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Abstract

One of the fundamental challenges in pattern
recognition is choosing a set of features appropri-
ate to a class of problems. In applications such as
image retrieval, it is important that features used
by the system in pattern comparison provide good
measures of “perceptual similarity.” We present
here a new set of features and an image model
based on the three mutually orthogonal compo-
nents produced by the 2-D Wold decomposition
of random fields. These components have visual
properties which approzimate the three most im-
portant perceptual dimensions of human texture
perception. The method presented here is differ-
ent from the ewisting Wold-based models in that
it tolerates certain local inhomogeneities which
arise in natural textures and reduces computation
for comparison of patterns subjected to transfor-
mations such as rotation. An image retrieval al-
gorithm based on the new texture model is pre-
sented. The effectiveness of the new Wold fea-
tures for retrieving perceptually similar natural
testures is demonstrated by comparing it to that
of other well-known pattern recognition methods.
The Wold model appears to offer a perceptually
more satisfying measure of pattern similarity.

1 Introduction

When considering image retrieval as a pattern recognition
application, we face the difficult problem of choosing a set
of features for measuring “perceptual similarity”. A re-
trieval system serves the purpose of saving human users
the time and effort of browsing an entire image database;
hence, it is expected that the retrieved images resemble the
visual properties of a prototype pattern selected by the hu-
man user. To build such a system, it is important that the
features used for pattern recognition are faithful to those
used by humans in comparing patterns.

A human texture perception study conducted by Rao
and Lohse [1] indicated that the three most important
perceptual dimensions in natural texture discrimination
can be described as “repetitiveness”, “directionality”, and
“granularity and complexity”. We propose a new set of
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features based on the two-dimensional (2-D) Wold decom-
position as appropriate for capturing these features of per-
ceptual similarity.

The 2-D Wold decomposition is an extension of a 1-D
decomposition named after statistician H. Wold. Given a
2-D homogeneous pattern, this theory decomposes it into
three mutually orthogonal components. The perceptual
properties of the three components can be described as
“periodicity”, “directionality”, and “randomness”, agree-
ing closely to the important dimensions of human texture
perception. The 2-D Wold decomposition have been re-
cently applied to spectral estimation and texture modeling
by Francos et al. [2][3].

In this paper, we present a new Wold-based texture
model and its application to image retrieval in large texture
databases. The Wold-based texture modeling presented to
date in the literature assumes that the images are station-
ary random fields, and, therefore, the model implementa-
tions are not designed to handle the inhomogeneity found
in large collections of natural image data. In this work,
we address the problem of adapting the Wold model to
tolerate local inhomogeneities of textures, as well as trans-
formations such as pattern rotation.

Section 2 contains a brief review of the 2-D Wold de-
composition theory and its previous applications to tex-
ture modeling. Section 3 presents the new Wold-based
texture model and its application to image retrieval. Ex-
perimental results comparing the Wold-based model with
a shift-invariant principal component analysis (PCA) and
a simultaneous autoregressive (SAR) model are shown in
Section 4.

2 Background

This brief review of the 2-D Wold decomposition is to pro-
vide readers some theoretical background of the work pre-
sented in this paper. A more complete presentation of the
theory can be found in [4][5][6].

2.1 2-D Wold Decomposition of
Homogeneous Random Fields

The structure of a 2-D, discrete, real, and homogeneous
random field {y(m,n)}, (m,n) € Z? can be studied by
formulating a linear prediction problem. Let g(m,n) be
the projection of y(m,n) on the Hilbert space spanned by
all the samples in the “past” of (m, n) w.r.t. to the totally
ordered, non-symmetric half-plane (NSHP). Then



the innovation field is {u(m,n) = y(m,n) — g(m,n)}.
Field {y(m,n)} is regular if its innovation field does not
vanish. Field {y(m,n)} is purely-indeterministic if it
spans the same Hilbert space as its innovation field. Field
{y(m,n)} is deterministic if its innovation field vanishes.
Notice that the total order and NSHP support is not
unique in the 2-D lattice. A family of total order and NSHP
supports whose boundary lines are of rational slopes can
be defined. Denote this family by O. With respect to each
support o € O, there may exist in a deterministic field an
evanescent subfield which corresponds to the row-to-row
innovations. The linear combination of all these evanescent
fields is called a generalized evanescent field. When a
deterministic field has no innovations w.r.t. any total order
and NSHP supports, it is half-plane deterministic.

Theorem 1 A homogeneous reqular
random field {y(m,n)} can be represented uniquely by the
following decomposition:

y(m,n) = w(m,n) + p(m,n) + g(m, n). (1)

Field {w(m,n)} is purely-indeterministic and has a moving
average (MA) representation

Z a(k, Du(m —k,n —1), (2)

(0,0)=<(k,l)

E(o,o)j(k,l) a*(k,1) < oo and a(0,0) = 1. The
innovation field {u(m,n)} is white. Field {p(m,n)} s
half-plane deterministic. Field {g(m,n)} is generalized
evanescent and g(m,n) = 206(’) eo(m,n), where e,(m,n)
is the evanescent field of {y(m,n)} w.r.t. the total order
and NSHP support o € O. Fields {w(m,n)}, {p(m,n)},
{g(m,n)}, and {e,(m,n)},0 € O, are mutually orthogo-
nal.

w(m,n) =

where

This theorem can be proved by using the Theorem 2 in [4]
and the Theorem 6 in [3].

There exists a dual relationship between the 2-D Wold
decomposition presented by Theorem 1 and the decom-
position of the spectral distribution function of a regular
homogeneous random field. Define all spectral functions
on the rectangular region [— L L] X [—iT, %] .
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Theorem 2 Let Fy (£, 1) be the spectral distribution func-
tion of a regular homogeneous random field {y(m,n)},
and let F, (£, n) denote the singular part of Fy(€,n). Let
F,(&n), Fy,(€,n), and Fy(€,n) be the spectral distribution
functions of the purely indeterministic, the half-plane de-
terministic, and the generalized evanescent components of
{y(m,n)}. Function F,(£,n) can be uniquely represented
as

FII(E'?):F“’(E 77)+FP(£% 77)+F!/(E 77) (3)
where Fy(€.m) = .o Feo(€n) and F. (6.n) is the

spectral distribution function of the evanescent field of
{y(m,n)} w.r.t. the total-order and NSHP definition
o € O. Function Fy,(&,n) is absolutely continuous and
Fo(&,m)+F (& n) = F (& n) is singular w.r.t. the Lebesgue

measure.

The proof of Theorem 2 can be drawn from the proof of
Theorem 2 and Theorem 3 in [6] and Theorem 7 of [3].
By Theorem 2, the decomposition of the deterministic
and the purely-indeterministic components of a regular ho-
mogeneous random field can be achieved by separating the

singular and the absolutely continuous components of the
spectral distribution of the random field. This is known as
Lebesgue decomposition [7]. The orthogonality of the
two components allows them to be treated separately.

2.2 Approximations

To apply the 2-D Wold decomposition theory to texture
modeling, Francos et al. made some approximations on the
deterministic random field [5]. A half-plane deterministic
field is approximated by a harmonic random field which in
the spectral domain appears as the 2-D Dirac §-functions
supported by discrete points. The spectral distribution
function of an evanescent field is absolutely continuous in
one dimension and singular in the orthogonal dimension.
In the spectral domain, this field appears as 1-D Dirac 4-
functions supported by lines with rational slopes.

As shown in (2), the purely-indeterministic field has a
white noise driven MA representation. Under certain con-
ditions usually satisfied in practice, a 2-D autoregressive
(AR) representation of this field exists [8][9].

In the following, we refer to the harmonic, evanescent,
and indeterministic components of a random field as the
Wold components.

3 New Wold-based Texture Model
and Application to Image Retrieval

3.1 Construction of the New Model

Image features for retrieval should be able to tolerate cer-
tain inhomogeneities in the data while facilitating pattern
comparison in real-time. The Wold model implementations
in the literature were not designed to meet these require-
ments; therefore, a new implementation is necessary.

The Wold model implementations reported to date take
one of two approaches. One is Lebesgue decomposition [2]
[3], and the other is direct maximum likelihood (ML) pa-
rameter estimation [10]. Compared to the ML method, the
algorithms based on Lebesgue decomposition are computa-
tionally more efficient. Also, Fourier spectral analysis has
the advantage of being shift-invariant; humans, too, are
relatively insensitive to shifts in a texture. Furthermore,
although the Wold theory shown previously assumes the
homogeneity of the random fields, the principle of Lebesgue
decomposition works for textures which are not strictly ho-
mogeneous but whose spectral singularities remain struc-
tured and can be extracted.

For all the experiments in this paper, we used the “Bro-
datz texture database” which contains 1008 natural tex-
ture patches cropped from all 112 pictures in the Bro-
datz Album [11]. Each Brodatz texture provides nine
128 x 128 subimages in 8-bit gray levels. This collection
contains a large variety of natural textures, including the
many inhomogeneous Brodatz textures which are not usu-
ally included in texture studies. We carefully examined
the Fourier spectra of this database, drawing the following
conclusions:

e Perceptually structured textures usually have domi-
nant harmonic components. Although certain local
inhomogeneities may spread out or change the loca-
tion of the spectral peaks slightly, the intrinsic struc-
ture of these peaks remains.
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Figure 1: Examples of Brodatz textures exhibiting differ-
ent spectral signatures in terms of Wold components. Top
row: originals; Bottom row: DFT magnitudes. (a) Reptile
skin, having a prominent harmonic component (singulari-
ties supported by discrete points). (b) Wood grain, having
a strong evanescent component (singularities supported by
aline). (c) Beach sand, having mostly indeterministic com-
ponent.

e Strong evanescent components correspond to eminent
directionality in patterns; local inhomogeneities have
only a minor effect on these components.

e The spectra of many textures with local inhomogene-
ity still exhibit structured singularities in the 2-D fre-
quency plane.

e Natural textures may contain multiple Wold compo-
nents and present a structural to stochastic contin-
uum. However, when the harmonic components are
significant, they usually dominate the perceptual pat-
tern discrimination. By Rao and Lohse [1], the exis-
tence of periodic structure is the strongest perceptual
cue in texture discrimination.

The distinct spectral signatures of some textures from
the Brodatz database are shown in Figure 1. The reptile
skin in (a) has a prominent harmonic component. The sin-
gularities, appear as sharp peaks, locate at isolated point-
like regions. The wood grain in (b) has a strong evanes-
cent component — large peaks are over a line-like region.
The beach sand in (c) is mostly indeterministic, with fairly
smooth discrete Fourier transform (DFT) magnitudes.

Based on the observations above, the new model is im-
plemented with a spectral domain approach. Ideally, the
model can be built by applying Lebesgue decomposition di-
rectly. However, automating the separation of the singular
and continuous parts of the spectrum has been found tech-
nically very difficult due to the large variety in the Brodatz
texture database. Instead, the new algorithm seeks first the
perceptually most salient cue in a texture — the periodicity.
When the harmonic information is sufficient, the image is
represented by its harmonic peak feature set; otherwise, it
is modeled by the number of its main orientations and its
multiscale SAR parameters.

3.2 Image Initial Examination

To determine the prominence of harmonic structures in a
texture, we examined differences in the energy distribution
of the autocorrelation for each image. The autocorrelations

of highly structured textures have periodic energy concen-
tration throughout the 2-D displacement plane, whereas
those of random looking textures have most of their en-
ergy in the small displacement region. Hence, the ratio be-
tween the small displacement energy and the total energy
of the autocorrelations can indicate if a texture is highly
structured.

Each image autocorrelation is computed as the inverse
DFT of the image power spectrum. Then, starting from
the origin (zero displacement), a region is grown outwards
continuously until the value of the autocorrelation func-
tion is lower than a small portion of the maximum value
(10% in the experiment). This region is regarded as the
small displacement region. A histogram of the energy ra-
tio is built over the entire Brodatz database to establish
a decision threshold, which is determined to be 18% for
minimum classification error (strongly structured vs. not).

3.3 Highly Structured Images and
Harmonic Peak features

The Wold feature set of a highly structured texture con-
sists of the frequencies and the magnitudes of the harmonic
spectral peaks of the image. To build the feature set, the
DFT magnitudes of the image are computed and their large
local maxima found. Among the local maxima, only those
whose frequencies are either fundamentals or harmonics are
kept. Fundamentals are defined as the frequencies which
can be used to linearly express the frequencies of other lo-
cal maxima, and the harmonics are the frequencies which
can be expressed as a linear combination of the fundamen-
tals. Note that the feature set usually does not include all
the harmonic peaks of a texture.

It is desirable for a recognition algorithm to be able to
compare images with respect to relative rotation as humans
often consider a texture to be more similar to its rotated
version than to a different texture. Local rotations may
also be used to “straighten out” an inhomogeneous pat-
tern. Since the spatial relationship of the harmonic peaks
in a Wold feature set does not vary under rotation, effects
of local inhomogeneities may be reduced by rotating the
peaks to align with the main orientation of the texture.
This also yields a “generic view” of the texture, analogous
to the generic view a human usually draws of an object
(such as a building with horizontal and vertical direction-
ality) as opposed to the perspective view formed on the
retina.

In the algorithm developed here, the main orientation
is defined as the direction of the lowest fundamental fre-
quency in the feature set. The frequency with the most en-
ergy is not used since energy distribution can be influenced
by many non-pattern attributes, such as local lighting and
contrast. Since each feature set typically consists of a small
number of peaks, the rotation involves little computation
compared to a rotation in the spatial domain. Note that
similar savings can be gained on other transformations.

The comparison of highly structured textures is carried
out by matching their Wold feature sets. In image retrieval,
the user selects a prototype image and the retrieval algo-
rithm searches through the database test images for the
ones that are similar to the prototype. Denote the features
of a prototype image and a test image by m,(s) and my(r)
respectively, where s = (s1,52),7 = (r1,72) € T. Region
T is half of the discrete frequency plane. The similarity



measure between the two images is defined in this work to

be:

My, = Z my(s) E Wy (1 — 8)

s€T reT

my (s)ma(r) 4
[m,(s) + mi ()] ®

where w,,(+) is a point spread weighting function, imple-
mented here as a 5 X 5 (size found heuristically) Gaus-
sian mask with unity at the center and standard devia-
tion o = \/5 This function enables peak matching within
a small neighborhood of the prototype peaks. This not
only compensates for the frequency sampling effects of the
DFT operation, but also tolerates small frequency shifts
of the harmonic peaks caused by inhomogeneities in the
data. The function of the ratio term is to weigh the differ-
mp(s) . me(r)
T (O Fm () () ()
its maximum when m,(s) = m,(r). Note that the larger
the value M, the more similar the two images.

reaches

ence of the peaks since

3.4 Stochastic images and Multiscale
SAR Models

The indeterministic component of a texture can be mod-
eled by an AR process (Section 2). Various AR implemen-
tations have been used in texture modeling. In this work,
we use the multiscale second order symmetric SAR model
of Mao and Jain [12]. At each of the second, third, and
fourth scales, four SAR coefficients are estimated by the
least squares error method. These coefficients and the esti-
mation error compose a five-parameter vector. The vectors
from three scales are cascaded to form a fifteen-parameter
SAR feature vector of each image. The covariance matrix
of the feature vector is computed, and two images are com-
pared by examining the Mahalanobis distance of their SAR
feature vectors. The results of image retrieval based solely
on the SAR features is shown in Section 4 in comparison
to the performance of the new system.

The multiscale SAR model is used in this work to model
textures without dominant harmonic structures. However,
these textures may contain evanescent components which
appear in the images as strong directionalities. The evanes-
cent information is described here as the dominant orien-
tations of an image. These orientations are found by using
a basis set of oriented bandpass filters and a decision pro-
cess based on thresholding orientation histograms [13]. The
Wold feature set of a texture without prominent harmonic
component is composed of the SAR features and the num-
ber of dominant orientations in the image. Two textures
are compared by computing the Mahalanobis distance of
their SAR feature vectors when they have the same number
of main orientations.

3.5 Image Retrieval based on the New
Wold Texture Model

The image retrieval algorithm proposed here consists of
three major parts. Given a prototype image, the system
first examines it for strong harmonic structures. When the
image is considered highly structured, its harmonic peaks
are extracted and rotated to form its feature set. Then,
all highly structured database images are sorted by the
descending order of their similarity measure (4) to the pro-
totype image. When the prototype image is considered not
highly structured, its main orientations and SAR features

are estimated to form the feature set. All database im-
ages which are not highly structured but possess the same
number of main orientations as the prototype image are
then sorted by the ascending order of their SAR feature
Mahalanobis distances to the prototype image. The flow-
chart of this Wold-based image retrieval system is shown
in Figure 2.

The multiscale SAR parameter estimation is the most
computationally costly part of the entire algorithm. How-
ever, when the initial stage indicates that the harmonic in-
formation is sufficient for the pattern comparison, this op-
eration can be avoided and results in substantial savings.
Furthermore, consideration of first the harmonic compo-
nent and then the other Wold components is consistent
with the perceptual saliency of these components [1].

4 Experiments

The retrieval experiments are carried out on the Brodatz
texture database using the Photobook test environment
described in [14].

In Figure 3, the performance of the new Wold-based
texture model is shown by two examples and compared to
that of the two other models described and benchmarked
in [15]: a shift-invariant PCA model and a multiscale SAR
model. The pictures are in the format of the “Photobook”
display window. The upper left image is the user selected
prototype image and the others are the database images
shown in the descending order of their similarities to the
prototype image in raster scan.

In our experiments, two performance criteria are con-
sidered. Ome is quantitative: since there are nine samples
for each original Brodatz texture, a perfect pattern recog-
nition performance implies that all nine images appear at
the first row of the output display. The other is qualita-
tive: the retrieved images should be in the order of their
perceptual similarity to the prototype image.

In the left column of Figure 3, the prototype image is of
bricks. The results in (a) and (b) show that the shift-
invariant PCA method does better in filling the screen
with “perceptually similar” images, but the multiscale SAR
method is better at finding the other eight brick pictures
cropped from the same Brodatz image. In (c), the Wold
model combines the best of both — providing both “within-
class” accuracy and “inter-class” similarity. Although the
brick images tend to appear very structured to humans
(who may imagine the periodic wall in which they lie) there
is not enough periodicity in the images for the Wold model
to find strong harmonics. Hence, the Wold model uses the
evanescent and indeterministic components for this case.

In the right column, the experiments are repeated for
a prototype image of reptile skin. The experiments in (a)
and (b) show that both the shift-invariant PCA and the
multiscale SAR methods confuse the periodic reptile skin
patterns and the random looking cork patterns. In (c), the
Wold method not only retrieves other periodic patterns,
but also shows tolerance to the rotational inhomogeneities
of the reptile skin. In this example, the Wold method uses
only the harmonic information of the textures.

With pre-computation of the features, all three meth-
ods above search the database in real-time on a DEC 5000
workstation.
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Figure 2: Flow-chart of the image retrieval algorithm based on the new Wold texture model.

5 Conclusions

A new texture model based on the 2-D Wold random field
decomposition theory is presented and applied to image re-
trieval in the Brodatz Texture Database. The three compo-
nent fields resulting from the decomposition have percep-
tual properties associated with the three main perceptual
dimensions identified in an independent study of human
texture perception.

Adopting the principles of Lebesgue decomposition, the
new model represents natural textures by their Wold fea-
tures — harmonic information for the highly structured tex-
tures, and orientation and multiscale SAR features for the
relatively unstructured textures. The Wold feature set and
the corresponding similarity measuring scheme enable the
algorithm to tolerate certain local inhomogeneities in data,
making the model more suitable for natural texture mod-
eling.

The new model always seeks first the periodicity infor-
mation in a texture and represents the image by this in-
formation when it is sufficient. This not only avoids the
computational burden of fitting to the image a statistical
model, but also makes the pattern matching under rota-
tion a simple operation. This modeling procedure is also
consistent with the observation that periodicity is the most
important perceptual dimension in texture discrimination.

The Wold model also solves a common problem found
when trying to fit statistical models to textures with pe-
riodic structures (i.e., spectral discontinuities). Since the
Wold model treats the continuous and discontinuous spec-
tral components separately, it is able to better fit each
component, avoiding the information loss inherent in a
low-order model, or the extra computation and overfitting
problems in a higher-order model.

Based on the Wold features of images, a new image re-
trieval algorithi is proposed. The effectiveness of the new
model is demonstrated in the image retrieval experiments
in comparison to the performance of the shift-invariant
PCA model and the multiscale SAR model. The Wold
model appears to offer perceptually more satisfying results
when applied to the Brodatz textures.
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