl-in-hands
 (relation
 (?bowl-in-hands (:e :f :oi :d :s)
 ?chef-is-mixing)
 (?bowl-in-hands (:o)
 ?mixed-ingredients)
 (?bowl-in-hands (:o)
 ?ingredients-in-bowl)
 (?bowl-in-hands (:e :di :si :fi)
 ?physical-mix)
 (?bowl-in-hands (:mi :oi)
 ?pick-up-bowl)
 (?bowl-in-hands (:mi)
 ?bowl-off-hands)
)))
 (object bowl)
 (attribute
 (physical-contact hands)))))))

;; putting down the bowl, after mixing

(instrument
 (grasp
 (c-time

(interval
 ?put-down-bowl
 (relation
 (?put-down-bowl (:bi :mi :oi :f)
 ?chef-is-mixing)
 (?put-down-bowl (:d)
 ?mixed-ingredients)
 (?put-down-bowl (:d)
 ?ingredients-in-bowl)
 (?put-down-bowl (:bi :mi)
 ?physical-mix)
 (?put-down-bowl (:bi :mi)
 ?pick-up-bowl)
 (?put-down-bowl (:bi)
 ?bowl-off-hands)
 (?put-down-bowl (:mi :oi :f)
 ?bowl-in-hands))))

 (actor chef)
 (object bowl)
 (from (location hands))

;; instrument for puting down the bowl
(instrument
(move
 (c-time
 (interval
 ?depart-from-bowl
 (relation
 (?depart-from-bowl (:f)
 ?put-down-bowl))))
 (actor chef)

Appendix C 239

 (object hands)
 (visual
 (kinematic
 (motion-type :translational)
 (path-geometry ((location bowl)

 (location ?unknown)))))

;; instrument for moving the hands
(instrument
 (have
 (c-time
 (interval
 ?hands-close-bowl2
 (relation
 (?hands-close-bowl2 (:s)
 ?depart-from-bowl))))
 (object hands)
 (attribute (proximity bowl))
 (visual
 (detector DET-hands-close-bowl2)

 (relation hands-close-bowl2 (:e)
 DET-hands-close-bowl2)
 (static
 (position-type :proximity)
 (location bowl)))))))

;; result from putting down the mixing
;; bowl : bowl off hands

(result
(from
 (have
 (c-time
 (interval
 ?bowl-in-hands2
 (relation
 (?bowl-in-hands2 (:e)
 ?bowl-in-hands)
)))
 (object bowl)
 (attribute
 (physical-contact hands))))
(to
 (have
 (c-time
 (interval
 ?bowl-off-hands2
 (relation
 (?bowl-off-hands2 (:bi :mi)
 ?chef-is-mixing)
 (?bowl-off-hands2 (:bi :oi :f :d)
 ?mixed-ingredients)
 (?bowl-off-hands2 (:bi :oi :f :d)
 ?ingredients-in-bowl)
 (?bowl-off-hands2 (:bi :mi)
 ?physical-mix)
 (?bowl-off-hands2 (:bi)
 ?pick-up-bowl)
 (?bowl-off-hands2 (:bi :mi)
 ?bowl-off-hands)
 (?bowl-off-hands2 (:mi)
 ?bowl-in-hands)
 (?bowl-off-hands2 (:mi :oi :si)
 ?put-down-bowl)
)))

 (object bowl)
 (attribute
 (not (physical-contact hands)))
 (visual
 (detector DET-no-motion-of-bowl2)

 (relation bowl-off-hands2 (:e)
 DET-no-motion-of-bowl2)
 (kinematic
 (motion-type :none))))))))

;; geting some bread-crumbs

(instrument
 (ptrans
 (c-time

(interval
 ?get-bread-crumbs
 (relation
 (?get-bread-crumbs (:s :d)
 ?chef-is-mixing)
 (?get-bread-crumbs (:b :m)
 ?mixed-ingredients)

 (?get-bread-crumbs (:b :m)
 ?ingredients-in-bowl)

 (?get-bread-crumbs (:b :m)
 ?physical-mix)
 (?get-bread-crumbs (:bi)
 ?pick-up-bowl)
 (?get-bread-crumbs (:bi)
 ?bowl-off-hands)
 (?get-bread-crumbs (:s :d)
 ?bowl-in-hands)
 (?get-bread-crumbs (:b)
 ?put-down-bowl)
 (?get-bread-crumbs (:b)
 ?bowl-off-hands2))))

 (actor chef)
 (object (some bread-crumbs))
 (from (inside bread-crumbs))
 (to (inside bowl))

(instrument
(have
 (c-time
 (interval
 ?crumbs-in-container
 (relation
 (?crumbs-in-container (:o :di)
 ?chef-is-mixing)
 (?crumbs-in-container (:b :m :di)
 ?mixed-ingredients)
 (?crumbs-in-container (:b :m :di)
 ?ingredients-in-bowl)
 (?crumbs-in-container (:b :m :di)
 ?physical-mix)
 (?crumbs-in-container (:di)
 ?pick-up-bowl)
 (?crumbs-in-container (:di)
 ?bowl-off-hands)
 (?crumbs-in-container (:o :di)

 ?bowl-in-hands)
 (?crumbs-in-container (:b :di)
 ?put-down-bowl)
 (?crumbs-in-container (:b :di)
 ?bowl-off-hands2)

Appendix C 240

 (?crumbs-in-container (:di :fi)
 ?get-bread-crumbs))))
 (object bread-crums)
 (attribute (contained bread-crumbs))))

 (instrument
(move
 (c-time (interval ?get-bread-crumbs))
 (actor chef)
 (object hands)
 (visual
 (kinematic
 (motion-type :translational
 :repetitive)
 (path-geometry
 ((location bread-crumbs)

 (location bowl)))))

;; instrument for moving the hands
(instrument
 (have
 (c-time
 (interval
 ?hands-close-crumbs
 (relation
 (?hands-close-crumbs (:e)
 ?get-bread-crumbs))))
 (object hands)
 (attribute (proximity bread-crumbs))
 (visual
 (detector hands-close-crumbs)

 (relation hands-close-crumbs (:e)
 DET-hands-close-crumbs)
 (static
 (position-type :proximity)
 (location bread-crumbs)))))
))))

;; the physical obtainment of basil
;; geting some basil

(instrument
 (ptrans
 (c-time
(interval
 ?get-basil
 (relation
 (?get-basil (:s :d) ?chef-is-mixing)
 (?get-basil (:b :m)
 ?mixed-ingredients)
 (?get-basil (:b :m)
 ?ingredients-in-bowl)
 (?get-basil (:b :m) ?physical-mix)
 (?get-basil (:bi) ?pick-up-bowl)
 (?get-basil (:bi) ?bowl-off-hands)
 (?get-basil (:s :d) ?bowl-in-hands)
 (?get-basil (:b) ?put-down-bowl)
 (?get-basil (:b) ?bowl-off-hands2))))

 (actor chef)
 (object (some basil))
 (from (inside basil))
 (to (inside bowl))

(instrument
(have
 (c-time

 (interval
 ?basil-in-container
 (relation
 (?basil-in-container (:o :di)
 ?chef-is-mixing)
 (?basil-in-container (:b :m :di)

 ?mixed-ingredients)
 (?basil-in-container (:b :m :di)

 ?ingredients-in-bowl)
 (?basil-in-container (:b :m :di)

 ?physical-mix)
 (?basil-in-container (:di)

 ?pick-up-bowl)
 (?basil-in-container (:di)

 ?bowl-off-hands)
 (?basil-in-container (:o :di)

 ?bowl-in-hands)
 (?basil-in-container (:b :di)

 ?put-down-bowl)
 (?basil-in-container (:b :di)

 ?bowl-off-hands2)
 (?basil-in-container (:di :fi)

 ?get-basil))))
 (object bread-crums)
 (attribute (contained basil))))
(instrument
(move
 (c-time (interval ?get-basil))
 (actor chef)
 (object hands)
 (visual
 (kinematic
 (motion-type :translational
 :repetitive)
 (path-geometry ((location basil)

 (location bowl)))))

;; instrument for moving the hands
(instrument
 (have
 (c-time
 (interval
 ?hands-close-basil
 (relation
 (?hands-close-basil (:e)
 ?get-basil))))
 (object hands)
 (attribute (proximity basil))
 (visual
 (detector hands-close-basil)

 (relation hands-close-basil (:e)
 DET-hands-close-basil)
 (static
 (position-type :proximity)
 (location basil)))))
))))))

Action Frame Representation
for “Wrapping Chicken”
;;======================================
;; "chef wraps chicken with a plastic
;; bag"

Appendix C 241

;;=======================================

(do-something
 (c-time
 (interval ?wrap-chicken
 (relation
 (?wrap-chicken (:b :bi)

 ?mix-main))))

 (actor chef)

;; the result of wraping is physical
;; contact and containment

(result
 (to
 (have
 (c-time

(interval
 ?chicken-wrapped
 (relation
 (?chicken-wrapped (:oi)
 ?wrap-chicken))))

 (object chicken)
 (attribute

 (group (contained plastic-bag))
 (phys-cont plastic-bag)))))

;; getting a plastic-bag
(instrument

 (grasp
 (c-time
 (interval

?get-plastic-bag
(relation
 (?get-plastic-bag (:b :m :o :s :d)
 ?wrap-chicken)
 (?get-plastic-bag (:b)
 ?chicken-wrapped))))

 (actor chef)
 (object (one-of plastic-bag))
 (to (location hands))
 (from

 (location plastic-bag-container))

;; instrument of grasping the
;; plastic-bag: moving the hands

(instrument
 (move

(c-time
 (interval
 ?reach-for-plastic-bag
 (relation
 (?reach-for-plastic-bag (:d)
 ?wrap-chicken)
 (?reach-for-plastic-bag (:s)
 ?get-plastic-bag))))
(actor chef)
(object hands)
(visual
 (kinematic
 (motion-type :translational)
 (path-geometry ((location ?unknonw)

(location
 plastic-bag-container)))))

;; instrument for moving the hands to get
;; the plastic-bag

(instrument
 (have
 (c-time
 (interval
 ?hands-close-bag-cont
 (relation
 (?hands-close-bag-cont (:f)
 ?reach-for-plastic-bag))))
 (object hands)
 (attribute
 (proximity plastic-bag-container))
 (visual
 (detector DET:hand-close-pbag-box)
 (relation DET:hand-close-pbag-box
 (:e) hands-close-bag-cont)
 (static
 (position-type :proximity)
 (location
 plastic-bag-container)))))))

;; result of grasping the plastic-bag

(result
 (from

(c-time
 (interval
 ?plastic-bag-off-hands
 (relation
 (?plastic-bag-off-hands (:m :o)
 ?get-plastic-bag))))
(object plastic-bag)
(attribute (physical-contact hands)))

 (to
(c-time
 (interval
 ?plastic-bag-in-hands
 (relation
 (?plastic-bag-in-hands (:mi :oi)
 ?get-plastic-bag)
 (?plastic-bag-in-hands (:o :fi)
 ?chicken-wrapped)
 (?plastic-bag-in-hands (:mi)
 ?plastic-bag-off-hands))))
(object plastic-bag)
(attribute
 (not (physical-contact hands)))))))

;; the physical opening of the
;; plastic-bag

(instrument
 (move
 (c-time
 (interval

?open-plastic-bag
(relation
 (?open-plastic-bag (:s :d)
 ?wrap-chicken)
 (?open-plastic-bag (:b)
 ?chicken-wrapped)
 (?open-plastic-bag (:d :f)

Appendix C 242

 ?plastic-bag-in-hands))))
 (actor chef)
 (object hands)
 (visual

(detector DET:chaos-front-trunk1)
 (relation DET:chaos-front-trunk1 (:e)

 open-plastic-bag)
(kinematic
 (motion-type :chaotic)
 (location
 (front-of (trunk-of chef))))))

 (instrument
 (have

(c-time (interval ?open-plastic-bag))
(object hands)
(attribute
 (physical-contact plastic-bag)))))

;; getting chicken

(instrument
 (grasp
 (c-time
 (interval

?get-chicken
(relation
 (?get-chicken (:d) ?wrap-chicken)
 (?get-chicken (:b :m)
 ?chicken-wrapped)
 (?get-chicken (:bi :mi :oi)
 ?get-plastic-bag)
 (?get-chicken (:bi :mi)
 ?open-plastic-bag))))

 (actor chef)
 (object (some chicken))
 (to (location hands))
 (from (location chicken-container)))

;; instrument for getting chicken
 (instrument
 (move
 (c-time

(interval
 ?reach-for-chicken
 (relation
 (?reach-for-chicken (:d)
 ?wrap-chicken)
 (?reach-for-chicken (:s)
 ?get-chicken))))

 (actor chef)
 (object hands)
 (visual

(kinematic
 (motion-type :translational)
 (path-geometry ((location ?unknonw)

 (location chicken-container))))))

;; instrument for moving the hands to get
;; the chicken

(instrument
(have
(c-time
 (interval
 ?hand-close-chix-cont

 (relation
 (?hand-close-chix-cont (:f)
 ?reach-for-chicken))))
(object hands)
(attribute (proximity chicken-container))
(visual
 (detector hand-close-chix-cont)

 (relation DET:hand-close-chix-co (:e)
 hand-close-chix-cont)
 (static
 (position-type :proximity)
 (location chicken-container))))))

;; result of grasping the chicken

(result
 (from

 (c-time
(interval
 ?chicken-off-hands
 (relation
 (?chicken-off-hands (:m :o)
 ?get-chicken))))

 (object chicken)
 (attribute

 (not (physical-contact hands))))
 (to
 (c-time

(interval
 ?chicken-in-hands
 (relation
 (?chicken-in-hands (:mi :oi)
 ?get-chicken)
 (?chicken-in-hands (:o :fi)
 ?chicken-wrapped)
 (?chicken-in-hands (:mi)
 ?chicken-off-hands))))

 (object chicken)
 (attribute

 (physical-contact hands)))))

;; the physical wrapping
 (instrument
 (move
 (c-time

(interval
 ?actual-wrapping
 (relation
 (?actual-wrapping (:e :s :d :f)
 ?wrap-chicken)
 (?actual-wrapping (:s :o)
 ?chicken-wrapped)
 (?actual-wrapping (:bi :mi)
 ?get-plastic-bag)
 (?actual-wrapping (:bi :mi)
 ?get-chicken)
 (?actual-wrapping (:bi :mi)
 ?open-plastic-bag)
 (?actual-wrapping (:d :f)
 ?chicken-in-hands)
 (?actual-wrapping (:d :f)
 ?plastic-bag-in-hands))))

 (actor chef)
 (object hands)
 (visual

Appendix C 243

(detector DET:chaos-front-trunk2)
 (relation DET:chaos-front-trunk2 (:e)

 actual-wrapping)
(kinematic
 (motion-type :chaotic)
 (location
 (front-of (trunk-of chef))))))

;; instrument of physical wrapping
(instrument
 (have
(c-time (interval ?actual-wrapping))
(object hands)
(attribute
 (physical-contact
 (group plastic-bag chicken))))))

;; putting down the chicken and the
;; plastic-bag

(instrument
 (grasp
 (c-time
(interval
 ?put-down-wrap-chix
 (relation
 (?put-down-wrap-chix (:bi :mi :oi :f)
 ?wrap-chicken)
 (?put-down-wrap-chix (:d)
 ?chicken-wrapped)
 (?put-down-wrap-chix (:bi :mi)
 ?actual-wrapping)
 (?put-down-wrap-chix (:oi :mi :f)

 ?chicken-in-hands)
 (?put-down-wrap-chix (:oi :mi :f)

 ?plastic-bag-in-hands))))

 (actor chef)
 (object (group chicken plastic-bag))
 (from (location hands))

;; instrument for putting down the bowl

(instrument
(move
 (c-time
 (interval
 ?depart-from-wrap-chix
 (relation
 (?depart-from-wrap-chix (:f)
 ?put-down-wrap-chix))))
 (actor chef)
 (object hands)
 (visual
 (kinematic
 (motion-type :translational)
 (path-geometry
 ((location

 (group chicken plastic-bag))
 (location ?unknown))))))

;; instrument for moving the hands
;; proximity to static wrapped chicken

(instrument
 (have
 (c-time
 (interval
 ?hands-close-wrap-chix
 (relation
 (?hands-close-wrap-chix
 (:s) ?depart-from-wrap-chix))))
 (object hands)
 (attribute
 (proximity (group chicken plastic-

bag)))
 (visual
 (detector DET:hands-clo-wrap-chix)

 (relation DET:hands-clo-wrap-chix
 (:e) hands-close-wrap-chix)
 (static
 (position-type :proximity)
 (location
 (group chicken plastic-bag)))))))

;; result from putting down the wrapped
;; chicken: chicken off hands

(result
(from
 (have
 (c-time
 (interval
 ?wrap-chix-in-hands
 (relation
 (?wrap-chix-in-hands (:oi :mi)

 ?wrap-chicken)
 (?wrap-chix-in-hands (:oi :mi)

 ?chicken-in-hands)
 (?wrap-chix-in-hands (:oi :mi)

 ?plastic-bag-in-hands))))
 (object (group chicken plastic-bag))
 (attribute

 (physical-contact hands))))
(to
 (have
 (c-time
 (interval
 ?wrap-chix-off-hands
 (relation
 (?wrap-chix-off-hands (:oi :mi)

 ?put-down-wrap-chix)
 (?wrap-chix-off-hands (:mi)

 ?wrap-chix-in-hands))))
 (object (group chicken plastic-bag))
 (attribute
 (not (physical-contact hands)))

 (visual
 (detector no-motion-wrap-chix)

 (relation DET:no-motion-wrap-chix
 (:s) wrap-chix-off-hands)
 (kinematic
 (motion-type :none))))))))))

Appendix D 244

D. Grammar of Interval Scripts

script: list_of_declarations ;

list_of_declarations: declaration '.'
| list_of_declarations declaration '.' ;

declaration: | cpp_dec | interval_dec | start_dec | stop_dec
| state_dec | reset_dec | data_dec | condition | constraint
| duration ;

cpp_dec: DECLARE '[>' <c++code> '<]';

interval_dec: <name> '=' visible interval_specs ;

visible: | DISPLAY ;

interval_specs: '{' list_of_declarations '}'
| TIMER '(' number ',' number ')'
| CYCLE interval
| SEQUENCE list_of_interval ;

list_of_intervals: interval | list_of_intervals ',' interval ;

interval: <name> ;

condition: WHEN expression TRYTO list_of_simple_execs ;

list_of_simple_execs: simple_exec
| list_of_simple_execs ';' simple_exec ;

simple_exec: START list_of_intervals
| STOP list_of_intervals
| FORGET list_of_intervals ;

list_of_execs: exec | list_of_execs ';' exec ;

exec: START list_of_intervals

Appendix D 245

| STOP list_of_intervals
| RESET list_of_intervals
| SETSTATE pnfexpression
| SETDURATION '(' number ',' number ')'
| EXECUTE CCODE
| IF expression list_of_execs ifelse ENDIF ;

ifelse: | ELSE list_of_execs ;

constraint: BETTER-IF list_of_intervals time_relation list_of_intervals ;

time_relation: time_relation_tag
| time_relation OR time_relation_tag ;

time_relation_tag: EQUAL | MEET | I-MEET | BEFORE | I-BEFORE
| AFTER | DURING | I-DURING | OVERLAP | I-OVERLAP | SSTART
| I-START | FINISH | I-FINISH | ONLY-DURING | NOT-DURING
| DIFFERENT | PRECEDE | I-PRECEDE ;

start_dec: START ':' list_of_execs ;

stop_dec: STOP ':' list_of_execs ;

reset_dec: RESET ':' list_of_execs ;

data_dec: DATA ':' '[>' <c++code> '<]' ;

state_dec: STATE ':' list_of_execs ;

pnfexpression: timetag | interval | CURRENTSTATE | EXPANDEDSTATE;

timetag: PAST | NOW | FUTURE | UNDETERMINED | PAST-OR-NOW
| PAST-OR-FUTURE | NOW-OR-FUTURE | P__ | _N_ | __F | PNF
| PN_ | _NF |P_F ;

expression: expression AND or_expression | or_expression ;

or_expression: or_expression OR primary | primary ;

primary: pnfexpression | pnfexpression IS timetag
| ISCONTAINED pnfexpression timetag | TRUE | '(' expression ')'
| NOT primary | BOOLEXPRESSION '[>' <c++code> '<]' ;

duration: DURATION '(' number ',' number ')' ;

number: <number> | '[>' <c++code> '<]' ;

References 246

References

[1] Director's User Manual. MacroMind Inc. 1990.

[2] S. Agamapolis and V. M. Bove Jr. “Multilevel Scripting for Responsive Multimedia”,
IEEE Multimedia, vol. 4 (4), pp. 40-50. 1997.

[3] J. F. Allen. “Maintaining Knowledge about Temporal Intervals”, Communications of
the ACM, vol. 26 (11), pp. 832-843. 1983.

[4] J. F. Allen. “Towards a General Theory of Action and Time”, Artificial Intelligence,
vol. 23, pp. 123-154. 1984.

[5] J. F. Allen. “Time and Time Again: The Many Ways to Represent Time”, International
Journal of Intelligent Systems, vol. 6 (4), pp. 341-355. 1991.

[6] J. F. Allen and G. Ferguson. “Actions and Events in Interval Temporal Logic”, Journal
of Logic and Computation, vol. 4 (5), pp. 531-579. 1994.

[7] J. F. Allen and P. J. Hayes. “Moments and Points in an Interval-Based Temporal
Logic”, Computational Intelligence, vol. 5 (4), pp. 225-238. 1989.

[8] K. Amaya, A. Bruderlin, and T. Calvert. “Emotion from Motion”, Proc. of Graphics
Interface'96, Toronto, Canada. 1996.

[9] E. Andre and T. Rist. “Coping with Temporal Constraints in Multimedia Presentation
Planning”, Proc. of AAAI'96, Portland, Oregon, pp. 142-147. 1996.

[10] N. I. Badler, C. B. Phillips, and B. L. Webber. Simulating Humans: Computer Graphics
Animations and Control. Oxford University Press, Oxford, England. 1993.

[11] B. Bailey, J. A. Konstan, R. Cooley, and M. Dejong. “Nsync - A Toolkit for Building
Interactive Multimedia Presentations”, Proc. of ACM Multimedia'98, Bristol, England,
pp. 257-266. 1998.

[12] P. Baptiste and C. L. Pape. “A Theoretical and Experimental Comparison of Constraint
Propagation Techniques for Disjunctive Scheduling”, Proc. of IJCAI'95, Montreal,
Canada, pp. 600-606. August. 1995.

References 247

[13] E. Barba and N. Savarese. Dictionary of Theatre Anthropology: The Secret Art of the
Performer. Routledge, London, England. 1991.

[14] J. Bates, A. B. Loyall, and W. S. Reilly. “An Architecture for Action, Emotion, and
Social Behavior”, Proceedings of the Fourth European Workshop on Modeling
Autonomous Agents in a Multi-Agent World, S. Martino al Cimino, Italy. July. 1992.

[15] B. B. Bederson and A. Druin. “Computer Augmented Environments: New Places to
Learn, Work and Play”, Advances in Human-Computer Interaction, vol. 5. Ablex,
Norwood, New Jersey. 1995.

[16] B. Blumberg. Old Tricks, New Dogs: Ethology and Interactive Creatures. Ph.D. Thesis.
Media Arts and Sciences Program: Massachusetts Institute of Technology, Cambridge,
Massachusetts. 1996.

[17] B. M. Blumberg and T. A. Galyean. “Multi-Level Direction of Autonomous Agents for
Real-Time Virtual Environments”, Proc. of SIGGRAPH'95. 1995.

[18] A. Bobick, S. Intille, J. Davis, F. Baird, C. Pinhanez, L. Campbell, Y. Ivanov, A.
Schutte, and A. Wilson. “The KidsRoom: A Perceptually-Based Interactive and
Immersive Story Environment”, to appear in Presence: Teleoperators and Virtual
Environments. 1999.

[19] A. Bobick and C. Pinhanez. “Using Approximate Models as Source of Contextual
Information for Vision Processing”, Proc. of the ICCV'95 Workshop on Context-Based
Vision, Cambridge, Massachusetts, pp. 13-21. July. 1995.

[20] A. F. Bobick. “Movement, Activity, and Action: The Role of Knowledge in the
Perception of Motion”, Phil. Trans. Royal Society London B, vol. 352, pp. 1257-1265.
1997.

[21] A. F. Bobick and R. C. Bolles. “The Representation Space Paradigm of Concurrent
Evolving Object Descriptions”, IEEE PAMI, vol. 14 (2), pp. 146-156. 1992.

[22] A. F. Bobick and Y. Ivanov. “Action Recognition Using Probabilistic Parsing”, Proc. of
CVPR'98, Santa Barbara, California, pp. 196-202. 1998.

[23] A. F. Bobick and C. S. Pinhanez. “Controlling View-Based Algorithms Using
Approximate World Models and Action Information”, Proc. of CVPR'97, Puerto Rico,
USA, pp. 955-962. June. 1997.

[24] A. F. Bobick and A. D. Wilson. “A State-Based Approach to the Representation and
Recognition of Gesture”, IEEE PAMI, vol. 19 (12). 1997.

[25] A. Borning. “The Programming Language Aspects of ThingLab, A Constraint-Oriented
Simulation Laboratory”, ACM Transactions on Programming Languages and Systems,
vol. 3 (4). 1981.

[26] M. Brand. “Understanding Manipulation in Video”, Proc. of 2nd International
Conference on Face and Gesture Recognition (FG'96), Killington, VT, pp. 94-99. 1996.

References 248

[27] M. Brand, N. Oliver, and A. Pentland. “Coupled Hidden Markov Models for Complex
Action Recognition”, Proc. of CVPR'97, Puerto Rico, USA, pp. 994-999. 1997.

[28] S. Brand. How Buildings Learn. Viking, New York. 243 pages. 1994.

[29] C. Bregler and J. Malik. “Tracking People with Twists and Exponential Maps”, Proc. of
CVPR'98, Santa Barbara, California, pp. 8-15. June. 1998.

[30] K. M. Brooks. “Do Story Agents Use Rocking Chairs? The Theory and Implementation
of One Model for Computational Narrative”, Proc. of the ACM Multimedia'96, pp. 1-
12. November. 1996.

[31] R. Brooks. “A Robust Layered Control System for a Mobile Robot”, IEEE Journal of
Robotics and Automation, vol. RA-2 (1), pp. 14-23. 1986.

[32] R. Brooks. “Elephants Don't Play Chess”, Robotics and Automation Systems, vol. 6, pp.
3-15. 1990.

[33] R. Brooks. “Intelligence without Reason”, Artificial Intelligence, vol. 47, pp. 139-159.
1991.

[34] M. C. Buchanan and P. T. Zellweger. “Automatic Temporal Layout Mechanisms”,
Proc. of ACM Multimedia'93, Ahaheim, California, pp. 341-350. August. 1993.

[35] L. W. Campbell, D. A. Becker, A. Azarbayejani, A. F. Bobick, and A. Pentland.
“Invariant Features for 3-D Gesture Recognition”, Proc. of the Second International
Conference on Automatic Face and Gesture Recognition (FG'96), Killington, Vermont,
pp. 157-162. 1996.

[36] J. Cassell, C. Pelachaud, N. Badler, and M. Steedman. “Animated Conversation: Rule-
Based Generation of Facial Expression, Gesture & Spoken Intonation for Multiple
Conversational Agents”, Proc. of SIGGRAPH'94, Orlando, Florida, pp. 413-420. July,
24-29. 1994.

[37] D. Chapman. Vision, Instruction, and Action. The MIT Press, Cambridge,
Massachusetts. 1991.

[38] E. Charniak and D. McDermott. Introduction to Artificial Intelligence. Addison-
Wesley, Reading, Massachusetts. 1985.

[39] M. H. Coen. “Building Brains for Rooms: Designing Distributed Software Agents”,
Proc. of IAAI'97, Providence, Connecticut, pp. 971-977. August. 1997.

[40] T. Darrell and A. Pentland. “Space-Time Gestures”, Proc. of CVPR'93, pp. 335-340.
1993.

[41] G. Davenport and L. Friedlander. “Interactive Transformational Environments: Wheel
of Life”, in Contextual Media: Multimedia and Interpretation, E. Barrett and M.
Redmond (eds.). The MIT Press, Cambridge, Massachusetts. pp. 1-25. 1995.

[42] C. Davies and J. Harrison. “Osmose: Towards Broadening the Aesthetics of Virtual
Reality”, ACM Computer Graphics: Virtual Reality, vol. 30 (4). 1998.

References 249

[43] J. W. Davis and A. Bobick. “The Representation and Recognition of Human Movement
Using Temporal Templates”, Proc. of CVPR'97, pp. 928-934. June. 1997.

[44] J. W. Davis and A. F. Bobick. “Virtual PAT: a Virtual Personal Aerobics Trainer”,
Proc. of Workshop on Perceptual User Interfaces (PUI'98), San Francisco, California,
pp. 13-18. November. 1998.

[45] T. Dean and D. McDermott. “Temporal Data Base Management”, Artificial
Intelligence, vol. 32, pp. 1-55. 1987.

[46] R. Dechter. “From Local to Global Consistency”, Artificial Intelligence, vol. 55 (1), pp.
87-107. 1992.

[47] R. Dechter, I. Meiri, and J. Pearl. “Temporal Constraint Networks”, Artificial
Intelligence, vol. 49 (1-3), pp. 225-233. 1991.

[48] R. Dechter and J. Pearl. “Directed Constraint Networks”, Proc. of IJCAI'91, Sydney,
Australia, pp. 1164-1170. 1991.

[49] C. Elliott, G. Schechter, R. Yeung, and S. Abi-Ezzi. “TBAG: A High Level Framework
for Interactive, Animated 3D Graphics Applications”, Proc. of SIGGRAPH'94, Orlando,
Florida, pp. 421-434. July 24-29. 1994.

[50] R. E. Fikes and N. J. Nilsson. “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving”, Artificial Intelligence, vol. 2, pp. 189-205.
1971.

[51] C. Freksa. “Temporal Reasoning Based on Semi-Intervals”, Artificial Intelligence, vol.
54 (1-2), pp. 199-227. 1992.

[52] T. A. Galyean. Narrative Guidance of Interactivity. Ph.D. Thesis. Media Arts and
Sciences Program: Massachusetts Institute of Technology, Cambridge, Massachusetts.
1995.

[53] D. M. Gavrila and L. S. Davis. “3-D Model Based Tracking of Human Upper Body
Movement: a Multi-View Approach”, Proc. of the IEEE-PAMI International
Symposium on Computer Vision, Coral Gables, Florida, pp. 253-258. November. 1995.

[54] A. Geist, A. Beguelim, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:
Parallel Virtual Machine: A User's Guide and Tutorial for Networked Parallel
Computing. The MIT Press, Cambridge, Massachusetts. 1994.

[55] M. Gelfond and V. Lifschitz. “Representing Action and Change by Logic Programs”,
Journal of Logic Programming, vol. 17 (2,3,4), pp. 301-323. 1993.

[56] A. Gerevini and L. Schubert. “Efficient Algorithms for Qualitative Reasoning about
Time”, Artificial Intelligence, vol. 74 (2), pp. 207-248. 1995.

[57] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee. “Using Adaptive Tracking to
Classify and Monitor Activities in a Site”, Proc. of CVPR'98, Santa Barbara, California,
pp. 22-29. June. 1998.

References 250

[58] P. A. Hall. “Equivalence Between AND/OR Graphs and Context-Free Grammars”,
CACM, vol. 21, pp. 444-445. 1973.

[59] R. Hamakawa and J. Rekimoto. “Object Composition and Playback Models for
Handling Multimedia Data”, Proc. of ACM Multimedia'93, Ahaheim, California, pp.
273-281. August. 1993.

[60] G. G. Hendrix. “Modeling Simultaneous Actions and Continuous Processes”, Artificial
Intelligence, vol. 4 (3), pp. 145-180. 1973.

[61] X. D. Huang, Y. Ariki, and M. A. Jack. Hidden Markov Models for Speech Recognition.
Edinburgh University Press. 1990.

[62] E. Hyvönen. “Constraint Reasoning Based on Interval Arithmetic: The Tolerance
Propagation Approach”, Artificial Intelligence, vol. 58 (1-3), pp. 71-112. 1992.

[63] S. Intille and A. Bobick. “A Framework for Recognizing Multi-Agent Action from
Visual Evidence”, Proc. of AAAI'99, Orlando, Florida. July. 1999.

[64] H. Ishii and B. Ullmer. “Tangible Bits: Towards Seamless Interfaces between People,
Bits, and Atoms”, Proc. of CHI'97, Atlanta, Georgia, pp. 234-241. March. 1997.

[65] D. Israel, J. Perry, and S. Tutiya. “Actions and Movements”, Proc. of IJCAI'91, Sydney,
Australia. pp. 1060-1065. 1991.

[66] Y. Ivanov, A. Bobick, and J. Liu. “Fast Lighting Independent Background subtraction”,
Proc. of the IEEE Workshop on Visual Surveillance (VS'98), Bombay, India, pp. 49-55.
January. 1998.

[67] Y. Ivanov, C. Stauffer, A. Bobick, and E. Grimson. “Video Surveillance of
Interactions”, Proc. of the CVPR'99 Workshop on Visual Surveillance, Fort Collins,
Colorado. November. 1998.

[68] R. Jackendoff. Semantics and Cognition. The M.I.T. Press, Cambridge, MA. 1983.

[69] R. Jackendoff. Semantic Structures. The M.I.T. Press, Cambridge, MA. 1990.

[70] T. Jebara and A. Pentland. “Action Reaction Learning: Automatic Visual Analysis and
Synthesis of Interactive Behavior”, Proc. of the International Conference on Computer
Vision Systems (ICVS'99), Las Palmas, Gran Canaria, Spain, pp. 273-292. January 13-
15. 1999.

[71] M. Johnson, A. Wilson, C. Kline, B. Blumberg, and A. Bobick. “Sympathetic
Interfaces: Using a Plush Toy to Direct Synthetic Characters”, Proc. of CHI'99,
Pittsburgh, Pennsylvania. May.1999.

[72] N. Johnson and D. C. Hogg. “Learning the Distribution of Object Trajectories for Event
Recognition”, Proc. of British Machine Vision Conference. 1995.

[73] K. Johnstone. IMPRO: Improvisation and Theatre. Methuen Drama, England. 1981.

References 251

[74] M. Jourdan, N. Layaida, C. Roisin, L. Sabry-Ismail, and L. Tardif. “Madeus, an
Authoring Environment for Interactive Multimedia Documents”, Proc. of ACM
Multimedia'98, Bristol, England, pp. 267-272. September 12-16. 1998.

[75] K. M. Kahn and A. G. Gorry. “Mechanizing Temporal Knowledge”, Artificial
Intelligence, vol. 9 (2), pp. 87-108. 1977.

[76] K. I. Kakizaki. “Generating the Animation of a 3D Agent from Explanation Text”,
Proc. of ACM Multimedia'98, Bristol, England, pp. 139-144. 1998.

[77] J. K. Kalita. Natural Language Control of Animation of Task Performance in a Physical
Domain. Ph.D. Thesis. Department of Computer and Information Science: University of
Pennsylvania, Philadelphia, Pennsylvania. 1991.

[78] H. A. Kautz and P. B. Ladkin. “Integrating Metric and Qualitative Temporal
Reasoning”, Proc. of AAAI'91, pp. 241-246. July. 1991.

[79] M. W. Krueger. Artificial Reality II. Addison-Wesley. 1990.

[80] V. Kumar. “Algorithms for Constraint-Satisfaction Problems: a Survey”, AI Magazine,
vol. 13, pp. 32-44. 1992.

[81] Y. Kuniyoshi and H. Inoue. “Qualitative Recognition of Ongoing Human Action
Sequences”, Proc. of IJCAI'93, pp. 1600-1609. 1993.

[82] P. Ladkin and A. Reinefeld. “Effective Solution of Qualitative Interval Constraint
Problems”, Artificial Intelligence, vol. 57 (1), pp. 105-124. 1992.

[83] S. K. Langer. Feeling and Form. Charles Scribner's Sons, New York, New York. 1953.

[84] B. Laurel, R. Strickland, and R. Tow. “Placeholder: Landscape and Narrative in Virtual
Environments”, ACM Computer Graphics Quarterly, vol. 28 (2). 1994.

[85] J. Lobo, G. Mendez, and S. R. Taylor. “Adding Knowledge to the Action Description
Language A”, Proc. of AAAI'97, Providence, Rhode Island, pp. 454-459. July. 1997.

[86] R. E. Lovell and J. D. Mitchell. “Using Human Movement to Control Activities in
Theatrical Environments”, Proc. of Third International Conference on Dance and
Technology. 1995.

[87] A. B. Loyall and J. Bates. “Hap: A Reactive, Adaptive Architecture for Agents,”
Carnegie Mellon University, Pittsburgh, Pennsylvania Technical Report CMU-CS-91-
147, June. 1991.

[88] T. Machover. “Hyperinstruments: a Progress Report,” M.I.T. Media Laboratory
Technical Report. January. 1992.

[89] T. Machover. “Brain Opera”, in Memesis: The Future of Evolution. Ars Electronica
Editions, Linz, Austria. 1996.

[90] A. K. Mackworth. “Consistency in Networks of Relations”, Artificial Intelligence, vol.
8 (1), pp. 99-118. 1977.

References 252

[91] R. Maconie. “Four Criteria of Electronic Music”, in Stockhausen on Music, R. Maconie
(ed.). Marion Boyars, New York, New York. pp. 88-111. 1989.

[92] A. B. Maddox and J. Pustejovsky. “Linguistic Descriptions of Visual Event
Perceptions”, Proc. of the Ninth Annual Cognitive Science Society Conference, Seattle,
Washington, pp. 442-454. 1987.

[93] P. Maes. “Agents that Reduce Work and Information Overload”, Communications of
the ACM, vol. 37 (7), pp. 31-40. 1995.

[94] P. Maes, T. Darrell, B. Blumberg, and A. Pentland. “The ALIVE System: Full-Body
Interaction with Autonomous Agents”, Proc. of the Computer Animation'95
Conference, Geneva, Switzerland. April. 1995.

[95] P. Maes, Y. Lashkari, and M. Metral. “Collaborative Interface Agents”, in Readings in
Agents, M. N. Huhns and M. P. Singh (eds.). Morgan Kaufmann Publishers. 1997.

[96] J. Malik and T. O. Binford. “Reasoning in Time and Space”, Proc. of IJCAI'83,
Karlsruhe, Federal Republic of Germany, pp. 343-345. 1983.

[97] R. Mann, A. Jepson, and J. Siskind. “Computational Perception of Scene Dynamics”,
Proc. of Fourth European Conference in Computer Vision. 1996.

[98] K. Mase and R. Kadobayashi. “Meta-museum: a Supportive Augumented Reality
Environment for Knowledge Sharing”, International Conference on Virtual Systems
and Multimedia. September. 1996.

[99] M. J. Mataric. “Behavior-Based Control: Examples from Navigation, Learning, and
Group Behavior”, Journal of Experimental and Theoretical Artificial Intelligence, vol.
9 (2-3), pp. 323-336. 1997.

[100] B. Maubrey. “Audio Jackets and Other Electroacustic Clothes”, Leonardo, vol. 28 (2),
pp. 93-97. 1995.

[101] J. McCarthy and P. Hayes. “Some Philosophical Problems from the Standpoint of
Artificial Intelligence”, in Machine Intelligence 4, B. Meltzer, D. Michie, and M.
Swann (eds.). Edinburgh University Press, Edinburgh, Scotland. pp. 463-502. 1969.

[102] I. Meiri. “Combining Qualitative and Quantitative Constraints in Temporal Reasoning”,
in Proc. of AAAI'91. pp. 260-267. 1991.

[103] I. Meiri. “Combining Qualitative and Quantitative Constraints in Temporal Reasoning”,
Artificial Intelligence, vol. 87 (1-2), pp. 343-385. 1996.

[104] G. A. Miller and P. N. Johnson-Laird. Language and Perception. Belknap Press,
Cambridge, Massachusetts. 1976.

[105] M. Minsky. “A Framework for Representing Knowledge”, in The Psychology of
Computer Vision, P. Winston (ed.). McGraw-Hill, New York, New York. pp. 211-277.
1975.

[106] M. Minsky. The Society of Mind. Simon & Schuster, New York, New York. 1985.

References 253

[107] R. Mohr and T. C. Henderson. “Arc and Path Consistency Revisited”, Artificial
Intelligence, vol. 28 (2), pp. 225-233. 1986.

[108] U. Montanari. “Networks of Constraints: Fundamental Properties and Applications to
Picture Processing”, Information Sciences, vol. 7, pp. 95-132. 1974.

[109] J. Murray. Hamlet on the Holodeck: the Future of Narrative in Cyberspace. The Free
Press, Simon & Schuster, New York, New York. 1997.

[110] B. A. Nadel. “Constraint Satisfaction Algorithms”, Computational Intelligence, vol. 5,
pp. 188-224. 1989.

[111] H.-H. Nagel. “A Vision of 'Vision and Language' Comprises Action: An Example from
Road Traffic”, Artificial Intelligence Review, vol. 8, pp. 189-214. 1995.

[112] R. Nakatsu, N. Tosa, and T. Ochi. “Interactive Movie System with Multi-person
Participation and Anytime Interaction Capabilities”, Proc. of ACM Multimedia'98,
Bristol, England, pp. 129-137. September 12-16. 1998.

[113] B. Neumann. “Natural Language Description of Time-Varying Scenes”, in Semantic
Structures: Advances in Natural Language Processing, D. L. Waltz (ed.). Lawrence
Erlbaum Associates. pp. 167-206. 1989.

[114] B. Neumann and H. Novak. “Event Models for Recognition and Natural Language
Description of Events in Real-World Image Sequences”, Proc. of IJCAI'83, pp. 724-
726. 1993.

[115] D. Newtson, G. Engquist, and J. Bois. “The Objective Basis of Behavior Units”,
Journal of Personality and Social Psychology, vol. 35 (12), pp. 847-862. 1977.

[116] N. J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, New
York, New York. 1971.

[117] S. Oettermann. The Panorama: History of a Mass Medium. Zone Books, New York.
407 pages. 1997.

[118] N. Olivier, B. Rosario, and A. Pentland. “A Bayesian Computer Vision System for
Modeling Human Interactions”, Proc. of the International Conference on Computer
Vision Systems (ICVS'99), Las Palmas, Gran Canaria, Spain, pp. 254-272. January 13-
15. 1999.

[119] J. A. Paradiso. “New Instruments and Gestural Sensors for Musical Interaction and
Performance”, Journal of New Music Research. 1998.

[120] R. Pausch, T. Burnette, A. C. Capeheart, M. Conway, D. Cosgrove, R. DeLine, J.
Durbin, R. Gossweiler, S. Koga, and J. White. “A Brief Architectural Overview of
Alice, a Rapid Prototyping System for Virtual Reality”, IEEE Computer Graphics and
Applications. 1995.

References 254

[121] R. Pausch, J. Snoddy, R. Taylor, S. Watson, and E. Haseltine. “Disney's Alladin: First
Steps Toward Storytelling in Virtual Reality”, Proc. of SIGGRAPH'96, pp. 193-203.
August. 1996.

[122] A. Pentland. “Smart Rooms”, Scientific American, vol. 274 (4), pp. 68-76. 1996.

[123] A. Pentland. “Wearable Intelligence”, Scientific American Presents Exploring
Intelligence, vol. 9 (4). 1998.

[124] K. Perlin. “Real Time Responsive Animation with Personality”, IEEE Transactions on
Visualization and Computer Graphics, vol. 1 (1), pp. 5-15. 1995.

[125] K. Perlin and A. Goldberg. “Improv: A System for Scripting Interactive Actors in
Virtual Worlds”, Proc. of SIGGRAPH'96. August. 1996.

[126] K. Perlin and A. Goldberg. “Improvisational Animation”, Proc. of The Society for
Computer Simulation International Conference on Virtual Worlds and Simulation
(VWSIM'99), San Francisco, California. January 17-20. 1999.

[127] R. W. Picard. Affective Computing. The MIT Press, Cambridge, Massachusetts. 292
pages. 1997.

[128] C. S. Pinhanez. “Computer Theater,” M.I.T. Media Laboratory Perceptual Computing
Section, Technical Report #378. May. 1996.

[129] C. S. Pinhanez. “Computer Theater”, Proc. of the Eighth International Symposium on
Electronic Arts (ISEA'97), Chicago, Illinois. September. 1997.

[130] C. S. Pinhanez and A. F. Bobick. “Approximate World Models: Incorporating
Qualitative and Linguistic Information into Vision Systems”, Proc. of AAAI'96,
Portland, Oregon, pp. 1116-1123. August. 1996.

[131] C. S. Pinhanez and A. F. Bobick. “Computer Theater: Stage for Action Understanding”,
Proc. of the AAAI'96 Workshop on Entertainment and AI/A-Life, Portland, Oregon, pp.
28-33. August. 1996.

[132] C. S. Pinhanez and A. F. Bobick. “PNF Calculus: A Method for the Representation and
Fast Recognition of Temporal Structure,” M.I.T. Media Laboratory Perceptual
Computing Section, Technical Report #389. September. 1996.

[133] C. S. Pinhanez and A. F. Bobick. “Intelligent Studios: Modeling Space and Action to
Control TV Cameras”, Applications of Artificial Intelligence, vol. 11, pp. 285-305.
1997.

[134] C. S. Pinhanez and A. F. Bobick. “PNF Propagation and the Detection of Actions
Described by Temporal Intervals”, Proc. of the DARPA Image Understanding
Workshop, New Orleans, Louisiana. May. 1997.

[135] C. S. Pinhanez and A. F. Bobick. “Human Action Detection Using PNF Propagation of
Temporal Constraints”, Proc. of CVPR'98, Santa Barbara, California, pp. 898-904.
June. 1998.

References 255

[136] C. S. Pinhanez and A. F. Bobick. “'It/I': A Theater Play Featuring an Autonomous
Computer Graphics Character,” M.I.T. Media Laboratory Perceptual Computing
Section, Technical Report #455. January. 1998.

[137] C. S. Pinhanez, K. Mase, and A. F. Bobick. “Interval Scripts: A Design Paradigm for
Story-Based Interactive Systems”, Proc. of CHI'97, Atlanta, Georgia, pp. 287-294.
March. 1997.

[138] S. Pinker. Learnability and Cognition. The M.I.T. Press, Cambridge, MA. 1989.

[139] R. Polana and R. Nelson. “Low Level Recognition of Human Motion”, Proc. of IEEE
Workshop on Motion of Non-Rigid and Articulated Objects, Austin, Texas, pp. 77-82.
November. 1994.

[140] L. R. Rabiner and B. H. Juang. “An Introduction to Hidden Markov Models”, IEEE
ASSP Magazine, vol. 3 (1), pp. 4-16. 1986.

[141] R. Raskar, G. Welch, M. Cutts, A. Lake, and L. Stesin. “The Office of the Future: A
Unified Approach to Image-Based Modeling and Spatially Immersive Displays”, Proc.
of SIGGRAPH'98, Orlando, Florida, pp. 179-188. July. 1998.

[142] M. Reaney. “Virtual Scenography: The Actor, Audience, Computer Interface”, Theatre
Design and Technology, vol. 32 (1), pp. 36-43. 1996.

[143] T. Richards. At Work with Grotowski on Physical Actions. Routledge, London, England.
1993.

[144] C. J. Rieger III. “Conceptual Memory and Inference”, in Conceptual Information
Processing. North-Holland. pp. 157-288. 1975.

[145] K. Rohr. “Towards Model-Based Recognition of Human Movements in Image
Sequences”, CVGIP: Image Understanding, vol. 59 (1), pp. 94-115. 1994.

[146] S. Rosenschein and L. Kaelbling. “The Synthesis of Machines with Probable Epistemic
Properties”, Proc. of Conf. on Theoretical Aspects of Reasoning about Knowledge, Los
Altos, California, pp. 83-98. 1986.

[147] R. Rowe. Interactive Music Systems. The MIT Press, Cambridge, Massachusetts. 1993.

[148] E. D. Sacerdoti. A Structure for Plans and Behavior. Elsevier North-Holland, New
York. 1977.

[149] R. C. Schank. “Conceptual Dependency Theory”, in Conceptual Information
Processing. North-Holland. pp. 22-82. 1975.

[150] R. C. Schank, N. M. Goldman, C. J. Rieger III, and C. K. Riesbeck. Conceptual
Information Processing. North-Holland. 1975.

[151] R. Schechner. Performance Theory. Routledge, London, England. 1988.

References 256

[152] J. Schlenzig, E. Hunter, and R. Jain. “Recursive Identification of Gesture Inputs Using
Hidden Markov Models”, Proc. of the Second Annual Conference on Applications of
Computer Vision, pp. 187-194. 1994.

[153] E. Schwartz and D. Godfrey. Music since 1945: Issues, Materials, and Literature.
Schirmer Books, New York, New York. 1993.

[154] K. C. Selcuk, B. Prabhakaran, and V. S. Subrahmanian. “CHIMP: A Framework for
Supporting Distributed Multimedia Document Authoring and Presentation”, Proc. of
ACM Multimedia'96, Boston, Massachusetts, pp. 329-339. November. 1996.

[155] C. Shaw, M. Green, J. Liang, and Y. Sun. “Decoupled Simulation in Virtual Reality
with the MR Toolkit”, ACM Transactions on Information Systems, vol. 11 (3), pp. 287-
317. 1993.

[156] Y. Shoham. “Temporal Logics in AI: Semantical and Ontological Considerations”,
Artificial Intelligence, vol. 33 (1), pp. 89-104. 1987.

[157] K. Sims. “Evolving Virtual Creatures”, Proc. of SIGGRAPH'94, Orlando, Florida, pp.
15-34. July 24-29. 1994.

[158] J. M. Siskind. Naive Physics, Event Perception, Lexical Semantics, and Language
Acquisition. Ph.D. Thesis. Dept. of Electrical Engineering and Computer Science:
Massachusetts Institute of Technology, Cambridge, Massachusetts. 1992.

[159] J. M. Siskind. “Grounding Language in Perception”, Artificial Intelligence Review, vol.
8, pp. 371-391. 1994.

[160] J. R. Slagle. “A Heuristic Program that Solves Symbolic Integration Problems in
Freshman Calculus”, in Computers and Thought, E. A. Feigenbaum and J. Feldman
(eds.). McGraw-Hill, New York, New York. pp. 191-203. 1963.

[161] C. Sommerer and L. Mignonneau. “Art as a Living System”, Leonardo, vol. 30 (5).
1997.

[162] F. Sparacino, K. Hall, C. Wren, G. Davenport, and A. Pentland. “Improvisational
Theater Space”, Proc. of the Sixth Biennial Symposium for Arts and Technology, New
London, Connecticut, pp. 207-208. March. 1997.

[163] L. Stark and K. Bowyer. “Achieving Generalized Object Recognition through
Reasoning about Association of Function to Structure”, IEEE PAMI, vol. 13 (10), pp.
1097-1104. 1991.

[164] L. Stark and K. Bowyer. “Functional Context in Vision”, Proc. of the ICCV'95
Workshop on Context-Based Vision, Cambridge, Massachusetts, pp. 63-74. July. 1995.

[165] T. Starner and A. Pentland. “Real-Time American Sign Language Recognition from
Video Using Hidden Markov Models”, Proc. of the IEEE-PAMI International
Symposium on Computer Vision, Coral Gables, Florida, pp. 265-270. November. 1995.

References 257

[166] L. A. Stein and L. Morgenstern. “Motivated Action Theory: a Formal Theory of Causal
Reasoning”, Artificial Intelligence, vol. 71, pp. 1-42. 1994.

[167] S. Strassman. “Semi-Autonomous Animated Actors”, Proc. of AAAI'94, Seattle,
Washington, pp. 128-134. August. 1994.

[168] C. Sul, K. Lee, and K. Wohn. “Virtual Stage: A Location-based Karaoke System”,
IEEE Multimedia, vol. 5 (2). 1998.

[169] D. Terzopoulos and K. Waters. “Analysis and Synthesis of Facial Image Sequences
Using Physical and Anatomical Models”, IEEE PAMI, vol. 15 (6), pp. 569-579. 1993.

[170] N. M. Thalmann and D. Thalmann. Synthetic Actors in Computer Generated 3D Films.
Springer-Verlag, Berlin, Germany. 1990.

[171] R. Thibadeau. “Artificial Perception of Actions”, Cognitive Science, vol. 10, pp. 117-
149. 1986.

[172] N. Tosa, H. Hashimoto, K. Sezaki, Y. Kunii, T. Yamada, K. Sabe, R. Nishino, H.
Harashima, and F. Harashima. “Network-Based Neuro-Baby with Robotic Hand”, Proc.
of IJCAI'95 Workshop on Entertainment and AI/Alife, Montreal, Canada. August. 1995.

[173] N. Tosa and R. Nakatsu. “For Interactive Virtual Drama: Body Communication Actor”,
Proc. of 7th International Symposium on Electronic Art, Rotterdam, The Netherlands.
September. 1996.

[174] N. Tosa and R. Nakatsu. “Interactive Poem System”, Proc. of ACM Multimedia'98,
Bristol, England, pp. 115-118. September 12-16. 1998.

[175] G. van Rossum, J. Jansen, K. Mullender, and D. Bulterman. “CMIFed: a Presentation
Environment for Portable Hypermedia Documents”, Proc. of ACM Multimedia'93,
California. 1993.

[176] P. van Beek. “Reasoning about Qualitative Temporal Information”, Artificial
Intelligence, vol. 58 (1-3), pp. 297-326. 1992.

[177] M. Vilain and H. Kautz. “Constraint Propagation Algorithms for Temporal Reasoning”,
Proc. of AAAI'86, Philadelphia, Pennsylvania, pp. 377-382. 1986.

[178] M. Vilain, H. Kautz, and P. v. Beek. “Constraint Propagation Algorithms for Temporal
Reasoning: A Revised Report”, in Readings in Qualitative Reasoning About Physical
Systems, D. S. Weld and J. d. Kleer (eds.). Morgan Kaufmann, San Mateo, California.
pp. 373-381. 1990.

[179] M. Weiser. “The Computer for the Twenty-First Century”, Scientific American, pp. 94-
100. 1991.

[180] W. Wilks. “A Preferential, Pattern-Seeking Semantics for Natural Language Inference”,
Artificial Intelligence, vol. 6 (1), pp. 53-74. 1975.

References 258

[181] A. Wilson and A. F. Bobick. “Learning Visual Behavior for Gesture Analysis”, Proc. of
the IEEE-PAMI International Symposium on Computer Vision, Coral Gables, Florida,
pp. 229-234. November. 1995.

[182] A. Wilson, A. F. Bobick, and J. Cassell. “Temporal Classification of Natural Gesture
and Application to Video Coding”, Proc. of CVPR'97, Puerto Rico, USA, pp. 948-954.
1997.

[183] A. Wilson and P. Wilson. Theme Parks, Leisure Centers, Zoos, and Aquari. Longman
Scientific and Technical, Essex, United Kingdom. 1994.

[184] S. Wirag. “Modeling of Adaptable Multimedia Documents”, Proc. of the European
Workshop on Interactive Distributed Multimedia Systems and Telecommunications
Services, Darmstadt. September. 1997.

[185] L. Wolford and R. Schechner. The Grotowski Sourcebook. Routledge, London,
England. 1997.

[186] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. “Pfinder: Real-Time Tracking
of the Human Body”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19
(7), pp. 780-785. 1997.

[187] J. Yamato, J. Ohya, and K. Ishii. “Recognizing Human Action in Time-Sequential
Images Using Hidden Markov Model”, Proc. of CVPR'92, pp. 379-385. 1992.

[188] H. Zettl. Television Production Handbook, 4th ed. Wadsworth Publishing, Belmont,
California. 607 pages. 1984.

