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Abstract

A probabilistic framework for representing and visu-
ally recognizing complex multi-agent action is pre-
sented. Motivated by work in model-based object
recognition and designed for the recognition of ac-
tion from visual evidence, the representation has three
components: (1) temporal structure descriptions repre-
senting the temporal relationships between agentgoals,
(2) belief networks for probabilistically representing
and recognizing individual agentgoals from visual evi-
dence, and (3) belief networks automatically generated
from the temporal structure descriptions that support
the recognition of the complex action. We describe our
current work on recognizing American football plays
from noisy trajectory data.1

Keywords: action recognition, plan recognition, rep-
resenting visual uncertainty

1 Introduction

Evaluating whether an observed set of visual phenomena consti-
tute a particular dynamic event requires representation and recog-
nition of temporal relationships and uncertain information. The
goalof this paper is to presenta new approach to the representation
and recognition of complex multi-agent probabilistic actions. By
complex we simply mean that the action contains many compo-
nents that occur in, typically, a partially ordered temporal relation
to one another, subject to certain logical constraints (e.g. A hap-
pens before B, B is before C or D, but only one of C or D
can occur). These relations generally reflect causal connections or
influences between components. The actions we are considering
are multi-agent, resulting in parallel event streams that interact in
interesting temporal (typically causal) ways.

By probabilistic we refer to the uncertain nature of both the
model and the data. The action description itself is typically prob-
abilistic: e.g. B follows A, but only 80% of the time. This uncer-
tainty results from complex actions defined by typical components
that are only sometimes observed due to uncertainty in the world.
Another source of uncertainty is the fuzziness of attributes used
to describe agent interaction (e.g. obj1 is near obj2). Finally,
the design of the representation is intended to support recognition
and we therefore need to consider real sensing capabilities, which

1This research was funded by Office of Research and Develop-
ment (ORD) contracts 94-F133400-000 and 97-F157800-000.
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are probabilistic at best. Often, perceptual evidence can be either
missed or hallucinated.

There are numerous domains that contain interesting, complex,
probabilistic actions. Examples include sporting events, military
and security surveillance, traffic monitoring, and robotic collabo-
ration. The task and domain developed here is recognizing Amer-
ican football plays. It has the necessary attributes of containing
complex actions (plays) performed by a multi-agent system (the
offense) in which there is great uncertainty and unpredictability
(the defense). Methods exist for tracking football players from
video [12]. For the recognition task, we presume tracked data that
provides the location and rough orientation of each player at each
time during the play. Our current system uses a database of 29
manually, though noisily, tracked plays. Figure 1 shows 3 “chalk-
board” image examples of 3 different observations of a “p51curl”
play.

1.1 An analogy to object recognition
At the heart of our approach to complex action recognition is an
idea developed within the context of model-based object recog-
nition. The task there is to match a given object model to an
image from which edge elements have been extracted. One of
the more successful approaches to this problem is that of using
feature-model interpretation matching trees, where the visual fea-
tures are edge segments [8]. Each layer of the tree represents a
given model edge. The fanouts of each node span the potential im-
age edge fragments that might match the given model edge of the
given layer. A hypothesis is a path from the root to the leaves that
specifies the match of each model edge to specific image features.

The goal, of course, is to find the correct hypotheses. However
the number of edges make exhaustive search computationally pro-
hibitive. Rather, the approach is to find a consistent hypothesis,
and assume that consistency implies correctness. As developed in
[8] the orderof the consistencycan be varied dependingupon com-
putational resources and accuracy requirements. For example, if
we restrict our attention to two-dimensional objects, a unary con-
sistency check simply requires that each model edge is at least as
long as the proposed matching image edge. A binary consistency
check verifies not only the unary relations but also all pairwise
relationships, namely the angle and bounded distance between
edges.

Grimson and Lozano-Pérez [8] note that although it is math-
ematically possible for an incorrect interpretation to satisfy the
binary relations but not higher order relations, the probability of
an object doing so falls precipitously as object complexity in-
creases. This allows them to construct heuristic pruning methods
that search for the correct interpretation by only maintaining binary
consistency. It is this idea, that massive low order consistency typ-
ically implies correctness, that drives our approach to recognizing
complex actions.
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Figure 1: Three examples of a p51curl play. The lighter trajectories are the offensive players. The data provided to the system consists
of trajectories for all the objects including the ball, the approximate orientation of each object at each point along its trajectory, and a
position label for each trajectory.

1.2 Our approach
The approach we have developed consists of the following repre-
sentational elements:

� We first define a temporal structure description of the global
behavior, in this case a football play. The basic elements of
this structure represent individual, local goals or events that
must be detected. The relations coded in the structure are
temporal constraints to be verified.

� For each basic element of the temporal structure, we define
a visual network that detects the occurrence of the individ-
ual goal or event at a given time accounting for uncertain
information.

� Temporal analysis functions are defined which evaluate
the validity of a particular temporal relationships, such as
before.

� A large multi-agent belief network is automatically con-
structed reflecting the temporal structure of the action. This
network, similar in structure to a naive Bayesian classifier,
represents a particular play using only beliefs and evidence
about the expected temporal relationships between agent
goals.

The likelihood that a particular play has been observed is com-
puted by evaluating the appropriate belief networks.

1.3 s51 play example
The task for a recognition system is to recognize whether a given
set of trajectory inputs like those illustrated by Figure 1 corre-
sponds to a particular type of play, such as the p51curl. Normally
plays consist of 11 offensive players. A simplified example of a
p51curl play, called the “s51,” containing only 4 offensive play-
ers and a reduced number of actions per player will be used for
illustration in this paper. The s51 chalkboard diagram is shown in
Figure 2.

The input to the system consists of trajectories given by
(x,y,orientation,label) tuples as a function of the frame number,
i.e. time. Here, orientation denotes the approximate upper-body
orientation of the player and label is the name of the player’s
starting position.

OBJ2

LOS

5 yards

OBJ4

D

OBJ3

OBJ1

Figure 2: An football play diagramming the s51 example play.
The play consists of 4 offensive agents and a ball. Also marked is
the line-of-scrimmage (LOS) and some 5-yard marker yardlines.
The heavy dotted line indicates the most typical path for the ball
when it is thrown by OBJ2 after the ball is handed to OBJ2 from
OBJ1. The lighter dotted line indicates a secondary pass option.
Implicit is that OBJ3 and OBJ4 turn at the same time.

2 Prior work
Prior multi-agent plan recognition work can be roughly divided
into two methods. Some approaches have an explicit represen-
tation for group intentionality (e.g. [9]), typically using modal
logics. Other approaches “compile down” intentional reasoning
into procedural components, trading off the ability to reason about
complex intentional interaction for computational tractability in
domains with noisy evidence detectors. Our hypothesis is that for
some useful recognition tasks visually-detected agent-based goals
can be “compiled” into efficient and powerful classifier networks
using binary temporal relationships between detected goals.

Promising work on recognizing single-agent action from tra-
jectory information using transition diagrams and fuzzy reasoning
[14] led us to investigate the use of belief networks for multi-agent
action recognition, which more explicitly represent knowledge de-
pendencies and are computationally well-understood. Bayesian
networks have been used to relax the strict assumptions of plan
hierarchy models such as [13]. For example, networks can rep-
resent multiple top-level goals where probabilistic priors can be
used to rank two equally possible but not equally likely plans [4].
Further, they have been used to integrate “action patterns” and
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(goalTeam s51
"Team goal for simple-p51curl (s51) play."

(agentGoal obj1
(agent (obj1 (C))) ; Obj1 is always the Center (C)
(goal obj1_act1 "snapToQB (obj1)")
(goal obj2_act2 "blockQBPass (obj1)")
(before obj1_act1 obj1_act2))

(agentGoal obj2
(agent (obj2 (QB))) ;Obj2 is always the Quarterback (QB)
(goal obj1_act1 "dropback (obj2 5)")
(goal obj2_act2 "throwPass (obj2)")
(before obj2_act1 obj2_act2))

(agentGoal obj3 ;The Right Wing Back (RWB)
(agent (obj3 (RWB RTE RHB HB FB TB LWB LSB)))
(goal obj3_act1 "passPatStreaking

(obj3 4 45 defReg nearRightSidelineReg 0)")
(goal obj3_act2 "passPatCutting (obj3 70 offSidelineRightReg

freeBlockingZoneReg)")
(goal obj3_act3 "runbehind (obj3 obj4)")
(goal obj3_act4 "passPatParaLos

(obj3 3 defReg offSidelineRightReg 4)")
(goal obj3_act5 "catchPass (obj3)")
(before obj3_act1 obj3_act2)
(before obj3_act2 obj3_act4))

(agentGoal obj4 ;The Right Flanker (RFL)
(agent (obj4 (RFL RWB RSB LFL LSB LWB)))
(goal obj4_act1 "passPatStreaking

(obj4 4 50 defReg offEndZoneReg 0)")
(goal obj4_act2 "passPatCutting (obj4 70 offSidelineLeftReg

freeBlockingZoneReg)")
(goal obj4_act3 "passPatParaLos

(obj4 3 defReg offCenterLineReg 4)")
(goal obj4_act4 "catchPass (obj4)")
(before obj4_act1 obj4_act2)
(before obj4_act2 obj4_act3))

(around obj3_act2 obj4_act2)
(xor obj3_act5 obj4_act4))

Figure 3: A temporal structure description for the s51 play exam-
ple with only some actions and temporal relationships specified.

beliefs about an agent’s mental state [16]. Previous work in traffic
understanding has used an agent-based belief network and agent-
centered features for recognition of driving activity from simulated
[6] and real data [3, 10]. Unlike that work our task requires that
the system must also represent the logical and temporal relation-
ships between multiple agents. Remagnino, Tan, and Baker [17]
recently described a pedestrian and car tracking and surveillance
system that models the interaction between any two agents using a
small belief network. Dynamic belief networks (DBNs) and hid-
den Markov models (HMMs) have been used with some success
but have not been demonstrated to be appropriate for domains in
which multi-agent relationships result in large feature spaces and
in which large and complete data sets for training are unavailable.

Although some search-based systems for recognizing multi-
agent goals and actions have been proposed [18, 2, 19], noisy
visual data requires a representation that can handle uncertainty.
[5] have demonstrated that pairwise comparison of features be-
tween trajectories can be used to recognize some group military
behaviors for large numbers of agents.

Huber has shown that simple goal recognition belief networks
can be constructed automatically from representations of action
used for a plan generation system and then used by a planning agent
in a multi-object scene [11]. Our approach builds on Huber’s work
of automatic construction of networks.

The remaining sections of this paper describe each component
of our representation and some recognition results.

3 Temporal structure description

The temporal structure description represents the prototypical sce-
nario of the described action. It is comprised of fundamental be-
havior elements connected by temporal constraints. We assume
that the complex actions we wish to recognize have such a proto-
type and that they can be expressed with this language.

3.1 Individual goals and behaviors

We use individual agent goals as the basis for the descriptive
structure and view complex actions as a partially ordered set of
goaldirected behaviors on the part of interacting agents. We define
goals by their (probabilistic) characteristic behaviors, building on
work in probabilistic plan recognition [4]. To evaluate whether an
agent has a particular goal at a particular time we will evaluate the
perceptual evidence.

For example, the halfback can have the goal of running between
the tackle and the guard. To determine if indeed he has such a
goal a recognition system must evaluate the visual evidence, par-
ticularly the position of the tackle and the guard and the direction
of motion of the halfback. The interaction of multiple agents and
the reaction of agents to the movement of other agents can lead to
large variations in some movement, as indicated by the examples
in Figure 1. However, at any given time, evidence detected in a
local space-time window can indicate that an agent has a particu-
lar goal. Later we will more fully detail the construction of belief
networks that serve as the definition of the individual agent goals.

3.2 Goal action components
Figure 3 shows a simplified temporal structure description for the
s51 example in Figure 2. The description contains four agents:
obj1, obj2, obj3, and obj4. Each object in the temporal structure
graph has a set of goal action components. The example indicates
that in an s51 play, obj1 should have a goal to snapToQB (snap
(or hand) the ball to the quarterback) and blockQBPass (block
for the QB as the QB passes the ball). Each goal has a label,
such as obj1 act1 (short for object1’s action1). The s51 example
has been limited to just six goal types: snapToQB, blockQBPass,
passPatStreaking,passPatCutting,passPatParaLos, and catchPass.
The detector for each goal type receives a list of parameters.2

3.3 Object assignment
The trajectories in our dataset are labeled using standard football
position notations (e.g. QB, C, HB). However, since all football
plays can be run from several different starting formations (so that
the defense cannot determine the play from the starting formation
of the offense), the temporal structure description must indicate the
valid position types for each object. In the example description in
Figure 3, the agent slot of the agentGoal obj3 description
indicates that object obj3 can possibly match with a trajectory
if the trajectory has one of labels (RWB RTE RHB HB FB TB
LWB LSB). This list is a preference ordering. obj3 will most
often be the RFL, then the RWB, and so on. Given the prefer-
ence orders for all objects, a consistent assignment of trajectory
data to the play description must be made. Here our system finds
the single most consistent interpretation using preference assign-
ments, the constraint that all trajectories must be assigned to an
object in the temporal structure description, and a heuristic scoring
function. Due to space limitations this matching process is not
discussed further.

3.4 Temporal constraints
The remaining slots in the the temporal structure description in-
dicate the temporal and logical relationships between agent goals.
Two temporal primitives are available: before and around. For ex-
ample, “(before obj1 act1 obj1 act2)" indicates that goal obj1 act1

2For example, passPatCutting takes parameters (obj a toReg
inReg). The network encodes detects the following: Obj, which
must be an eligible receiver, runs a pass pattern segmentmaking
a sharp (e.g. about a degrees) change in motion in inReg after
which obj is moving in towards the toReg.
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occurs before obj1 act2, where obj1 act1 is the label for "snap-
ToQB (obj1)" and obj2 act2 is the label for "blockQBPass (obj1)".
Similarly, “(around obj3 act2 obj4 act2)" indicates that object3’s
passPatCutting goal occurs around the same time as object4’s
passPatCutting goal. The meanings of “before" and “around" will
be defined shortly. Finally, “(xor obj3 act5 obj4 act4)" indicates
that object3’s catchPass goal xor object4’s catchPass goal should
be observed.

By assumption, the goals of an agent are active during temporal
intervals of finite duration; they are not instantaneous events. As
such, Allen’s interval algebra [1] applies and there are potentially
7 possible temporal relations (not counting inverses). However,
that algebra requires precise definition of the endpoints of the in-
tervals. Our ability to assign goals to agents based upon perceptual
evidence will be fuzzy, allowing us only to assign a graded value
that varies over time. In the ideal case there would be a nice peak
or plateau in the probability a goal is active during a temporal
window, but real data is rarely ideal.

Note that our temporal constraints do not support most temporal
implications. For example, the temporal relation of simultaneity
is expressed as around which can be interpreted as “about the
same time as.” Clearly such a ‘fuzzy’ relation is not transitive
and we cannot apply transitive closure to the temporal relations.
Rather, we only exploit those relations manually constructed by
the knowledge engineer designing the action description.

4 Visual nets and temporal functions
Previous work has shown that agent goals can be represented
in a probabilistic framework using Bayesian belief networks [4,
11, 16]. We also use belief networks based on visual evidence,
or visual networks, that offer a rich representation designed to
handle uncertainty in evidence, goal models, spatial reasoning,
and temporal reasoning. Further, the networks can be used as
building blocks for recognizing multi-agent activity.

4.1 Network structure and evaluation
A single belief network represents each goal or event and can be
instantiated at any time during a play. The networks typically
contain between 15 and 25 nodes with a relatively tree-like link
complexity and therefore exact propagation algorithms can be used
to compute the probabilities of each node state [15]. The structure
of each network is manually specified. Currently the priors are
also manually assigned,however some priors can be obtained from
analyzing the evidence and the performance of particular feature
detectors.

Figure 4 shows one such network, catchPass. The network
consistsof two types of nodes: unobservablebelief and observable
evidence.

Unobservable belief nodes A belief node has two states, true and
false, and represents an internal state of the agent or some
external state in the world at the time when the network is
evaluated. Each visual network has a designated main goal
node (e.g. catchPass).

Observable evidence nodes An evidence node’s states and state
values are directly dependentupon the data. Some nodes are
binary (e.g. observed, notObserved), most are trinary, (e.g.
observed, maybeObserved, notObserved), and the remain-
der have specialized states that quantize a particular feature
detector output (e.g. the result of the distance detector
is quantized into states inContact, nextTo, near, inVicinity,
far, distant). To maintain continuous valued information,

Figure 4: The catchPass goal network.

whenever possible evidence is entered as “virtual” likeli-
hood evidence.3

The main belief node of each network can acceptparameters set
by the caller of the network at run-time. For example, goal node
catchPass (obj1) accepts one argument, a specific agent.
Each network is designed so that it can be applied to any world
object and return a reasonable result.

4.2 Locality in space-time
Visual networks can be applied to any agent at any time. As much
as possible, visual goal networks are designed to use evidence
observed locally in space and time. Further, evidence features
are typically deictic, or agent centered. For example, networks
sometimes compute the distance between the current agent and
the closest agent.

Because goal networks can make use of dynamic state vari-
ables (e.g. snapTime) and the output of other goal networks
(e.g. catchPass uses the result of the playInProgress net-
work), the networks are not entirely “closed.” Incorporating input
from other networks or dynamic state variables violates the belief
network assumption that all variable dependencies are modeled via
explicit conditional probabilities. We accept this approximation,
noting that the networks themselves are simplified approximations
to the actual dependency structure and that partitioning actions into
small networks simplifies and makes manageable the job of the
knowledge engineer.

We incorporate evidence from an external network, such as
the playInProgress evidence node, into a network such as
catchPass (obj1) as follows. If the playInProgress
network cannot evaluate and returns NIL, no evidence is en-
tered for the node. If the playInProgress network returns
a high likelihood of a particular state that exceeds a predetermined
threshold for playInProgress, evidence is entered directly
into the catchPass network (e.g. if observed = .99 and not-
Observed = .01 and threshold(playInProgress) = .85
then observed = 1.0 is entered into catchPass). Finally, if
playInProgress evaluates below the threshold, the beliefs
are treated as direct evidence and the probabilities are converted

3So-called “virtual” evidence,or the relative likelihood of each of
the discrete states, is entered into a network to use continuous-
valued evidence in a node with discrete evidence states (see
[15]). The likelihood is obtained using the relative activation
levels of each discrete state which are computed with piecewise
linear functions.
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Figure 5: Goal likelihood curves returned by the networks “drop-
back (QB 5)” and “catchPass (RSE)” superimposedwith the corre-
sponding temporal curves for “dropback (QB 5) before catchPass
(RSE)” and “dropback (QB 5) around catchPass (RSE)”.

to likelihood evidence [15] (e.g. if observed= .8 and notObserved
= .2 and threshold(playInProgress) = .85 then the evi-
dence that observed is 4 times more likely than notObserved will
be entered into the catchPass network).

4.3 Temporal analysis functions
The output of a visual goalnetwork at each frame for a given object
results in a likelihood curve over time. Temporal relationship evi-
dence detectors use these curves as input. The functions compute
a certainty value for the observed, before, and around tests at each
time frame using heuristic functions that compare the activation
levels of each goal over time, characteristics of each input curve,
the temporal distance between features of the curves, the amount
of overlap between the curves, and a minimal activation time for
each goal. The functions are designed to preserve the uncertainty
in the output of the visual goal networks and to avoid hard thresh-
olding. Two curves returned by the networks “dropback (QB 5)”
and “catchPass (RSE)” are shown in Figure 5 overlaid with the
likelihood values for the before and around detectors correspond-
ing to “dropback (QB 5) before catchPass (RSE)” and “dropback
(QB 5) around catchPass (RSE)”.

5 Multi-agent networks
Multi-agent action is recognized using a multi-agent belief net-
work. At each time, the network integrates the likelihood values
returned by temporal analysis functions at that time and returns a
likelihood that a given play has been observed.

Figure 6 shows an example of a multi-agent network for the
s51 play. The network structure is generated automatically from
the temporal structure description. In the system discussed in this
paper, a two-level naive Bayesian classifier network structure is
generated that encodes the temporal structure of a play. All nodes
in the multi-agent networks represent beliefs or evidence observed
over all the play data seenfrom the start of the play until the current
time. The state characterization of all nodes comprises the values
(observed; notObserved). The main node in the example is B:
s51 (obj1 obj2 obj3 obj4). Linked to that node is one node for
each agent – for example B: s51 (obj1) – representing the belief
that the agent’s goals for the s51 have been observed. Below these
nodes are nodes representing:

� Binary temporal relationships between goals (e.g. B:
obj1 act1 before obj1 act2). These nodes represent the be-
lief that a particular temporal ordering has been observed or
notObserved at some point during the action sequence.

� Evidence for binary temporal relationships (e.g E: obj1 act1
before obj1 act2). There is a conditional link from the tem-

B: s51 (obj1 obj2 obj3 obj4)
B: s51 (obj1)

B: s51 (obj2)

B: obj3_act5 observed

B: s51 (obj3)
B: s51 (obj4)

B: obj1_act1 before obj1_act2

B: obj2_act1 before obj2_act2

B: obj4_act2 before obj4_act3

B: obj4_act4 observed

B: obj3_act1 before obj3_act2

B: obj3_act3 observed

B: obj3_act2 around obj4_act2

B: obj4_act1 before obj4_act2

B: obj3_act5 xor obj4_act4

B: obj3_act2 before obj3_act4

E

E

E

E

EE

E

E

E

E

Figure 6: The s51 multi-agent recognition network.

poral relation belief node to the evidence. The evidence
values are computed by the temporal analysis functions. To
avoid cluttering the figure, these nodes are represented with
a boxed “E” node.

Temporal relationships between agents are linked directly to
the top-level belief node (e.g. see B: obj3 act2 around obj4 act2).
Additional links can be added for logical relationships, which
conditionally link the two related goal observations.

A detector such as E:obj3 act1 before obj3 act2 implicitly
encodes the observation E:obj3 act1 observed and E:obj3 act2.
Therefore, when an agent goal node is temporally compared to
some other agent goal node, only the temporal comparison be-
lief node is incorporated into the network. However, some goal
actions are not included in any temporal comparisons in the tem-
poral action description. In these cases, the network includes an
observed belief and evidence node (e.g. B:obj3 act3 observed).

Conditional and prior probabilities for the network are deter-
mined automatically using heuristics matching table templates to
specific node-link combinations, similar to the method used by
Huber [11]. The structure of the network for the s51 shown in
Figure 6 essentially implements a weighted voting scheme be-
tween observed goals and temporal relationships between goals.

Experimental evaluation has demonstrated that naive Bayesian
networks are surprisingly good classifiers, despite making strict
independence assumptions between attributes and the class. More-
over, recent work has shown that augmenting such networks with
additional binary conditional dependencies improves classifica-
tion performance so that it is often better and otherwise compa-
rable to more complex representations, including more highly-
connected learned network structures [7]. Our multi-agent net-
works are naive classifiers where binary temporal relations be-
tween goals have been encoded within nodes, not in links between
nodes.

The network shown in Figure 6 is only for a play with four
agents where the number of actions for each agent is restricted
to just a few examples. For a play with 11 agents, the networks
typically contain at least 50 belief nodes and 40 evidence nodes
and often twice that number. Network propagation by exact algo-
rithms is feasible, however, because the network has a shallow tree
linking structure and consists of binary internal belief nodes. The
temporal analysis functions return continuous valued likelihood
information. This information is entered into the multi-play net-
work as continuous evidence, avoiding unnecessary thresholding
of uncertain information.
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Figure 7: Result of running 7 play detectors on a t39 play example.
Shown is the likelihood of each play having been observed at frame
t considering all evidence from frames 0� t.

6 Results
We are using the representation described in this paper in a foot-
ball play recognition system. The system has knowledge of about
40 region definitions (e.g. line-of-scrimmage), 60 player
types (e.g. quarterback, receiver), and ISA relationships
between player types (wide-receiver ISA receiver).
We have constructed approximately 60 evidence detectors (e.g.
distance(closestAgent)) that are applied to the trajectory
data and produce probabilistic quantized outputs (e.g. inContact
= 0:3, nextTo= 0:7). We estimate 70 robust visual networks will
ultimately be required for recognition of most of the plays in our
database, and about 50 of those have been constructed.

We have evaluated our system on 29 tracked plays using a
database of 10 temporal play descriptions. Figure 7 shows the
likelihood value obtained by evaluating the multi-agent network
at each frame for 7 play models on a datafile for a t39 play. Here
the desired behavior is achieved: uncertain evidence of temporal
relationships between goals is sufficient to cause the t39 play
detector’s likelihood value to quickly rise above the other plays
shortly after the play action begins at frame 90.4

Figure 8 is a confusion matrix showing the final likelihood
value obtained for each temporal play description when run on
29 example plays. A “-” value indicates a play where no good
object-to-trajectory consistency match could be found.5 The ex-
amples below the line (i.e. p58 through s35) do not yet have fully
implemented temporal play descriptions. The highest likelihood
value obtained on each data file (each row) is marked in bold.

Considering only the top portion of the table, the maximum like-
lihood value along each row selects the correct play for 21 of the 25
play instances. 3 of the 4 errors are caused by p56yunderexamples
being misclassified as p52maxpin plays. Figure 9, which shows
the diagrams for those two plays with a misclassified example
approximately overlaid on top demonstrates why the system has
difficulty classifying the example. The diagram shows that both
plays, when executed perfectly, are similar when the “optional
action” is not taken into account. The only large observed differ-
ence between the plays is for the rightmost player, who follows a
trajectory different from both the p56yunder and the p52maxpin.
Our models currently do not include the optional actions, which
would contribute evidence to the desired p56yunderclassification.
We are currently extending the multi-agent networks so they can

4The system requires approximately 1 second of computation
per frame per tested play on a 500 MHz Digital Alphastation
and could be highly parallelized.

5Prior to evaluating a particular multi-agent network,a consistent
match between the labeled trajectories and the object label
preference orderings must be found. This component of the
system is not discussed in this paper.

Ideal p56yunder

Example play

Ideal p52maxpin

Optional actions

Figure 9: P56yunder and p52maxpin play diagrams with one
p56under example play approximately overlaid. The system re-
turned likelihoods of .64 for p56yunder and .76 for p52maxin.

encode optional compound goals.
The bottom section of the table are the probabilities produced

when applying the system to instances of plays for which there
is (as yet) no action network. The discouraging result here is
that false positives have values comparable to the correct positives
above. That is, while our current system is capable of selecting
the correct play description, it cannot yet determine when a play
does not belong to one of its known categories. One reason for
this is that we have not yet completed constructing all the visual
networks necessary to provide rich descriptions of the plays. The
weaker the model, the more easily it is matched by some incorrect
instance. More detailed models will improve the ability of the
system to determine that a play is “none of the above.”

Overall the results are promising, especially considering the
complexity and variation of the input data. We have data to evalu-
ate additional play descriptions but must first complete coding the
additional goal networks. Further, the multi-agent belief networks
need to be extended to handle compound groups of actions (e.g.
player performs (XOR (goal-a and goal-b) (goal-c
and goal-d)) before we can completely characterize the com-
petence of the representation.

7 Final remarks

We have proposed a representation – motivated by findings in
the computer vision object recognition literature and the power
of augmented naive Bayesian classifiers – that represents com-
plex, multi-agent action using low-order temporal graphs. The
primitives in these graphs are agent-based belief networks that
can recognize agent goals by probabilistic integration of visual
evidence. Networks with a structure similar to naive classifiers
are automatically generated from a simple description of a team
play. These networks contain nodes that encode binary spatial and
temporal relationships and are small and therefore computation-
ally manageable. We have demonstrated that these networks can
recognize multi-agent action for a real domain with noisy input
trajectory data. Studying the representational, recognition, and
computational properties of the multi-agent networks is the focus
of our current work.
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