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Abstract

We describe the Photobook system, which is a set
of interactive tools for browsing and searching im-
ages and image sequences. These query tools differ
from those used in standard image databases in that
they make direct use of the image content rather
than relying on text annotations. Direct search on
image content is made possible by use of semantics-
preserving image compression, which reduces im-
ages to a small set of perceptually-significant coef-
ficients. We discuss three types of Photobook de-
scriptions in detail: one that allows search based on
appearance, one that uses 2-D shape, and a third
that allows search based on textural properties.
These 1mage content descriptions can be combined
with each other and with text-based descriptions
to provide a sophisticated browsing and search ca-
pability. In this paper we demonstrate Photobook
on databases containing images of people, video
keyframes, hand tools, fish, texture swatches, and
3-D medical data.

1 Introduction: The Problem

Digital imagery, whether single frames or ex-
tended sequences, is becoming an important com-
ponent of computer and telecommunication usage.
However the increasing use of imagery is causing
severe problems, because the technology for orga-
nizing and searching images based on their content
is still in its infancy. This is especially clear in the
development of multimedia applications, where the

difficulty of searching and editing image data is of-
ten the single largest cost factor.

Currently the standard approach to searching
image and video is to create text annotations that
describe the content of the image, and then enter
these textual annotations into a standard database.
The images themselves are not really part of the
database; they are only referenced by text strings
or pointers.

The problem with this approach is that the old
saying “a picture is worth 1000 words” is an under-
statement. In most images there are literally hun-
dreds of objects that could be referenced, and each
imaged object has a long list of attributes. Even
worse, spatial relationships are important in under-
standing image content, so that complete annota-
tion of an image with n objects each with m at-
tributes requires O(n?m?) database entries. And if
we must also consider relations among images, then
the problem quickly becomes intractable.

In today’s image database systems these anno-
tations must be entered by hand with great tedium
and prohibitive cost. The result is that users enter
only the minimum number of annotations required
to accomplish their current task. Consequently, the
resulting labelings are not rich enough or consistent
enough for different sorts of queries, so that image
databases are typically re-annotated for each prob-
lem.



1.1 Semantic Indexing of Image Con-
tent

The problem is that to make a user- and purpose-
independent image database we must annotate ev-
erything in the images and all the relations between
them. Text databases avoid this problem by using
strings of characters (e.g., words) that are a consis-
tent encoding of the database’s semantic content.
Thus questions about the database’s semantic con-
tent can be answered by simply comparing sets of
text strings. Because this search is efficient, users
can search for their answers at query time rather
than having to pre-annotate everything.

To accomplish the same thing for image
databases, we must be able to efficiently compare
the 1mages themselves, to see if they have the
same (or more generally, similar) semantic content.
There is, of course, a tradeoff between how much
work you do at input time and how much you do at
query time. For instance, one could try to precom-
pute the answers to all possible queries, so that no
search would be required. Alternatively, one could
search the raw images themselves, repeating all of
the low-level image processing tasks for each query.

For image databases there is a compelling argu-
ment for employing a pre-purposive “iconic” level
of representation. It does not make sense to try to
precompute a “general purpose,” completely sym-
bolic representation of image content, because the
number of possibly-interesting geometric relations
is combinatorially explosive. Consequently, the out-
put of our precomputation must be image-like data
structures where the geometric relationships remain
implicit. On the other hand, it does make sense to
precompute as much as is possible, because low-
level image operations are so expensive.

These precomputed image primitives must play
a role similar to that of letters and words in a
database query sentence. The user can use them to
describe “interesting” or “significant” visual events,
and then let the computer search for instances of
similar events. For instance, the user should be
able to select a video clip of a lush waterfall, and
be able to ask for other video sequences in which
more of the same “stuff” occurs. The computer
would then examine the pre-computed decomposi-
tion of the waterfall sequence, and characterize it
in terms of texture-like primitives such as spatial
and temporal energy. It could then search the pre-
computed decomposition of other video clips to find
places where there is a similar distribution of prim-

itives.

Alternatively, the user might circle a “thing” like
a person’s face, and ask the computer to track that
person within the video clip, or ask the computer to
find other images where the same person appears.
In this case the computer would characterize the
person’s 2-D image appearance in terms of primi-
tives such as edge geometry and the distribution of
normalized intensity, and then either track this con-
figuration of features over time or search other im-
ages for similarly-arranged conjunctions of the same
features.

These two types of semantic indexing — using
texture-like descriptions of “stuff” and using object-
like descriptions of “things” — constitute the two
basic types of image search operation in our sys-
tem. These two types of description seem to be
fundamentally different in human vision [1], and
correspond roughly to the distinction between mass
nouns and count nouns in language. Note that both
types of image query can operate on the same im-
age primitives (e.g., the energy in different band-
pass filters) but they differ in how they group these
primitives for comparison. The “stuff” comparison
method pools the primitives without regard to de-
tailed local geometry, while the “things” method
preserves local geometry.

2 Semantics-Preserving Image Com-
pression

The ability to search at query-time for instances

of the same (or similar) image events depends on
two conditions:

e There must be a similarity metric for compar-
ing objects or image properties (e.g., shape,
texture, color, object relationships, etc.) that
matches human judgments of similarity. This
is not to say that the computation must some-
how mimic the human visual system; but
rather that computer and human judgments of
similarity must be generally correlated. With-
out this, the images that the computer finds
will not be those desired by the human user.

e The search must be efficient enough to be in-
teractive. A search that requires minutes per
image 1s simply not useful in a database with
millions of images. Furthermore, interactive
search speed makes it possible for users to re-
cursively refine a search by selecting examples
from the currently retrieved images and using



these to initiate a new select-sort-display cy-
cle. Thus users can iterate a search to quickly
“zero in on” what they are looking for.

Consequently, we believe that the key to solving
the image database problem is semantics-preserving
image compression: compact representations that
preserve essential image similarities. This concept
is related to some of the “semantic bandwidth com-
pression” ideas put forth in the context of image
compression [30] [31] [46] [40]. Tmage coding has
utilized semantics primarily through efforts to com-
pute a compact image representation by exploiting
knowledge about the content of the image. A sim-
ple example of semantic bandwidth compression is
coding the people in a scene using a model special-
ized for people, and then using a different model to
code the background.

In the image database application, compression
is no longer the singular goal. Instead, it is im-
portant that the coding representation 1) be “per-
ceptually complete” and 2) be “semantically mean-
ingful.” The first criterion will typically require a
measure of perceptual similarity. Measures of simi-
larity on the coefficients of the coded representation
should correlate with human judgments of similar-
ity on the original images.

The definition of “semantically meaningful” is
that the representation gives the user direct access
to the parts of the image content that are impor-
tant for their application. That is, it should be easy
to map the coefficients that represent the image to
“control knobs” that the user finds important. For
instance, if the user wishes to search among faces, it
should be easy to provide control knobs that allow
selection of facial expressions or selection of features
such as moustaches or glasses. If the user wishes to
search among textures, then it should be easy to
select features such as periodicity, orientation, or
roughness.

Having a semantics-preserving image compres-
sion method allows you to quickly search through a
large number of images because the representations
are compact. It also allows you to find those images
that have perceptually similar content by simply
comparing the coefficients of the compressed image
code. Thus in our view the image database problem
requires development of semantics-preserving image
compression methods.

2.1 Comparison with Other

Approaches

In recent years there has been a growing interest
in the image database problem [2, 25]. The first pro-
posed solutions were intended for engineering draw-
ings, and typically assumed that hand preprocessing
had fully “predigested” them into meaningful parts
and functional features [8, 9, 28, 29]. We feel that
this requirement is acceptable for things like CAD
drawings, but not for general imagery.

More recently, researchers have proposed a va-
riety of image indexing methods, based on shape
[10, 23, 24, 26, 27, 33], color [4, 50, 22], or combina-
tions of such indices [35, 13]. The general approach
is to calculate some approximately invariant statis-
tic, like a color histogram or invariants of shape
moments, and use that to stratify or partition the
image database. Such partitioning allows users to
limit the search space when looking for a particular
image, and has proven to be quite useful for small
image databases [35, 13].

The difference between these methods and ours is
that they emphasize computing a discriminant that
can reject many false matches, whereas ours can
encode the image data to the accuracy required to
retain “all” of its perceptually salient aspects. Gen-
erally speaking, the coefficients these earlier efforts
have produced are not sufficiently meaningful to re-
construct the perceptually salient features of the im-
age. For instance, one cannot reconstruct an image
region from its moment invariants or its color his-
togram. In contrast, the models we present use coef-
ficients which allow reconstruction. Figure 1 shows
three reconstructions using appearance, shape, and
texture descriptions of image content.

In our view the problem with using invariants or
discriminants is that significant semantic informa-
tion is irretrievably lost. For instance, do we really
want our database to think that apples, Ferrarris,
and tongues are “the same” just because they have
the same color histogram? Discriminants give a way
to limit search space, but do not answer “looks like”
questions except within constrained data sets. In
contrast, when the coefficients provide a perceptu-
ally complete representation of the image informa-
tion, then things the database thinks are “the same”
actually look the same.

Another important consequence of representa-
tional completeness is that we can ask a wide range
of questions about the image, rather than being
limited to only a few predefined questions. For in-



(a) (b)

Fig. 1. Tmages reconstructed from coefficients used for database search: (a) 30 appearance coeflicients, (b) 100 shape

coeflicients, (c) 60 texture coefficients

stance, it requires only a few matrix multiplies per
image to calculate indices such as color histograms
or moment invariants from our coefficients. The
point is that if you start with a relatively complete
representation, then you are not limited in the types
of questions you can ask; whereas if you start by
calculating discriminants, then you are limited to
queries about those particular measures only.

2.2 Semantics-preserving image com-
pression

How can we design “semantics-preserving im-
age compression” algorithms? Our general idea
is to first transform portions of the image into a
canonical coordinate system that preserves percep-
tual similarities, and then to use a lossy compres-
sion method to extract and code the most impor-
tant parts of that representation. By careful choice
of transform and coding methods this approach
can produce an optimally-compact, semantics-
preserving code suitable for image database oper-
ations.

Note that because different parts of the image
have different characteristics, we must use a variety
of representations, each tuned for a specific type of
image content. This i1s the same requirement as for
semantic bandwidth compression. In the examples
below we will describe representations for faces, tex-
tures, hand tools, fish, video keyframes and human
brain ventricles.

The necessity for multiple content-specific rep-
resentations means that we must also have an effi-
cient, automatic method for developing “basis func-
tions” specific to object or texture classes. For
representing object classes, which require preser-
vation of detailed geometric relations, we use an
approach derived from the Karhunen-Loéve trans-
form. The Karhunen-Loéve transform is known
to provide an optimally-compact linear basis (with
respect to RMS error) for a given class of sig-

nal. For characterization of texture classes, we
use an approach based on the Wold decomposi-
tion. This transform separates “structured” and
“random” texture components, allowing extremely
efficient encoding of textured regions while preserv-
ing their perceptual qualities.

2.3 Finding instances of models

To employ the strategy of semantics-preserving
image compression for image database search, we
must be able to determine which image data belongs
to each of our different content-classes as we are
preprocessing the data for entry into the database.
While this remains a difficult problem in general,
and must often be solved using heuristic methods,
we have developed two useful solutions that appear
to be fairly general-purpose.

The first solution is to use motion and color to
pull out foreground objects. We have found that
this sort of figure-ground segmentation can be done
reliably and efficiently by use of clustering in con-
junction with optical flow [11, 55] and/or color dif-
ference information [12]. This provides us with good
“cut-outs” of foreground objects, as is illustrated in
Figure 2. We can then analyze the shape, appear-
ance, motion, and texture of these foreground ob-
jects, inserting their descriptions into our database.
Similarly, we can analyze the appearance, motion,
and texture of the background, and insert this in-
formation into our database.

The computation of foreground /background mo-
tion can also be used to provide a qualitative char-
acterization of camera and object motion within a
video clip, e.g, pan left, zoom in, or move stage
right. This allows us to select keyframes from video
clips. Keyframes are images that are “character-
istic” or “typical” of the video clip’s content. For
instance, good keyframes typically occur at the be-
ginning and end of clips, in the middle of no-motion
segments, or in the middle of segments where the



camera 1s tracking a foreground object. That is,
good keyframes can be found at zero-crossings and
extrema of camera and object motion.

By using camera and foreground/background
motion to automatically select keyframes, we can
reduce the problem of searching video data to the
much less costly processing of a few individual im-
ages. Editors and artists have long known that
the semantic content of video can be accurately
summarized by a series of appropriately-selected
keyframes that have been assembled into a story-
board. Keyframe extraction, therefore, is an im-
portant example of semantics-preserving video com-
pression.

Our second method for finding instances of mod-
els is to recast the problem as one of detection rather
than segmentation. The basic idea 1s to represent
specific classes of interest by using prototype(s) and
a small set of parametric variations or deformations.
Such a representation can be made to be narrowly
“tuned” for its target; it can very efficiently de-
scribe the signals it was trained for, but will be very
bad at describing other signals. Thus if a particular
content-specific representation accurately describes
some portion of an image, then it is very likely to be
an appropriate representation of that image data.

This allows us to detect instances of models by
asking how well they can describe each part of the
image. Although not a real-time process on current
workstations, this computation is sufficiently effi-
cient to be incorporated in the image preprocessing
step. We first used this approach for finding faces
[63], and have now applied it to finding a wide va-
riety of “things” (including eyes, cars, roads, etc.
[34]). Multiple texture models can also be used to
find “stuff” such as sky, trees, buildings, etc. [44].

Finally, it should be remarked that this frame-
work for searching images is based on 2-D matching
of appearance, rather than matching of 3-D prop-
erties. There are two reasons for adopting this ap-
proach. The first is that a 2-D matching approach
can be trained directly from image data; it does
not require a 3-D model. The second reason is that
the 2-D approach has lower computational complex-
ity than 3-D methods. Breuel [6], for instance, has
proven that only O(672) 2-D aspects are needed
to cover the entire 3-D viewing sphere with a 2-D
matching error bounded by 6 radians (0 < § < 1).
For instance, a 2-D, template-based object recog-
nition algorithm may require only thirty templates
to cover all possible viewing directions. This lower

computational complexity is an important consid-
eration for image database applications.

3 Photobook

Photobook is a computer system that allows the
user to browse large image databases quickly and
efficiently, using both text annotation information
in an Al database and by having the computer
search the images directly based on their content
[38, 16, 42]. This allows people to search in a flexi-
ble and intuitive manner, using semantic categories
and analogies, e.g., “show me images with text an-
notations similar to those of this image but shot in
Boston,” or visual similarities, e.g., “show me im-
ages that have the same general appearance as this
one.”

Interactive image browsing is accomplished us-
ing a Motif interface. This interface allows the
user to first select the category of images they wish
to examine; e.g., pictures of white males over 40
years of age, or images of mechanic’s tools, or cloth
samples for curtains. This subset selection is ac-
complished by searching text annotations using an
object-oriented, memory-based Al database called
Framer [18, 19]. Photobook then presents the user
with the first screenful of these images (see Figure
3); the rest of the images can be viewed by “paging”
through them one screen at a time.

Users most frequently employ Photobook by se-
lecting one (or several) of the currently-displayed
images, and asking Photobook to sort the entire
set of images in terms of their similarity to the se-
lected image (or set of images). 1 Photobook then
re-presents the images to the user, now sorted by
similarity to the selected images. The select-sort-
redisplay cycle typically takes less than one second.
When searching for a particular item, users quickly
scan the newly-displayed images, and initiate a new
select-sort-redisplay cycle every two or three sec-
onds.

Photobook can have many different types of im-

!By selecting several example images the user is pro-
viding information about the distribution of visual pa-
rameters that constitute the class of interest. Photo-
book uses multiple examples to make an improved es-
timate of the parameter’s probability distribution func-
tion (PDF). We have experimented with allowing the
user to provide both positive and negative examples,
and with characterization of arbitrary PDFs [34, 44],
although the current interface only supports updating
the parameter’s mean from multiple positive examples.
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Fig. 2. Using motion and color information, we can separate foreground objects from background. This figure shows
a system that extracts the outlines of people in view; a geometric analysis of the outline is then used to label position
of head, hands, and feet. This system runs at 20 frames/second without special hardware, and has been tested on

more than 2,000 people [12].

age descriptions available to it. In this paper we
will discuss appearance-specific descriptions (“Ap-
pearance Photobook”) applied to face and keyframe
databases, texture descriptions (“Texture Photo-
book”) applied to texture-swatch and keyframe
databases, and shape descriptions (“Shape Pho-
tobook”) applied to hand-tool and fish databases.
Each of these descriptions can be made rotation and
scale invariant, although for many applications this
is not desirable.

Photobook can also handle combinations of these
descriptors, e.g., shape and appearance, which we
will illustrate using 3-D data of human brain ven-
tricles. It can also handle complex functions of text
annotations, via functionality of the Framer knowl-
edge representation language [18, 19].

Obvious applications for “Appearance Photo-
book” as applied to face databases include customs,
security, and criminal investigation. A different ap-
plication would be a dating service where individu-
als could browse a database of prospective partners
based on their looks as well as biographical data.

Applications of “Shape Photobook” include
searching catalogs of consumer goods such as hand
tools.  Another economically important applica-
tion is searching inventories of mechanical parts, or
botanical and biological catalogs.

Similarly, a natural application of “Texture
Photobook” as applied to texture patches is in
the design and decorating industries, where the
buyer/designer can browse a large database of fab-
rics, tiles, wallcoverings, and other textiles, while

incorporating factors such as material composition
and manufacturing costs in the search.

4 Appearance Photobook

To efficiently measure similarity in appearance
within an object class we must first determine which
features are most effective at describing the images
of those objects. The standard linear method for
extracting such information about a set of images
is known as the Karhunen-Loéve transform (KLT).
This transform uses the eigenvectors of the covari-
ance matrix of the set of image features, i.e., it uses
the principal components of the distribution of im-
age features. These eigenvectors can be thought
of as a set of parametric variations from the mean
or prototypical appearance. These eigenvectors to-
gether characterize all of the variations between im-
ages of the object and the object’s prototypical ap-
pearance. Normally only a few eigenvectors with
the largest eigenvalues are employed, as these will
account for the vast majority of the variance be-
tween object images.

In this paper we will illustrate this technique us-
ing databases of face images and video keyframes.
We will also illustrate how the technique can be
combined with shape descriptions to search and sort
3-D medical data.

4.1 Eigenimage representations

The general approach taken to produce an ap-
pearance description 1s as follows. Input images
are first preprocessed to normalize them for posi-
tion, scale, orientation and similar nonlinear effects.
Eigenvectors of the normalized image covariance are
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then calculated for a set of training images and sub-
regions of the training images, resulting in eigenim-
age representations both for the whole object and
its subfeatures (e.g., the whole face as well as eyes,
nose, and mouth).

Note that the input data may be grey-level or
color images (as in the following examples), or they
may be images of extracted edges or extracted tex-
ture measurements. Voxel and 1-D data have also
been used. Regardless of the type and dimensional-
ity of the input data, Appearance Photobook rep-
resents the input data in terms of its principal vari-
ations from the mean or prototypical appearance of
the input class.

In the case where we do not know the class of the
imaged object (e.g., is it a forward view of a face,
a side view of face, or a car?), we can automat-
ically determine which appearance model is most
appropriate for a new image by measuring how well
each model describes the image data. This is ac-
complished by determining which set of eigenimages
provides the best encoding of the image; the same
approach is also used to detect occurrences of these
models in the image. The details of this procedure
are described in references [39, 34] and discussed in
Section 7.2.

Note that because this approach is view-based,
we must have separate models if we want to describe
appearance from different points of view. For in-
stance, to represent facial appearance as a function
of out-of-plane rotation, we separately train eigen-
image representations at rotations of 90, £45 and
0 degrees.

4.1.1 Building Eigenrepresentations

Let an image region I(z,y) be a two-dimensional
N by N array of intensity values, or a vector of di-
mension N2. An ensemble of such regions, then,
maps to a collection of points in a space of size
NZ2. Tmages of compact objects and features (e.g.,
faces, cars, eyes) for a given viewing geometry will
not be randomly distributed in this huge image
space and thus can be described by a relatively low-
dimensional subspace. This subspace can be ap-
proximated by use of the Karhunen-Loéve expan-
sion, e.g., the eigenvectors of the autocorrelation
matrix. For face imagery we refer to this subspace
as “face space” and the eigenvectors as “eigenfaces”
or “eigenfeatures” [53, 39].

Let the training set of imagesbe I'y, ', T's, ...T 5y

The average of the set is defined by ¥ =
ﬁ Zanl I',. Each training image differs from the
average by the vector ®; = T; — W¥. This set
of large vectors is then subject to the Karhunen-
Loéve expansion, to produce the unique set of M
orthonormal vectors u,, and their associated eigen-
values A, that optimally describe the distribution
of the data in an RMS error sense. The vectors uy
and scalars Aj, are the eigenvectors and eigenvalues,
respectively, of the covariance matrix

C = ﬁ Zilwzl q)”q);]?j

= LAAT

(1)

where the matrix A = [ &; @5 ... ®py ]. The mean
and first few eigenvectors for human faces are shown
in Figure 4; linear combinations of these eigenim-
ages span the space of human face images at coarse
resolution and with fixed position, orientation, and
scale. Note that the first three eigenvectors pri-
marily describe variations due to illumination and
surface albedo.

Note that the matrix C'is N2 by N2, so directly
determining the N2 eigenvectors and eigenvalues is
difficult for typical image sizes. We need a computa-
tionally feasible method to find these eigenvectors.
Fortunately we can determine the eigenvectors by
first solving a much smaller M by M matrix prob-
lem, and taking linear combinations of the resulting
vectors [46, 53].

Code for this calculation, together with technical
reports providing additional detail, is available by
anonymous FTP from whitechapel.media.mit.edu.

A mnew image region (T') is transformed into
its eigenimage representation (e.g., projected into
“face space” ) by a simple operation, wy, = ul (I'—W)
for k = 1,...,M’ < M. The vector QT =
[wi wy ... wp] describes the input image in terms
of the orthogonal eigenfeature basis set; thus, the
vector Q7 is an encoding of the image in terms of
the eigenimage basis. An example encoding of a
face is shown in Figure 1(a). The similarity be-
tween two images ¢ and j is computed by com-
paring their within-eigenimage-subspace distance
& = (1 — 2
4.2 Database experiments

Most image database applications require com-
parison with a large number of possible images.
This is particularly true for face images; for in-
stance, dating services, casting agencies, and police
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Fig. 4. The mean and first few eigenvectors computed from a large database of faces of men, women, and children of
all races. Note that illumination effects appear primarily in the subspace spanned by eigenvectors one through three.

stations all commonly have collections of more than
1,000 images.

Our first test of Appearance Photobook, there-
fore, was on the Media Laboratory database of
7,562 images of approximately 3,000 people. The
images were collected in a small booth at a Boston
photography show, and include men, women, and
children ranging between (approximately) 4 to 75
years of age. A wide range of ethnic and racial
types were included in a proportion similar to that
of the general Boston area population. Head posi-
tion was controlled by asking people to take their
own picture when they were lined up with the cam-
era. Two LEDs placed at the bottom of holes ad-
jacent to the camera allowed them to judge their
alignment; when they could see both LEDs then
they were correctly aligned. FEach image was then
annotated (by hand) as to sex, race, approximate
age, facial expression, and other salient features.
Whether or not two images were of the same per-
son was also annotated by hand. Almost every per-
son has at least two images in the database; several
people have many images with varying expression,
headwear, facial hair, etc.

Figure 3(a) shows a typical result of a similar-

ity search on this database. The face at the upper
left was selected by the user; the remainder of the
faces are the next most-similar faces from among
the entire 7,562 Media Laboratory database. Sim-
ilarity decreases left to right, top to bottom. As
can be seen, the image most similar to the selected
image is another image of the same person. Note
that at the lower right is still another image of this
same person...but wearing sunglasses. Photobook’s
performance on this database was evaluated on a
random sample of 200 images, and recognition ac-
curacy was found to be 95%, while verification ac-
curacy was above 99% [39].

Figure 3(b) illustrates Photobook’s performance
on a second face database, assembled by the Army
Research Laboratory at Ft. Belvoir, which contains
substantial variations in scale, position, and head
orientation. The face at the upper left was se-
lected by the user; the remainder of the faces are
the most-similar faces from the 575 frontal views in
this database. Note that the first four images (in
the top row) are all of the same person. On this
database Photobook achieved a recognition accu-
racy of 99.4%, and a verification accuracy of 100%.
Section 7.2 describes in more detail how the prob-



lems of scale, position, and orientation were ad-
dressed.

In both cases the entire searching and sorting
operation takes less than one second on a standard
Sun Sparcstation, because each face is described us-
ing only a very small number of eigenvector coeffi-
cients. Of particular interest is Appearance Photo-
book’s ability to find the same person despite wide
variations in expression, hairstyle, image size, and
eyewear.

5 Shape Photobook

To compare the shape similarities between two
objects, we must be able to describe the deforma-
tions (differences) that relate them. Sometimes dif-
ferences between objects of the same type are due
to changes in viewing geometry, e.g., foreshorten-
ing or distance change. Other times they are due
to physical deformation: one object is a [stretched,
bent, tapered, dented, ...] version of the other. For
instance, most biological objects are flexible and ar-
ticulated.

To describe these deformations, therefore, it is
reasonable to qualitatively model the physics by
which real objects deform, and then to use that
information to guide the matching process. So
rather than using image correlations as the basis
for a semantics-preserving code, we model the phys-
ical “interconnectededness” of the shape. In other
words, we build a shape model made of a virtual ma-
terial that fills the space between nearby features,
e.g., edges, corners, or high-curvature points. In en-
gineering, this interconnectededness is standardly
computed by use of the finite element method
(FEM). This method produces a positive definite
symmetric matrix, called the stiffness matrix, which
describes how each point on the object is connected
to every other point. This stiffness matrix plays the
same role in Shape Photobook that the covariance
matrix did in Appearance Photobook.

Consequently,
derive our semantics-preserving code for shape in
a manner similar to that used for appearance: we
calculate the eigenvectors of the stiffness matrix,
and use these to encode deformations relative to
some base or average shape. Once the eigenvector
shape description has been computed, we can com-
pare shapes simply by looking at the amplitudes
of the eigenvectors, as was done in the Appearance
Photobook example described above. Perhaps the
major difference in how the shape and appearance

we
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codes are used in Photobook is the preprocessing to
align the shapes. This preprocessing is developed in
detail in references [47, 48] and discussed in Section
7.2.

5.1 Eigenmode Representations

In Shape Photobook an object’s shape represen-
tation is based on the eigenvectors of its physical
model. In physical systems these eigenvectors are
called the modes of the system; they describe the
intrinsic symmetries of the object in a unique and
canonical manner.

Before obtaining these eigenvectors, we first
build a physical model for the shape using the fi-
nite element method. Interpolation functions are
developed that allow continuous material proper-
ties, such as mass and stiffness, to be integrated
across the region of interest. In [47] we introduced
a new finite element formulation that uses Gaussian
basis functions as FEM interpolants; this allows us
to use the data itself to define the deformable ob-
ject, by building stiffness and mass matrices that
use the positions of image feature points as the fi-
nite element nodes. For an in-depth description of
this formulation, readers are directed to [37, 47, 48].

To compare two FEM shape representations, we
deform one elastic shape model to align 1t with the
other. This requires solving the dynamic equalib-
rium equation:

MU + KU =R, (2)
where U is a vector describing the object’s deforma-
tion, R is a load vector whose entries are the spring
forces pulling the first shape into alignment with
the second, and where M and K are the element
mass and stiffness matrices, respectively.

This system of equations can be decoupled by
posing the equations in a basis defined by the M-
orthogonalized eigenvectors of K. These eigenvec-
tors and values are the solution (¢;,w?) to the fol-
lowing generalized eigenvalue problem:

K¢, = w/Mg,. (3)
The vector ¢, is called the i'? eigenmode shape vec-
tor and w; is the corresponding frequency of vibra-
tion. The i** shape vector describes how each node
is displaced by the i'? eigenmode.
The shape vectors ¢; are M-orthonormal, this
means that
TKD = Q? "M =1 (4)

and



where the ¢; are columns in the transform ®, and
w? are the elements of the diagonal matrix Q2.
The generalized coordinate transform ® is then
used to transform between nodal point displace-
ments U and decoupled eigenmode displacements
fJ, where U = ®U. We can now rewrite Equation 2
in terms of these generalized or eigenmode displace-
ments, obtaining a decoupled system of equations:

()

allowing for closed-form solution to equilibrium
problems such as shape fitting [37].

Code for these operations (for the case of simple
3-D objects only), together with technical reports
providing additional detail, is available by anony-
mous FTP from whitechapel.media.mit.edu.

Whenever a new object is entered into Shape
Photobook, the first step is to compute its M, K,
and ® matrices. To obtain an eigenmode descrip-
tion of an object relative to some base or average
object, we must determine correspondence between
the features of the two objects. Normally this is
done once when a new object is entered into Shape
Photobook, and the correspondences stored. This
process is called modal matching, and is discussed
in references [47, 48]. Given these correspondences,
we can then recover the eigenmode deformations U
that deform the matched points on one object to
their corresponding positions on a prototype object.

This is done by noting that the nodal displace-
ments U that align corresponding features on both
shapes can be written:

U+ 0Q°U=3"R,

(6)

where x; ; is the i*? node on the first shape and X2,
is its matching node on the second shape. These
nodal displacements can then be transformed into
eigenmode amplitudes by the relation U=3"U.
Such a set of eigenmode amplitudes can be used
directly for object recognition and comparison [37],
exactly as the eigenimage amplitudes were used in
Appearance Photobook. As in that case we need
use only a few coefficients to obtain an accurate
encoding of the shape; discarding high-frequency
eigenmodes also tends to make our comparisons ro-
bust to noise and local shape variations.
Alternatively — since the underlying model is a
physical one — we can compute and compare the
amount of energy needed to align an object, and
use this as a similarity measure instead. If the strain

u; = X1, — X2,

11

energy required to align two feature sets is relatively
small, then the objects are very similar. The strain
energy associated with the i*? eigenmode is simply:

1 2

~2
—U; Wi .
2

Emode, = i (7)
Since each eigenmode’s strain energy is scaled by
its frequency of wvibration, there is an inherent
penalty for deformations that occur in the higher-
frequency eigenmodes. In our experiments, we have
used strain energy for most of our object compar-
isons, since it has a convenient physical meaning.
Strain energy also has the advantage that it places
greater weight on the low-frequency eigenmodes, re-
ducing the influence of the noise-susceptible higher-
frequency eigenmodes.

Finally, we note that the first three eigenmodes
are always translation and rotation, and the next
few modes whole-body shear, compression, eic.
Thus if it is desirable to make object comparisons
rotation, position, and/or scale independent, we can
accomplish this by ignoring displacements in the
low-order or rigid body eigenmodes.

5.2 Database experiments

The first experiment is with a database of 60 im-
ages of 12 objects and non-rigid deformations of
those objects, and includes variations in perspec-
tive, scale, and lighting. Silhouettes were first ex-
tracted and thinned from each tool image, and then
the strongest corresponding contour points were
found. Eigenmode amplitudes for the first 22 modes
were recovered and used to compare each tool to all
the other tools using the strain energy similarity
measure.

Figure 5 illustrates two typical searches using
Shape Photobook on this database; the user se-
lected the image at the upper left, and Photobook
returned the other images sorted by similarity from
left to right, top to bottom. The similarity statistic
appears below each match. Search accuracy over
this database is 100%, that is, if there were n ham-
mers in the database and the user searched using
a hammer shape as the query image, then the n
most-similar objects found were all hammers. Note
that the matching is orientation and scale invariant
modulo limits imposed by pixel resolution.

The fact that the similarity measure produced
by the system corresponds to functionally-similar
shapes 1s important. It allows us to recognize
the most similar wrench or hammer from among
a group of tools, even if there is no tool that is



an exact match. Moreover, if for some reason the
most-similar tool can not be used, we can then find
the next-most-similar tool, and the next, and so on.
We can find (in order of similarity) all the tools that
are likely to be from the same category.

The example similarity
searches using a database of 74 tropical fish images.
Again, the user selected the image at the upper left,
and Photobook returned the most similar images
sorted left to right, top to bottom. Euclidean dis-
tance in strain-space was again used as the similar-
ity metric. Matching is orientation and scale invari-
ant modulo limits imposed by pixel resolution.

second shows two

In Figure 6(a), a search was initiated to find fish
shapes similar to the banded butterflyfish that ap-
pears at the upper left. As can be seen, the system
correctly retrieved the fish shapes that were closest
to the banded butterflyfish shape (e.g., all the other
butterflyfish). In Figure 6(b), a search was initiated
to find fish shapes similar to the trumpetfish that
appears at the upper left. Again, the system cor-
rectly retrieved the fish shapes that were closest to
the trumpetfish.

As with the hand-tool database, we again see
that the system’s measure of shape similarity allows
us to find objectively-similar objects. It allows us to
recognize that two objects are similar even if there
is no exact match. This has in turn allowed us to
find all the fish that are likely to be from the same
taxonomic category.

6 Texture Photobook

The Appearance Photobook and Shape Photo-
book employ similarity metrics that are related to
RMS differences, either in the normalized image ap-
pearance (as illustrated by the face databases) or
in the geometry of image features (as illustrated by
the hand tools and fish databases). While RMS er-
ror seems to provide a useful metric for perceptual
similarity based on shape or appearance, it is in-
appropriate for measuring texture similarity. We
require a texture model whose parameters are close
when two images are perceptually close, and which
are not close otherwise. The model is successful
if distances between its parameters correspond to
ordering images by their perceptual similarity. It
is also desirable that the model parameters corre-
spond to semantic attributes of patterns, such as
periodicity or randomness.

Picard and Liu [43] have therefore developed
a new model based on the Wold decomposition
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for regular stationary stochastic processes in 2-
D images [15]. TIf an image is assumed to be
a homogeneous 2-D discrete random field, then
the 2-D Wold-like decomposition is a sum of
three mutually orthogonal components: a harmonic
field, a generalized-evanescent field, and a purely-
indeterministic field. These three components are
illustrated in Figure 7 by three textures, each of
which is dominated by one of these components.
Qualitatively, these components appear as period-
icity, directionality, and randomness, respectively.

The motivation for choosing a Wold-based
model, in addition to its significance in random
field theory, is its interesting relationship to inde-
pendent psychophysical findings of perceptual sim-
ilarity. Noteworthy is a recent study by Rao and
Lohse where humans grouped patterns according
to perceived similarity [45]. The three most impor-
tant similarity dimensions identified in this study
were repetitiveness, directionality, and complexity.
These dimensions might be considered the per-
ceptual equivalents of the harmonic, evanescent,
and indeterministic components, respectively, in the
Wold decomposition. A final reason for choosing
the Wold decomposition is that it produces com-
pact texture descriptions that preserve most of a
texture’s perceptual attributes [49]. The result of a
reconstruction from Wold components is shown in
Figure 1(c).

6.1 Wold-based representations

The Wold decomposition is based on a 1938 the-
orem by H. Wold for 1-D random processes. This
theorem states that any random process can be
written as the sum of two processes, one that can be
predicted by a linear filter with zero mean-squared
error (deterministic), and one which is regular [52]
(indeterministic). Moreover, these two processes
will be mutually orthogonal. In terms of the 1-D
spectrum, these two processes correspond to the dis-
crete part of the spectrum and the continuous part
of the spectrum, respectively.

In two dimensions, it is possible to have discon-
tinuity in both dimensions, continuity in one di-
mension with discontinuity in the other, or con-
tinuity in both dimensions. Corresponding essen-
tially to these three cases, the Wold theorem for a
2-D random field, {y(m,n)}, (m,n) € Z? yields
a decomposition into three processes [20]. This
decomposition can be formulated as a linear pre-
diction problem. TLet g(m,n) be the projection of
y(m, n) on the Hilbert space spanned by all the sam-
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Fig. 5. In these two examples the user selected the image at the upper left, and Photobook returned the remaining
images sorted by shape similarity. Images were preprocessed by extracting silhouettes from each tool image and
finding corresponding contour points. The eigenmode strain energy was then used to measure similarity between the

different hand tools; this statistic is shown below each image.
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s

Fig. 6. Ordering fish shapes in terms of shape similarity to a user-selected fish image. In these two examples the user
selected the image at the upper left; Photobook returned the remaining images sorted by similarity from left to right,
top to bottom. As can be seen, the system correctly retrieved fish shapes that appear to be in the same taxonomic

class.
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Fig. 7. The Wold decomposition transforms textures into three orthogonal components: harmonic, evanescent, and

random. The upper three textures illustrate these components; below each texture is shown its DFT magnitude.

ples in the “past” of (m,n) where the implied spa-
tial ordering is with respect to the non-symmetric
half-plane (NSHP) neighborhood [15]. Tf the in-
novation field {u(m,n) = y(m,n) — y(m,n)} van-
ishes, then {y(m,n)} is deterministic; else, it is reg-
wlar. Tf {y(m,n)} is regular and spans the same
Hilbert space as its innovation field then it is purely-
indeterministic. However, it may be regular and
still not be purely-indeterministic.

In 2-D, a family of NSHP neighborhoods can be
defined whose boundary lines are of rational slopes.
With respect to each neighborhood in the family,
there may exist in the corresponding deterministic
field, an evanescent subfield due to the presence of
nonzero row-to-row innovations within that deter-
ministic field. The linear combination of all these
evanescent fields 1s called a generalized evanescent
field. When a deterministic field has no such inno-
vations, then it is half-plane deterministic.

For any regular homogeneous random field
{y(m,n)}, the 2-D Wold decomposition can be
uniquely represented by:

(8)

where field {p(m,n)} is half-plane determinis-
tic, field {g(m,n)} is generalized evanescent, and
field {w(m,n)} is purely-indeterministic, Fields
{p(m,n)}, {g(m,n)}, and {w(m,n)} are mutually

y(m,n) = p(m,n) + g(m,n) + w(m,n),
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orthogonal. Field {w(m,n)} has a moving average

representation, which we will exploit in the Wold-
based model for Photobook:

>

(0,0)= (k1)

alk,Du(m—k,n=1), (9)

w(m,n) =

where Z(0,0)j(k,l) a’*(k,1) < oo and a(0,0) = 1.
The innovation field {u(m,n)} is white.

In estimating the Wold features, we also exploit
the dual relationship between the 2-D Wold decom-
position and the decomposition of the spectral dis-
tribution function of a regular homogeneous ran-
dom field. Let us define all spectral functions on
the rectangular region [—%,%] [—%, %] Let
Fy(&,m) be the spectral distribution function of a
regular homogeneous random field {y(m,n)}, and
let F/(£,n) denote the singular part of F, (&, n). Let
Fo(&,m), Fy(&,m), and Fy (€, n) be the spectral dis-
tribution functions of the half-plane deterministic,
the generalized evanescent, and the purely indeter-
ministic components of {y(m,n)}. Then function
Fy(&,m) can be uniquely represented as

Fy(€m) = Fp(&n) + Fy(&m) + Fu(&,n). (10)

where function Fj,(§, 1)+ Fy(§,1m) = F,; (€, ) is sin-
gular with respect to the Lebesgue measure and
function F,, (€, 7n) is absolutely continuous.
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Thus the decomposition of the deterministic and
the purely-indeterministic components of a regular
homogeneous random field can be achieved by sep-
arating the singular and the absolutely continuous
components of the spectral distribution of the ran-
dom field. This is known as Lebesgue decompo-
sition. The orthogonality of the two components
allows them to be treated separately.

The model implementation used in Photobook
consists of three stages. The first stage deter-
mines if there is strong periodic (or nearly peri-
odic) structure. Although highly structured tex-
tures may contain all three Wold components, their
harmonic components are usually prominent and
provide good features for comparison. Not only
are harmonics more salient than the other compo-
nents (agreeing with Rao and Lohse’s ordering of
the three texture dimensions) but they are also the
quickest to compute.

The second stage of processing occurs for peri-
odic images on the peaks of their Fourier trans-
form magnitudes. An algorithm is implemented
to first estimate the location of large local max-
ima and then extract the fundamental frequencies of
all harmonic peaks. The direction of the harmonic
frequency that is closest to the origin is regarded
as the main orientation angle of the texture. Ro-
tations and other transformations may be applied
to the peaks to align them into a sort of “generic
view” image before further comparison. Applying
the transformations to the peaks incurs markedly
less computation than applying them to the entire
image.

The third stage of processing is applied when an
image is not highly structural. This stage approxi-
mates the finding of the two less salient dimensions
identified in the study of Rao and Lohse, the direc-
tional and complexity components. The number of
dominant orientations is estimated via steerable fil-
tering and a decision process based on thresholding
orientation histograms, as described in [41]. Only
the textures which possess the same number of main
orientations are subsequently compared by examin-
ing the Wold complexity component. The complex-
ity component is modeled by use of a multiscale si-
multaneous autoregressive (SAR) model, whose pa-
rameters are estimated using the process of Mao
and Jain [32]. The SAR parameters of different tex-
tures are compared using the Mahalanobis distance
measure. These final stages of processing are the
most computationally costly part of the procedure,
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and can be omitted to result in substantial savings
if the previous stage indicates that the harmonic
information is sufficient for a given task.

Computer code implementing this proceedure,
together with technical reports providing addi-
tional detail, is available by anonymous FTP from
whitechapel.media.mit.edu.
6.2 Database experiments

The illustrations here are from experiments run
on the Brodatz database, which consists of 1008
non-overlapping texture patches cropped from all
112 images of the Brodatz Album [7]. Each Bro-
datz texture provides nine 128 x 128 subimages in
8-bit gray levels. This collection of natural tex-
tures exhibits large variety, including many inho-
mogeneous patterns not usually included in texture
studies formed from small subsets of the Brodatz
collection. The database therefore provides a chal-
lenge to traditionally homogeneous image models.

Figure 8 shows results of some experiments with
the new Wold-based model. Figure 8 (a) illustrates
a search on a brick pattern, with the result that
Photobook finds all nine of the brick patterns in
the database. Note that the next most similar im-
ages are similarly structured, with two predominant
orientations. This result is typical; for this texture
database the “most similar” texture found was an-
other subimage of the same Brodatz image 83% of
the time, and 90% of the time the “most similar”
texture was of the same semantic category (e.g.,
both lace, although not from the same Brodatz tex-
ture image). In (b) Photobook again fills the first
row with reptile-skin patterns, and the next most
similar images have perceptually similar structure,
despite rotations.

7 Other Issues
7.1 Combining and Developing Models

We have described three methods for compactly
describing and searching image content. Two, ap-
pearance and shape, are intended for comparing
“things” (e.g., faces, cars, fish, hand tools); the
third, texture, is intended for comparing “stuff”
(e.g., trees, clouds, cloth, grass). The examples
presented above have been selected to demonstrate
both the possibility and the effectiveness of develop-
ing semantics-preserving image compression meth-
ods for image database search.

However, we do not mean to suggest that these
examples cover the range of possibilities. Rather,
we suggest that these tools be thought of as three



general methods for developing compact, class-
specific representations suitable for image database
search. For any particular semantic class (e.g., cars,
clouds, or crowds) we can train each of these three
types of description (appearance, shape, and tex-
ture). This is accomplished by collecting a set of
training examples, and characterizing the mean and
range of appearance, shape, or texture parameters.

For instance, we have built appearance models
for 2-D images of eyes, hands, cars, 1-D sound sig-
nals, and 3-D MRI data. We have also built shape
models for 2-D images of rabbits, hands, heads,
heart X-rays, 1-D sound signals, 3-D voxel data,
and 3-D range data. We have built texture models
of 2-D images such as paintings, grass, clouds, city
buildings and 1-D sound signals such as copier noise
and applause.

Nor do we mean to suggest that these techniques
must be applied only to simple grey-level images.
For instance, we have also applied each of these
techniques to color images and edge images. The
simplest method (illustrated below) is to consider
the color and edge images as additional image data
appended to the grey-level data; for instance, to
consider an n x n 24-bit color image as 3n x n 8-
bit image data. This wider image is then subjected
to correlation analysis, spectral decomposition, or
shape analysis of the additional regions.

For instance, Figure 9 shows using an appear-
ance description on color video keyframes. In this
example n x n 24-bit color video keyframes were ex-
tracted, and the eigenvectors of the correlation ma-
trix of the 3n x n 8-bit data were obtained. These
eigenimages therefore describe the general spatial
and color layout of the keyframe. In Figure 9 we
see the results of a search among 365 keyframes
for those similar to the one at the upper left; the
appearance description Photobook used to conduct
this search might be loosely translated into English
as “find keyframes with a pink and red blob on the
left with a beige background”. Figure 10 shows an-
other color keyframe search; however, this time the
keyframes are compared using the periodic texture
components of the red, green, and blue channels.
The texture description used for this search might
be (very) loosely translated into English as “find
keyframes with similar vertical and horizontal edge
structure in all the color channels”.

Finally, we also do not mean to suggest that these
techniques should be used in isolation, as in the
previous examples. All three methods can be used
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for any particular image, either separately, in a wide
range of combinations, or in conjunction with text
annotations.

For instance, Figure 11 shows an example where
3-D voxel data of human ventricles was analyzed in
Photobook by combining an eigenmode shape de-
scription with an eigenimage appearance descrip-
tion. In this example the shape description was
first used to normalize for the effects of overall head
shape, and then the appearance description was
used to compare ventricle shape. Using this shape-
and-appearance approach allowed us to more accu-
rately characterize subtle shape differences such as
occur between Alzheimer’s disease and normal pres-
sure hydrocephalus disease [36].

7.2 Detection and Preprocessing

No matter how well one can describe appearance,
shape, and texture, there 1s still the question of find-
ing the things (or stuff) to be described. That is,
where exactly is the face that is to be described?
The bunch of trees? The fish? In many real-world
applications, these questions are the most difficult
of all.

Fortunately in image and video database applica-
tions it is often acceptable to accomplish this step
either by hand, or heuristically. For instance, for
the tool and fish databases, the background was suf-
ficiently simple that grey-level thresholding yielded
a good outline of the shape. The point-to-point
correspondences were determined automatically, as
described in references [47, 48].

We are also fortunate that, at least in the case of
video, it is relatively easy to use motion and color
changes to help find things and stuff of interest.
This was illustrated by Figure 2, and is discussed
more fully in references [11, 55, 12].

However, we can also draw on our framework
of semantics-preserving compression to address this
problem. Recall that our basic approach for repre-
senting specific classes of interest is to use a proto-
type(s) and the smallest possible set of parametric
variations or deformations. Such a representation
is very good at describing the signals it was trained
on, but is quite bad at describing other signals. This
fact allows us to recast the problem of finding in-
stances of models as one of detection, that is, if a
model can accurately describe some portion of an
image, then it is very likely to be an appropriate
representation of that image data.

This concept is easiest to illustrate in the case
of appearance descriptions. For an appearance de-
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scription, we use example images to calculate a
mean image ¥ and eigenimages uy. These define
a small parametric space which contains most of
the variation among the training images. Each im-
age 1s described by a few coefficients wg, which are
the 1mage’s projection onto the eigenimages. The
range of possible appearances that exist within the
training images is efficiently and accurately charac-
terized by the distribution of the wg, together with
the mean and eigenimages.

Thus if an image has most of its energy within
the subspace spanned by the eigenimages, and its
projection coefficients are typical of the training im-
ages, then it is visually similar to the training im-
ages. This allows us to detect instances of models
by searching for parts of the image that can be ef-
ficiently encoded by the model. The search process
can be made surprisingly efficient by appropriately
arranging the order in which we calculate the wy.
We have used this approach both for finding a wide
variety of “things” (including eyes, cars, roads, etc.
[34]) and “stuff” (including sky, trees, buildings,
ete. [44]). For further detail see references [34, 44].
These and related references are available by anony-
mous FTP from whitechapel.media.mit.edu.

7.3 Labels, Knowledge Representation,
and Context

So what does all this have to do with semantics?
It seems clear that detecting “a face that looks like
John” or finding “a patch of burlap-like texture” has
some semantic content, especially if humans agree
that the image really does look like John or burlap.
However, this still seems very different from the im-
age content that a photographer or a knowledge rep-
resentation researcher would talk about.

The difference stems from our choice to avoid
addressing the unsolved problems of meaning and
context. We instead are working to derive word-
like primitives from images, rather than whole sen-
tences. We make this choice because we have ob-
served that people are nonlinear time-varying sys-
tems whose behavior depends on unknown internal
states.

For instance, a human may label the same scene
differently at different times, and expect different
regions to be recognized as similar when his or her
goals change. Human judgment of image similarity
can be perceptual or semantic, and can be influ-
enced by culture, context, and personal preference.

Given these influences, it seems to us prema-
ture to look for some universal measure of similarity
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within pictures. In restricted applications, e.g. in-
spection for a mark of a particular size and shape,
similarity matches can be made quite precisely. But
in general picture retrieval, at least for the immedi-
ate future, there are important reasons to keep the
human in the system, i.e., to make semi-automated
tools.

We therefore assume that there is neither one
model that will be optimal for recognizing and
annotating pictures, nor is there a unique non-
overlapping arrangement of labels that users will
want to use to annotate a picture. This departs
from the traditional computer vision approach of
using one model to segment an image into non-
overlapping regions before assigning labels to the
regions. Instead, we assume that a user might as-
sign multiple labels to possibly overlapping regions.

This fits nicely with the detection paradigm for
finding instances of models. When we find an image
region that looks like clouds, we annotate it as such.
But it might also be shaped like a fish, or a subre-
gion of it might look like a face. There is nothing
wrong with multiple labels in our framework. To be
useful in the real world, we must be able to capture
such varied notions of similarity.

So rather than attempting to automatically parse
the full semantic structure of a signal, we instead
rely on interactions with the user to define the se-
mantic scope and interrelations of image primitives.
We provide the user with primitives such as model-
specific detection and perceptual similarity, and use
relevance feedback to learn what relations are valid
in this particular context [44].

8 Conclusion

The Photobook system is a set of interactive
tools for browsing and searching images and im-
age sequences. The key idea behind this suite
of tools is semantics-preserving image compression,
which reduces images to a small set of perceptually-
significant coefficients.

We have developed three fairly general ap-
proaches to constructing semantics-preserving rep-
resentations. When searching for “things,” we can
use variations on the Karhunen-Loéve transform to
derive optimally-compact representations for either
appearance or shape. When searching for “stuff”
we have shown the utility of the Wold transform
for decomposing signals into compact, perceptu-
ally salient textural descriptions. By combining
these representational methods with text annota-



tions in an interactive framework, Photobook pro-
vides users with a sophisticated and efficient utility
for database search based on image content.
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