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Abstract—An algorithm for detecting orientation in texture is developed and compared with results of
humans detecting orientation in the same textures. The algorithm is based on the steerable filters of
Freeman and Adelson (JEEE Trans. PAMI 13, 891-906, 1991), orientation-selective filters derived
from derivatives of Gaussians. The filters are applied over multiple scales and their outputs non-
linearly contrast-normalized. The data for humans were collected from forty subjects who were asked
to identify ‘the minimum number of dominant orientations’ they perceived, and the ‘strength’ with
which they perceived each orientation. Test data consisted of 111 grey-level images of natural textures
taken from the Brodatz album, a standard collection used in computer vision and image processing.
Results show that the computer and humans chose at least one of the same dominant orientations on
95 of the natural textures. Of these textures, 74 were also in 100% agreement on the location of all the
dominant orientations chosen by both humans and computer. Disagrcements are analyzed and
possible causes are discussed. Some apparent limitations in the current filter shapes and sizes are
illustrated, as well as some (surprisingly small) effects believed to be caused by semantic recognition

and gestalt grouping.

1. INTRODUCTION

Orientation is one of the most perceptually significant components in texture
recognition (Tamura ef al., 1978; Rao and Lohse, 1992) and in visual attention
(Treisman and Gelade, 1980; Wolfe et al., 1989). Psychophysical evidence exists
that humans use orientation as a cue for discriminating textures (Tamura ef al.,
1978; Phillips and Wilson, 1984; Julesz, 1991; Rao and Lohse, 1992), and physio-
logical experiments suggest the existence of orientation selective mechanisms in
the human visual system (Hubel and Wiesel, 1968; Webster and De Valois, 1985).
Local orientation information has also been argued to play a critical role in curve
detection (Zucker, 1985).

Extraction of orientation over a large scale can be used for rotating images to
align them before beginning closer comparison, a process possibly done by
humans during pattern recognition (Shepard and Cooper, 1982). An observer
can also obtain shape and perspective information from texture (Aloimonos and
Shulman, 1989; Choe and Kashyap, 1991) and consequently orientation may play
a key part in this process. Orientation at a finer level is also a fundamental com-
ponent of texture and pattern—wood grain, sand ripples, parquet floors,
bookshelves, and parking lots; all these contain dominant orientation information
which can be related to their formation or function.

Not only are orientation detection: cells at work in the low levels of the visual
cortex and in a possibly higher level process of pattern rotation for alignment, but
orientation can also be considered a semantic feature of image data. ‘Semantic’
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here refers to the human use of orientation in natural language when describing
visual information. Semantic features are important in rapidly growing new

applications such as searching for images by their visual context (Picard and
Kabir, 1993).

1.1. Applications of orientation

[magine in a few years when every home has ‘video on demand’ and all art
>ollections, movies, patent libraries, photo albums, books, journals, and other
visual collections are accessible online. There will be exabytes of information,
naking it impossible to find a particular image or video clip without spending
nordinate amounts of time looking for it. One can currently search through text
‘or keywords, but not through video for keyframes. In the next several years it will
secome tremendously important to have automated tools that can search for
visual information whether or not it has a description attached. A likely scenario
s one where a user shows the computer a pre-existing pattern, and requests all
sther patterns ‘like’ this one.

In such a scenario, the search for a similar image should agree with the human’s
10tion of similarity. To succeed, the computer must know which features attract
he human’s attention, and how to combine these features for locating
serceptually similar patterns. The goal is to get the computer to identify textures
he person would identify if he or she had time to look through them all. As
yrientation is one of the most significant features for human attention and texture
natching, it is important that algorithms which recognize orientation be
feveloped.

The results of this study on orientation apply directly to the image search
yroblem. Furthermore, in the future when search tools become more semantic
ind there are pre-stored object descriptions to be matched, then one will also be
ible to associate to keywords such as ‘brick wall’ the feature, ‘usually has two
lominant orientations’. The orientation detection algorithm can then do a much
aster search for the corresponding visual data than it could do without this
nformation. Even if a portion of an image has no dominant orientations, that is
till important information to use in speeding up comparisons. For example, two
yrimary categories of textures have long been recognized: structural and statist-
cal (Haralick, 1979). Orientation is a salient feature that can be used to decide
vhich of these (or other) categories a texture is close to, i.e. the statistical is likely
o not have more than one dominant orientation. Given such information, one
nay select a model more suitable to recognizing that class of pattern. Detailed
nodel features can then be extracted relative to the dominant orientations to
yrovide invariant measures within inhomogeneous data.

.2, Orientation over scale

Jow much pattern recognition can be achieved using only orientation informa-
ion is an open question. A key difficulty is that it appears to be important to
ather the information over multiple scales (Bergen and Adelson, 1988). Also,
wrientation information is complicated by its interactions with effects such as
ontrast (Heeger, 1991), similarity grouping and gestalt effects (Hamey, 1992),
nd prior knowledge present when a pattern is recognized (Richards, personal
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* communication). In cases such as similarity grouping, it may be useful to detect

orientation after first running the data through some (possbily nonlinear)
transformation. Two stages of linear direction filtering, separated by a non-
linearity such as rectification, appear to help in a number of cases (Graham et al.,
1992, 1993). . . ‘

This research focuses on finding orientations from image intensity values using
one stage of linear filtering, applied over four different scales, m:a followed by
nonlinear contrast normalization and decision-making. The output is the number
of dominant orientations, their angles, and their strengths.

1.3. Brodatz image test data

The textures used throughout this research come from the Brodatz >=E.E
(Brodatz, 1966). These textures are the de facto standard used by researchers in
computer vision and pattern recognition. For both the human m:.a computer
analysis done in this research, data are taken from a Nmo. X 256 .mo.o.con cropped
from the center of a 512 X 512 8-bit grey-level image in the digitized Brodatz
Album. This is repeated for 111 different images, yielding test images E::na D1,
D2, ..., D112.! These square images were used as input to the computer orienta-
tion-finding algorithm. The images used in the rcamm test and shown in the
figures of this paper were these images multiplied by a disk and named Testl, ...,
Test112 (details in Section 4.2). .

Use of the 111 Brodatz textures makes this study considerably _m.ammn in texture
variety than any other study known to the authors. Nonetheless, this data set still
has limitations. Almost all the images are ‘frontal plane’, i.e. they are not subject to
any perspective distortions. Several images are Esoao.ma:oo:m or :m<w ooE.me
patterns for which it is difficult or ambiguous to En:ﬂ@ dominant .o:mam.:oa.
There is a majority of horizontal and vertical orientation (as there is also in the
environments where most people spend time with their eyes open). Each test
image was treated as one region, making the task more difficult but the results
more realistic for each extension to real scenes.

1.4. Overview of paper

In this paper an algorithm is developed for detecting oaoammo: in texture, and a
study is done to determine the orientations found by humans in Ew same wnx::wm.
The algorithm is described in Section 3 and the human study in Section 4. A
careful comparison of the two is given in Section 5. .

It is important to clarify that, while we are curious how the human <_w:.m_ system
achieves recognition, the primary goal here is to develop an mmmo.:::: .SB
imitates the human system’s output (dominant orientations) for a given visual
input (texture). Since what happens between the input and output is still largely
unknown for the human, and since there may be more than one way to get the
outputs from the inputs, this paper makes no argument that the Ewmomoa
algorithm is a model of human computation. Nevertheless, it 1s :.:w authors’ aim to
tune the model so its performance is as closely matched as possible to the human
data. . .

No existing algorithm for pattern recognition has o_w.:soa. to recognize
perceptually similar images in the general case. However, orientation 1s likely to
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the Hilbert transform of the directional filter is computed (Ziemer and Tranter,
1990). An approximate Hilbert transform is found which is steerable, and the
basis filters corresponding to the Hilbert transform are also applied to each level.

In summary, at each of the four levels, and at each pixel in a level, the filters
output a single dominant orientation and its strength. Details of how orientation
and strength are obtained from the filters are reviewed in Appendix A.

)e a critical part of such an algorithm in the future. Hence, this study focuses on:
1) obtaining one set of measures from humans for how they characterize orienta-
ion; and (2) developing an algorithm to achieve the same results.

BACKGROUND: METHODS FOR FINDING ORIENTATION

).1. Orientation detection in texture

esearchers in texture recognition and discrimination have dealt with orientation 2.4. Adaprability in scale

n many ways. Most methods, including Gabor filters, wavelets, and other
.ubband representations, incorporate orientation information by using a small set
»f filters at pre-specified angles and scales (Malik and Perona, 1990; Bergen and
.andy, 1991; Cohen and You 1991; Jain and Farrokhnia, 1991). These
‘epresentations may change appreciably when a pattern is rotated slightly. In
nany applications it is desirable to explicitly extract the dominant orientation,
ind then proceed with modeling or recognition relative to that orientation.

To extract orientation explicitly, researchers have explored methods using local
ferivatives (Kass and Witkin, 1987; Rao and Schunck, 1991), moments in the
;patial and Fourier domains (Rosenfeld and Kak, 1982; Bigiin and Granlund,
1987), and the Fourier spectrum directly (Bajcsy, 1973; Chaudhuri er al., 1987).

A primary reason for using steerable filters is that they provide information at all
orientations for a relatively small amount of computation. Correspondingly, it is
desirable to find a set of ‘scalable’ filters which give information for orientations at
all scales, without having to have a filter at every scale.

One major problem with such adaptability in scale is that the condition foritis
in direct conflict with the Nyquist theorem. To avoid aliasing caused by sub-
sampling, a filter should have a limited bandwidth in the frequency domain. But a
filter with limited frequency bandwidth will have infinite extent in the spatial
domain. To get adaptation in scale requires a compact region of support in the
spatial domain. It is impossible to satisfy both of these conditions (Simoncelli ez
al., 1992). One solution is to maintain full resolution in one of these parameters.
Another solution is to design an approximate adaptive scale representation as
described by Perona (1991) and Simoncelli et al. (1992) where a certain amount
of joint aliasing is introduced. Additionally, adaptation in scale combined with
adaptation in orientation can be cumbersome.

To reduce computational cost one can apply the filters on only a small set
of discrete scales. This means that only a limited resolution in the scale space can
be obtained. However, Andersson (1992) argues that for most low-level events
such as line and edge elements, a limited resolution in scale is less severe than a
limited resolution in orientation; these elements are present over several scales
but only exist within a well-defined orientation. This implies that exact adaptation
in orientation is more important than exact adaptation in scale except for the case
of sine gratings which exist only at particular frequencies.

It would be nice if a small set of scales could be found to be sufficient for
orientation analysis. Wright and Jernigan (1986) show that if filters are polar
separable in the frequency domain then along the radial frequency direction, six
overlapping Gaussian-shaped filters are effective for coding texture information.
Along the angular direction g, they indicated their results were not conclusive. It
appeared to them that at least seven Gaussian-shaped filters with orientations
uniformly spaced along the range (—90° < ¢ < 90°) are required to code white
noise along this dimension irrespective of the radial spatial-frequency content of
the image. The textures that they tested were all given by polar separable
Gaussian random fields differing primarily in their local power spectra. However,
their study is a significant first attempt to find the relevant scales needed to
characterize textures.

For the orientation analysis in this research, the Freeman and Adelson
steerable pyramid was used to analyze orientations at four different scales. Since
the image sizes are 256 X 256, only four levels of the pyramid, leve/ = 0,1, 2, 3,
were used with the subsampled image at level 3 being 32 X 32. Because of the

2.2. Methods based on Gaussian derivative filters

't is known that the frequency and spatial bandwidths of Gaussian derivatives
natch well with the receptive fields of the primate striate cortex (Webster and
De Valois, 1985; Young, 1986). Also, the Gaussian derivatives provide good
simultaneous localization in the spatial and frequency domains (Young, 1986).

Another reason for using the derivatives of a Gaussian is that they can be
steered’ to any orientation by a linear combination of basis filters (Freeman and
Adelson, 1991). For an nth Gaussian derivative, only n + 1 basis filters are
1eeded to compute any orientation. Although it is understood that humans use
nany more than n + 1 filters in parallel, the steerable filters achieve similar
jetection with considerably less computation.

A tool called the steerable pyramid was developed by Freeman and Adelson
'1991) to estimate local orientation at multiple scales using steerable filters.

2.3. Steerable pyramid

The bottom level of the steerable pyramid (level 0) is the original image, and each
righer level is obtained by filtering and subsampling the previous level. At each
evel, steerable filters are used to estimate orientations.

The directional filter at a given level can be ‘steered’ to any orientation using
‘our basis filters. Each basis filter is directional with angular tuning equal to that
»f a third derivative of a Gaussian. The radial tuning is not the same as a third
jerivative of a Gaussian, but has been adjusted to provide a flat frequency
response for the pyramid. These filters and examples of their use are shown in
Freeman and Adelson (1991) and Simoncelli et al. (1992).

To make the orientation estimation independent of the input phase, i.e. so the
response to an oriented step edge is the same as the response to an oriented line,
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This definition of H is similar to the orientation histogram defined by Tamura
“etal. (1978) and Rao and Schunck (1991). Tamura et al. set b = 16 and imposed

minimum threshold on the strengths before accumulating them. They followed
"this with a strict algorithm that permits at most two peaks. Rao and Schunck set
= 180 and summed strengths similar to the method here, but they did not
pormalize the histograms to sum to 1 for comparison. They did not discuss any
“algorithm for finding peaks, but appear to have done this visually. A general
“method for finding peaks is given in Section 3.2.2.

To find the dominant orientations in a local region in the image, the orientation
histogram for that region is analyzed. This involves smoothing the histogram to
reduce the noise and finding the prominent peaks associated with the dominant
orientations.

information.

3. COMPUTER METHOD FOR ORIENTATION DETECTION

The method used here is closely related to looking at the first-order statistics of
orientations. Hence, it is in the same spirit of Julesz’s argument that first-order
statistics of textons are important for visual texture discrimination, where orienta-
tion is one feature of a texton (Julesz, 1991). The computer orientation finding
procedure is summarized as follows.

(1) At each level (0-3) in the pyramid:
(a) at each pixel, find the dominant orientation and compute its strength,
AH
(b) accumulate S into an orientation histogram and smooth the histogram;
(c) analyze the orientation histogram to assess the number, angle, and
~ salience of dominant orientations; and ,
(d) compensate for contrast (current version of algorithm only applies the
compensation at pyramid level 0).
(2) Combine information from the different scales to decide the total number
of dominant orientations and their angles.

3.2.1. Histogram smoothing. The orientation histograms are noisy; therefore,
- some form of smoothing is necessary for finding the prominent peaks. As there is
‘no optimal way to predict precisely how much smoothing is needed, different
“sizes and standard deviations of a 1D Gaussian filter were run on all 111 test
_images until a filter was found that smoothed the data yet kept the visually
prominent peaks. It was found that an eleven point Gaussian filter applied twice
to the histogram smoothed most of the noise but still retained the shape of the
- histogram.

The 1D Gaussian filter, g(x), has the following form:

. (1.20) — x?
8 = et P\ 207 |

"where 02 = 16and x = 0, £ 1, + 2, £ 3, £ 4, = 5 to give eleven points
(convolving twice with this function is equivalent to convolving once with a scaled
Gaussian having ¢ = 32). The scale factor in front ensures that the coefficients
of the filter sum to one. The twice smoothed histogram H will be designated H.2

3.1. Finding orientation and strength

The dominant orientation 6, and its strength § are found at each pixel in the
region of interest using the steerable filters as outlined in the previous section.
This is repeated at each level of the pyramid, and then the strengths at each
orientation are accumulated into a histogram for each level. Thus, the output of
this stage is four histograms for each texture.

(2)

3.2 Orientation histogram smoothing and analysis

After the orientation and its strength are found at each pixel, these values are
accumulated into a histogram, H. The horizontal axis of the histogram indicates -
the angle from —90 to +90 deg and the vertical axis indicates the total strength -4
of sites at each angle. In practice it is necessary to quantize the horizontal axis. 4
Here the horizontal axis is divided into b = 158 bins giving angular quantization
of 1.14 deg. As the angular bandwidth of the filter is much larger than 1.14 deg, -
this particular choice of b = 1581s sufficient.

More precisely the histogram entries can be written as:

Ny (k)
DO
where N,(k) is the sum of the strengths associated with all points having an angle
in the interval: —90° +180° k/b < 6 < —90° + 180° (k + 1)/b. The normaliza-
tion of Ny(k) ensures each histogram sums to 1, i.e. it can be thought of as a
probability mass function. Thus, the histogram reflects the first order statistics of

the orientations, weighted by their strengths. Also, the normalization facilitates
comparison of the histograms over the four pyramid levels.

3.2.2. Finding the prominent peaks. Part of this research includes studying how
much of the salient orientation information can be retrieved from the histogram
peaks. There are many ways to find peaks in a histogram. One way is to fit some
functional form, e.g. Gaussians, to the histogram, and associate a Gaussian with
each peak. This method requires assumptions on how many Gaussians to fit and
what range their widths should be, as well as some similarity criterion to tell when
the fit is good. Also, Gaussians are of infinite duration so they would need to be
truncated, and more importantly, they are symmetric, implying they are best used
when the underlying ‘ideal’ peaks are symmetric. A heuristic study of the 111
histograms showed that not all peaks of interest are symmetric like Gaussians. A
Gaussian fitting method will tend to fit two or more Gaussians to the asymmetric
peaks, which will not typically correspond to the number of different dominant
orientations perceived. The method used below is therefore based on a peak
being a local maxima surrounded by local minima, with no assumptions of peak
shape.

To find the prominent peaks, the local extrema of the smoothed orientation

H(k) = k=0,1,...,b—1, (1)

;
i
i
£
H
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aistogram are detected. The local extrema can be found by approximating
jerivatives of H, with first-order differences:

i

AH(k)
AH(Mb - 1)

H(k+ 1) — H(k), 0<k=<b-2,
H(0) = H(b - 1), 3

where Eqn (3) is true since H, is periodic, ie. H(b) = H(0). The zero crossings
of A Hindicate the local extrema of H,.

For a strongly oriented pattern made up of line segments at a particular
direction, whose width and spacing correspond to the size of the directional filter
and its frequency tuning, there will be one peak in the orientation histogram. The
peak will be prominent, i.e. narrow and large in height. If the pattern is not
strongly oriented, or if the spacing and size of the structures do not correspond
with the parameters of the directional filter, or if there are structures at many
orientations, then the peak will be wider and its magnitude correspondingly
smaller.

A measure of the sharpness of a peak can be determined by approximating its
height and width, and taking the ratio of these two values. To estimate these
values, first the inflection points on either side of the peaks in H, are found. Figure
1 shows the orientation histogram calculated for Test3 and the corresponding
graph of AH. As can be seen, the zero crossings correspond to the local extrema,
and the inflection points correspond to the steepest part of the slope (positive or
negative) on either side of a local extremum. A positive inflection point before a
negative inflection point indicates that the zero crossing corresponds to a local
maximum in H,.

The vertical difference, d,, between the inflection points gives a measure of the
magnitude and steepness of the peak in H,. The horizontal distance between the
inflection points, d,, gives the narrowness of the peak. These distances are
marked on Fig. 1. Let H,(6,) be the height of the histogram at the peak being
considered. The following is proposed as a measure of the ‘salience’ of a peak:

y = H{(6,) Ml:%asz 4)

where the weighting functions w, and w,, are motivated below. Even though d, is
dependent on the magnitude of the peak, to make sure that y is much smaller fof
small valued peaks than for large valued peaks, the peak magnitude H,(6;) it
included in the calculation of y, shown in Eqn (4). w

Motivation for w,. There are a number of orientation histograms where th
value of a peak in the histogram is close to the value of one or both of its
neighboring minima. Figure 2 illustrates one such histogram. In these cases, the
ratio d,/d, falsely signifies a strong peak (especially if the peak drops off sharply)
but the peak should not be considered because it is caused by a perturbation in
the histogram. For a non-oriented image, ideally H; should be flat for all orienta-
tions; however, because of noise and differing contrasts, some orientations will be
weighted more than others. In Fig. 2, the peak in the histogram denoted with * will
have a large d,/d, because it is sharp on one side but it is clearly not a prominent
peak (as can be seen in its image, Test 30, in Fig. 6).

The proposed weighting function w, fixes these cases. If the value of the
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Figure 1. Brodatz image D3 used in tests, its smoothed orientation histogram H,, and its difference
histogram, A H. Two of the values used in the salience measure are marked on AH.

maximum point is denoted as MAX,, and the largest minimum value is denoted as

MIN,, then the weighting factor w,, is expressed as:
| MIN, 5
W, & - .
" MAX,, )

Motivation for w,. There were cases where the peak in the orientation
histogram was broad but the slopes of the curve were sharp. The salience
measures for such peaks were high even though the orientations associated with
these were not chosen by the subjects to be prominent. Very broad peaks are
usually caused when there are structures at many orientations. To make sure that
these peaks are not considered to be prominent (to agree with human
perception), a multiplicative weight w, is included in the salience measure for
peaks broader than some trained value w,. After considering the data for humans
on all the images, values w, = 0.10 and w, = 72 deg were selected.
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Figure 2. Histogram that motivates choice of w, weighting function in salience measure y.

The peak-finding method proposed in this paper is plainly heuristic and there-
fore has little worth unless it is proven to work on a large variety of data. Our
results indicate that for the 111 different Brodatz images with four levels of
resolution for each, the peaks found by the algorithm in the 444 histograms
corresponded well with the peaks found by the humans. Details and illustrations of
the peak-picking method are given in Gorkani (1993). This measure is computed
for all candidate peaks.

Note that it is ultimately desirable that a salience measure of a peak
corresponds to the strengths perceived by humans. This can be considered a
long-range goal of this research, but will not be used to constrain the particular
salience measure here. The primary use of y in this research is to reduce all the
data in a peak down to a decision of whether or not the peak corresponds to a
perceptually dominant orientation.

3.3. Contrast compensation

One problem with orientation analysis using directional filter outputs is that the
output energy of the filters increases with increasing image contrast. A non-
oriented pattern with high contrast can give a response similar to an oriented
pattern with small contrast. One could remove contrast effects completely, but
since a high-contrast oriented structure is more strongly perceivable than a low-
contrast oriented structure, removing contrast information could lead to results
that disagree with the human perception of similarity. Several nonlinear transfor-
mation methods used to enhance the low-contrast oriented structures have been
explored on the Brodatz textures (Gorkani, 1993).

Since the estimation of local orientation 6, is a ratio of responses from the
steerable filters (Eqn (A3)), it will not be influenced by the contrast of the image.
As long as there is a change in the grey level in a certain direction in a neighbor-
hood, the orientation measure will capture this direction. However, the strength
measure (Eqn (A4)) is dependent on the contrast of the image.
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Note that if the filters are large compared to the structure at the orientation

 they are detecting, or if the area of the structure is small compared to the region

over which the filters are applied, then the filter response may be small compared
with the human perception of the orientation. Even though the primary issue in
these cases is one of relative size (and shape), and not one of contrast, the contrast
normalization may still have the effect of boosting the filter response.

One way to model the contrast normalization used in low-level image percep-
tion is to divide the energy of the filter outputs by the sum of energies correspond-
ing to filters at all orientations in a local neighborhood (Shapley, 1990; Heeger,
1991). For example, Bergen and Landy (1991) normalized for contrast by divid-
ing each of the energy outputs of four directional filters by a local average of all
their energy outputs. . :

For steerable filters this contrast normalization is difficult since it can affect the
steerability of the oriented filter. The directional filters in the steerable pyramid
have an orientation tuning proportional to cos?(6). Squaring the outputs (for
energy) of these filters means that the resultant images have a finer orientation
tuning approximately proportional to cost(8). Because of the presence of the finer
cos®(@) component, one now needs seven basis filters instead of four, to interpo-
late the oriented energy E (6) to any orientation.

The contrast normalization method used here begins with seven equally spaced
samples of E(8) at 6, = 180°s/7,s = 0, 1,..., 6. This is the same as taking the
energy of the output of a directional filter and its approximate Hilbert transform
rotated at seven equally spaced orientations.

The seven sampled oriented energies E(8,), 5 = 0, 1, ..., 6 are normalized in
the following way at each pixel position (x,y):
E(8,)(x,y)
E(0)(x,y) = (6)

c+ Mc.tm;?s E@®)0, k)’

where E,(6,) is the normalized energy, M,\x? " E(8,) is the sum of E(6,) in an
isotropic local neighborhood about (x, y),and ¢ > 0 is a constant used to prevent
division by zero if E(8,) = 0. It is important to choose a value for ¢ which is not
bigger than most of the values of E(8,) otherwise E,(0,)(x, y) will be smaller than
it should be. The best choice of the size of the local neighborhood |4, )| for
calculating E, is also an open problem. One way to find a good size is to calculate
Eqn (6) for different sized neighborhoods, and see which size gives results closest
to those for humans.

The normalized energy E. (6,) can be expressed in terms of the seven
normalized energy outputs using the coefficients needed to steer a filter with
angular tuning cos®(8). The estimated orientation 6, and its strength § described
can be found for each position (x, y). In this case, C, and C; in Eqn (A4) will be
combinations of the seven normalized energy outputs. These provide new
strength values used to form a contrast-enhanced orientation histogram, H.(0).

The energy normalization described here was implemented for the first level
only of the pyramid, level = 0. Future work is planned to extend this to the other
levels. The range of values for the energies of the directional steerable pyramid
filters were found for this level and the constant ¢ was chosen to be an order of
magnitude smaller than the minimum value in this range (¢ = 1). The neighbor-
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hood size was chosen empirically to correspond to the blur of the third level of a
Gaussian pyramid, i.e.a 31 x 31 region centered around the current pixel.

For Test6 shown in Fig. 3 subjects gave high strengths to both the horizontal
and vertical orientations. However, as can be seen in Fig. 3, the peak at 90 deg in
the histogram of orientation strengths H(6) has a tiny value. In the H,(6)
histogram, which was calculated by summing the number of sites having 6 as
dominant orientation, the peak at 90 deg is more prominent but still smaller than
the peak at 0 deg. Only in the contrast-normalized histogram H_(6), formed using
the normalized energy E, () at level 0, is the peak at 90 deg close in value to the
peak at O deg.

The contrast-normalized histogram greatly boosts low-contrast structures
which may or may not be directional; therefore, it must only be used selectively.
Based on matching human and computer results, it was found that the results
improved on six of the test images and were not diminished on any images if the
following (nonlinear) decision was applied first:

Contrast-normalization condition: At least two peaks must correspond between the original
histogram at level 0 and the contrast normalized histogram, and in the original histogram one
of the peaks must have a salience measure above the threshold and the other peak a salience
measure below the threshold.

0.025 H_A_E.cmn m:mﬁomﬂmbw

0.02 J
0.015+ i
0.01}f 4
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1 It L

0
-100 -50 0 50 100
Orientation (degrees)
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0.04+ E
0.01f -
0.02+ A
0 . . 0 T L
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Orientation (degrees) Orientation (degrees)

Figure 3. Clockwise from upper left: Test image D6; H,, histogram of number of sites at each orienta-
tion; H,, histogram of orientations weighted by strengths; H_, contrast compensated histogram.
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If this condition is true and the ratio of the peaks’ heights is less than 20% in the
original histogram and more than 80% in the contrast-normalized histogram then
the weak peak is chosen as a dominant orientation. This condition was run on all
the 111 Brodatz textures. It was found only to improve the agreement between the
computer algorithm and human responses; se€ Section 5.6 for these results.

Consider Test6 shown in Fig. 3. Since the ratio of the peaks at 0 and 90 deg in
the contrast-normalized histogram is more than 80% and in the strength
histogram is less than 20%, then the orientation 90 deg is chosen to be dominant.

3.4. Combining orientation information from different scales

In the next section a study will be described where humans label orientations they
perceive to be dominant. The results for humans thus produce one histogram for
each image. The method described above produces four histograms for each
image, one at each level of the pyramid. Consequently, it is necessary to combine
the four histograms for comparison to the one for humans. The methed for
combining information from different scales involves making decisions about
what is important at each stage. Part of the results of this work include determin-
ing these criteria. The criteria were determined iteratively, by picking decisions,
comparing them to the results for humans, then refining them so they are closer.
The exact process found to combine information and give results closest to those
for humans is detailed in Section 5.5.

4. HUMAN ORIENTATION DETECTION STUDY

It is necessary to have some form of ‘ground truth’ with which to evaluate how
well the above orientation-finding algorithm works. In this section we describe a
study with humans undertaken to help provide information for evaluating the
algorithm. In this study, subjects were asked to designate the dominant orienta-
tions they perceived in a set of test images, and how strongly they perceived each
orientation.

4.1. Subjects

Forty subjects from a variety of ethnic origins, ages, and academic backgrounds
participated in the visual experiment. The majority of the subjects were MIT
undergraduate and graduate students. None of the subjects were researchers in
computer or human vision, and none had previous experience with psycho-
physical visual experiments. The subjects were given an ice-cream gift certificate
for their participation. Of the forty subjects, sixteen were female. Subjects had
normal or corrected-to-normal visual acuity.

4.2. Experimental setup

The subjects were seated 36 cm from a 16-in Sony trinitron monitor $nd the
displayed image was 7 cm X 7 cm. These values were sufficient to make &:.m that
they did not see any particular pixel in the image but still could detect fine details.
The display resolution was 35 X 35 dots per cm. The lighting in the room was
dim (main lights turned off except for a background lamp). This ensured that there
would not be any false illumination on the images. The images of size 256 X 256
were positioned in the middle of the monitor screen. The mean luminanée of the
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screen was 23 cd m ™2 The images were displayed without gamma correction. To
nsure that the subjects were not influenced by the horizontal and vertical image
»oundaries, each image was multiplied with a disk of size 256 X 256 with a
-adius of 128 pixels. A red bar centered in the middle of an image would pop up
n a random orientation if the user indicated that he or she saw a dominant
yrientation in the image. The user was shown how to rotate this bar during the
raining procedure. Figure 4 shows the test sequence. .

When the subject was ready to indicate orientation strength, a menu bar
»opped up under the test image (see Fig. 4). The subject used a slider to give an
nteger strength value between 0 and 10. Use of a finer scale was considered but
lecided against as it is difficult for a subject to distinguish quantitative strength at
iner levels, e.g. 6.7 instead of 6.9. After a strength was indicated, the subject was
>rompted as to whether he or she wanted to pick another orientation or move to
he next pattern. In this way, the subjects should not have been biased toward
»icking any particular number of orientations.

It is possible that using a red bar in the center of the image could bias the
- subject toward choosing the orientations dominant at the center. To try to
minimize such effects, the bar was given the same length as the image diameter.
Other methods to locate orientations were also considered such as spinning a bar
around in an adjacent image, or allowing a bar to both translate and rotate in the
test image. However, it was believed that the former would be less accurate in the
~presence of multiple orientations, and the latter might encourage the subject to
template match rather than specify dominant orientations.

The choice of using ‘real images’ as opposed to synthetic images in the human
study part of this research is unusual and introduces several complications. For
example, a human shown an image with a small section of brick wall may say the
dominant orientations are horizontal and vertical even if the image does not show
© enough bricks to reveal any periodicity. Although we did not reveal the content or
* - name of the images to the subjects, many of them can still be recognized visually
and therefore the possibility that some orientations were identified by semantic
association cannot be ruled out. Of course a very important problem in computer
vision is also to determine how and when semantics should be incorporated into
the ‘low-level’ signal processing. By looking at where the computer and human
results disagree and trying to understand the causes of disagreement, the
importance of any semantic interaction should be revealed. The results of this
. analysis are in Section 5.7.

Recall that the use of real images is also to begin identifying which interactions
in the real world contribute to the ‘quick’ recognition that things look ‘similar’ or
different’. It is the role of dominant orientation in this capacity that we are trying
to measure.

Pick the MINIMUM number of dominant orientations.

-y . .. N

{. If You Can’t Spot Rny Orientation In
The Inage, Click the Hiddle Button And
Click The “No Orientation” Button.

2. Click On The Left House Button To Have
The Red Bar.

3. Click On The Middle Button To Indicate
Hou Strongly You See The Orientation.

ay 4.3. Training session

(a)

Before commencing the test, each subject went through a training session where a
precise set of directions was read. The training for this experiment is difficult
because it is important not to bias the subject toward a certain orientation,
strength or structure. To communicate to 2 subject a minimal notion of
‘orientation’ and ‘strength’, two images were first shown: an ideal directional
pattern and a random noise image. The first image was a sinusoidal grating
oriented at 90 deg, shown in Fig. 5(a). The subject was told that this particular
image has one dominant vertical orientation of strength 10, and was shown how to
indicate this orientation and strength to the test system. Next, a uniform noise
image, Fig. 5(b), was shown. The subject was told that this image has no dominant
orientations and has a minimum strength of 0. For images with no dominant
orientations, the subject was asked to choose the No Orientation option in the
strength menu.
The subject was also shown example images to illustrate these cases:

e dominant orientations do not have to correspond to the presence of
continuous lines and they do not have to pass through the center (Fig. 5(c));

e multiple dominant orientations may be present (Fig. 5(d) and (e)); and

® there can be many orientations present that do not correspond to a
dominant orientation (Fig. 5(f)).

(¢)

Figure 4. Human test setup: (a) The subject clicks mouse to indicate whether or not they see a
jominant orientation. (b) If they see one, a red bar pops up for them to rotate. (c) One of the orienta-
ions selected. (d) Human subject specifies strength of orientation. (e} A panel pops up asking if

;ubject sees another dominant orientation. Since different subjects might perceive the strengths of these cases differently,
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Figure 5. The top two images were used to train both strength and orientation: (a) Dominant vertical
orientation with strength ten. {b) No dominant orientation. The remaining images were used only to
indicate number of dominant orientations.
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they were not told the strengths for these images. Instead, they were asked to pick
strengths based on considering the first two examples. These images were not
considered in our test results but were used only to ensure subjects had no
difficulties manipulating the test system.

The words dominant and minimum were repeated several times during the
training for reinforcement. The instructions were always visible in the upper left
corner of the screen and a reminder was kept at the top of the screen: Remember
to pick the MINIMUM number of dominant orientations.

4.4. Test images

Since it would have taken too long for a subject to analyze 111 images, the images
were divided into four sets so that each subject only had-to analyze thirty of the
Brodatz images. Seven synthetic ‘teaser’ patterns from psychophysical
experiments were also included for a total of thirty-seven test images for each
subject.’ Most subjects spent about 45 min on the test, including training time.

4.5. Recording of the human visual data

The orientations and strengths picked by each subject for each test image were
recorded. Information about the number of orientations, their relative strengths,
the expected number of orientations for each test image, and the distribution of
strength values chosen by each subject were found. Several statistical properties
of the experimental data were considered, and the following conditions were
verified (Gorkani, 1993): (1) the subjects used the full range of strengths, 0-10,
with an approximately uniform distribution; and (2) of the forty subjects, four had
variances greater than 10% from the average range of strengths chosen. These
four variances were between 10 and 19%. There was no compelling reason to
remove any of these subjects from the test data; consequently, the data from all
forty subjects was used in the comparisons reported here.

5. COMPARISON OF HUMAN AND COMPUTER ORIENTATION DETECTION

5.1. A difficult optimization problem

One can think of this research as a huge nonlinear optimization problem. There
are two nonlinear systems, human and computer, each dependent on a large
number of variables. The focus of this research is to solve for the computer
variables so that the outputs of the two systems are as close as possible. In
particular, the key variables described above can be informally summarized as
follows. Details are described below.

Variables for human study data, 3. (1) Accept or reject decision on a subject’s
test ‘data (for removal of outliers). (2) Histogram angular bin quantization.
(3) Histogram ‘peak salience’ threshold, .

Variables for computer algorithm, @ (1) Filter shape, bandwidth, frequency
centers. (2) Number of pyramid levels and their scales. (3) Nonlinearity applied
to filter outputs (squaring to get energy). (4) Histogram angular bin quantization.
(5) Histogram smoothing. (6) Histogram ‘peak silence’ threshold(s) V..
(7) Contrast compensation: choice of neighborhood size, choice of function.
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Let 6, , be the vector of orientations found to be dominant by a human for
a given pattern / and let @.2 be the vector for the computer algorithm. There are
many possible criteria to consider when comparing the results. One goal is that
the humans and computer algorithm should agree on the number of dominant
orientations, i.e. equal dimensions of the vectors:
min Y, (dim &, — dim 8> (N
e ]
The sum is over all image patterns in the test, and the minimization is with respect
1o all the variables in the two lists above. This criterion may be sufficient in quick
search applications, perhaps just to determine if further comparison is worth-
while, or perhaps to also determine which particular model, say structured or
statistical, should be fitted for further comparison.

A more exact criterion takes into consideration the strengths perceived by the ‘

human and the positions found by both human and computer. There are many
ways to formulate this goal. If 6, ,and 0, , already have equal dimensions then the
following objective form provides a tighter match:

ﬁﬁw (6, — 8.)"W (@, - 8., (8)
where W is a diagonal matrix of weights, with diagonal entries w; equal to the
strengths assigned by the human to each of the orientations in 8, ,- This formula-
tion is minimized when the strongest perceived orientations are located at the
same position by both the computer and human. One can continue setting up
similar objective functions depending on the stated goals.

Because of the large number of variables, their infinite set of combined possible
values, and the complex nonlinear interactions among them, the optimizations
posed here need additional constraints to make their solutions tractable. Many
such constraints have already been imposed by the choices described above in the
computer algorithm (such as using 256 x 256 images, four pyramid levels, etc.).
The analysis below is based on constraining most of the variables to a set of fixed
values, and varying the choices of ‘peak salience’ thresholds for both the
computer and humans. The results achieved for these choices are discussed in the
next section. However, research is continuing in this general framework, with the
aim of finding a small set of ‘universal’ values for which the algorithm most closely
approximates the human.

5.2. Analysis of human visual data

The main objective of the visual experiment was to get human data h, with which
to compare the results of the computer algorithm c;. Disagreements between
results for the humans and the algorithm can then be analyzed to learn how to
improve the algorithm, and to learn what any limitations of this basic approach
are.

As mentioned earlier, the human data consists of one orientation histogram for
each subject for each pattern. The computer data consists of one orientation
histogram for each of four levels of scale for each pattern. Before comparing the
human and computer results, it is necessary to transform the two sources of data
into a more comparable form.
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For the initial comparison of the data, the orientations chosen by subjects for
cach test image will be quantized to 10 deg bins. Considering that on test images
such as Fig. 5(c) the human’s responses spread about 6 deg, the 10 deg quantiza-
tion should not be a significant loss. The strengths associated with orientations
falling in a particular bin are summed for that bin.

A total of three variables are computed from the human response to each test
image 1. The elements of 8, , are quantized orientations as described above. Each
element of 7, , is normalized by the maximum strength that could be given any
element of e 10 (maximum strength) x the number of subjects responding
to that test image. Variable N; is defined to be the number of subjects who
specified that the image had zero dominant orientations divided by the total
number of subjects responding to that image.

Table 1.
Notation for recording and comparing human responses and computer outputs.

Human response data:

mw: the vector of orientations chosen by the humans
N: the corresponding vector of strengths
N, ameasure of how non-directional the image is perceived to be.

Computer algorithm output data:

6,

., vector of M orientations chosen from all pyramid levels

e, the corresponding vector of salience measures

Human-picked orientations Computer-picked orientations

Matched to m.ﬁ Rejected Matched to m_: Rejected
7 o (@ @
(24 e 25 2

i 1

5.3. Analysis of computer orientation histograms

The computer algorithm produces four histograms, their peaks, and peak salience
values. This section describes a procedure for reducing this information to one
vector, 6, > which can be compared to the orientations 8, , for humans. Since the
histogram values over all levels of the steerable pyramid are normalized, they can
be compared to each other. The salience measures can then be ranked from
lowest to highest magnitudes across the levels of the pyramid. The first M highest
salience measures and their associated orientations can then be compared with
the human visual data.

The average dimension of vector 6, , is five over all test images. The average
number of orientations picked by subjects over all the images was 1.3. The
dimension of 8, ; is greater than this average since two humans may have each
picked one orientation, but if they picked them slightly apart, then they will be
recorded as two different orientations. Hence, choosing M = 5 as the initial
number of dominant orientations to collect by computer is reasonable. M is a
variable which can be increased in the future if the orientations found by the
filters are not sufficient to match the human data. The maximum number of
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orientations picked by any subject on any single image was seven. The maximum
number of orientations found by computer analysis for any single image was eight.

Orientations existing over more than one pyramid level are only picked once. It
was found by looking at images where orientations existed in more than one level
of the pyramid that an allowance of a 10 deg spread insures that orientations are

not picked more than once in the ranking. A 10-deg spread means that, in the

ranking, an orientation is not included if it is closer than 10 deg to the orientations
picked in the other steerable pyramid levels.

Two variables 6, and 7, are computed from the computer algorithm’s
response to each test image I; these are summarized in Table 1 with the human
variables. The elements of 8, ; are the orientations whose salience measures are
included in the top M measures over the four levels of the pyramid. The elements
of 7, , are the salience measures for these orientations.

5.4. Choosing variables for evaluation

The focus now is on comparing the data from the humans with the data from the
computer algorithm, i.e. comparing w.f to w..: and w\.E to ﬂ: over each image /.

During the comparison, there are four cases that can occur; these are
summarized in Table 1. The new vector w.a consists of the elements of w.E for
which matches were found in 6, ,- For the present algorithm, this is all orientations
within 10 deg of those found by the filters. (This considers only position at this
point, not saliency.) The vector 6% consists of all other elements of 8, ;- Clearly it
is desirable that @) = w._:, i.e. that the computer found all the orientations
deemed important by the humans. The values in ﬂm, the salience measures of:
orientations which were found by the computer algorithm but did not correspond
to ones humans found, should not be considered ‘good enough’. The mean of w\.w
over all the images is used for the initial salience threshold, y. = 0.085 to decide
if a peak is a dominant orientation. A few cases where ww is important (the
humans found orientations that the computer could not match) are discussed in
the “difficult cases’ in Section 5.7. The values of Table 1 shown in parentheses are
not necessary in the results reported here.

To determine the threshold y, consider:

r, = number of elements of ¥ < y,, &)

a measure of the ‘wrong’ rejections caused by this threshold. In other words,
orientations found by both the computer and human should have corresponding
strengths greater than y,, i.e. it is desirable that . = 0. A similar rejection measure
can be formed for the human data:

#, = number of elements of 7R} < ¥, (10)

where y, is a (typically very low) value used to ignore some stray low-strength
orientations from the human data. The threshold y, is set to 0.15 in this initial
evaluation. Choosing this value for the threshold means that the strength of the
values N: should be at least 15% of the maximum strength that they can be
assigned. A couple of the significant cases are discussed in the sections below.

5.4.1. Case 1: Effect of y. on choosing peaks at different levels of pyramid. The
computer made orientation decisions for the 111 Brodatz images using the

i i i 241
Detecting orientalions in textures

Table 2.

Comparison of results using one thresh:
(number of patterns which agree)/(num !
ment is measured between data from the human study and computer algorithm.

old and using level-dependent thresholds. Values w.s ratios are
ber of patterns computer found with that orientation). Agree-

Dominant orientations , , .
computer found 0 i )

With fixed threshold, ¥, 23/32 =72% 16/43=37% 17/28 = m_w\c 1/4 w Nww\o w“w H Mw%\
With different y,o — ¥ 32/41 = 78% 18/44 = 41% 15/19 = 79% .W\A =25% : o
Gain of As (agreement) (+) +9 +2 B w o o

Lossof As (—) -1 -1

method above by applying one threshold y, to %m.m.m:onoo measures at all _o<oq_w
of the pyramid. The orientations (number and position) found by manEMH ,“,\Mi
compared with the same values found by humans. The nmmc:.m of this ON\_S sho v in
the first line of Table 2. A total of 59/111 of the images achieve 100% agree

the humans and the computer. )
cnmwcmw M?WM% revealed that images found by the computer to have no aonmzubn”
orientations showed the best agreement. Images mow, which the computer .o:sa
peaks showed more disagreement. A careful comparison of the strengths N.G.Emn%
by humans and the salience measures found by computer revealed that raising oo.
salience threshold on the highest pyramid level was necessary to get better M.mnm g
ment with the human data. It was also found that better results could be wn_ SMM d
at levels 0-2 by lowering the threshold. In other words, m: coarser sca o_w i
orientation needs to be stronger for it to match the humans’ perception as being
ao%wzmwmw the new level-dependent values of Ve Yeo T Yen an iterative m_.ﬂoohmwm
was followed with the goal of providing the maximum wmnooaocvcm.ﬁiwws ac ans
and computer on the 111 images. The resulting <w:5w. of the pyrami -a mv.mz
thresholds, Y., — 0.3, are shown in Table 3. Several details on this comparison

be found in Gorkani (1993).

5.5. Results with different thresholds for different pyramid levels

r i d computer when a fixed
Table 2 summarizes the agreements between human an : .
threshold is used for all levels of the pyramid, and when a 9@@.8& ﬁWnnOmM:muE _M
used at each level. Agreement occurs whenr, = Oand r, = 0, with y, = 0.15 an

Table 3.

Threshold values chosen for dif-
ferent pyramid levels 0-3. Notice
they are greatest at the coarsest

(top) level.

Threshold Values
Ve 0.418
Yer 0.075
Yor 0.034
Yeo 0.0098
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with ., — ¥, taking the values in Table 3. mun:no_casojrmﬁriaaoém:oém
how many patterns agreed in row 2 that did not agree in row 1 (+). and how
many patterns disagreed in row 2 that had agreed in row 1 (—). If the thresholds
arc overly conservative, one might find all the entries for (+) will be large and all
for (—) would be zero. Intuitively, as the plus and minus signs start to balance,
one expects the thresholds are nearer the critical points.

It can be seen from Table 2 that using multiple thresholds enables better agree-
ment with the results for humans. These results seem to confirm that coarser scale
orientations must be correspondingly stronger than fine ones to be perceived as
dominant. Detection of textures with no dominant orientations and with from two
to four dominant orientations is significantly improved by this method. However,
the algorithm still has problems classifying textures to have one dominant orienta-
tion. (The poor results for the three-dominant-orientation case arc not conclusive
since the sample size in that case is minuscule.)

Many observations have been made during analysis of the disagreements in this
form of the algorithm, details of which can be found in Gorkani (1993). In the rest
of this paper we will focus on the analysis of the best performing version of the
algorithm, the above version augmented with contrast compensation.

5.0. Results after incorporating contrast normalization

Figures 6-12 show all the Brodatz test images grouped by their number of
dominant orientations as found by the computer, using the different thresholds at
cach level and the nonlinear contrast normalization. An ‘A’ underncath an image
denotes agreement between the human and computer on choosing the number of
orientations”.

After the nonlinear contrast normalization described in Section 3.3 was
applied to all 111 textures, the following new images agreed with the humans:
Tests18. 25. 50, 52, 53, and 96. Thus the contrast normalization helped in six
cases, while introducing no new disagreements.

Table 4 summarizes the improved results obtained using the multiple thresholds
and contrast compensation. Other issues that might be considered are as follows:
(1) If there is only one low-contrast orientation in the texture then it may not be
found using this current method. (2) Only the relative values of the contrast
normalized histograms have been considered so far; more of the peak shape
information could be compared. (3) The contrast normalized histogram can also
be used at higher pyramid levels.

Table 4.
Table summarizing current results. The maximum for each entry is 111.

Agreeinat least  Agrec in biggest  Agrec in total Agree in all
one dominant dominant number of dominant
orientation and  orientation and ~ dominant orientations and
its position its position orientations their positions
No contrast 95 86 70 68
normalization
Level O contrast 93 86 76 74

normalized
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Test57 A Test60 A

Test58 A

Test54 A

Figure 6. No dominant orientations were found by the computer in these. An ‘A’ under an image
indicates agreement with the human study data.

5.7. Difficult cases and future directions for comparison

There are a number of difficult cases which remain. This section analyzes the
algorithm’s weaknesses, to help researchers better predict where it should fail or
succeed.

Two images where the algorithm agreed somewhat with the humans, but not
completely, are the lizard-skin patterns in Tests2?2 and 35 (see Fig. 8). For .705
images, the humans picked three orientations with relative strengths much bigger
than y,. However, the corresponding peaks found by the filters were too c.nowa
and not sufficiently prominent. One of the reasons that peaks are not prominent
(and perhaps the key reason in these cases) is that the textures are non-
homogeneous over the region being analyzed. Repeated analysis over smaller
subregions may produce better peaks. (The human eye may also wander over
these subregions.) Finding the ideal-sized region over which to analyze
orientation is a difficult problem; it may be best studied jointly with attention.

Orientation information is known to be useful in helping detect symmetry
(Bigiin and du Buf, 1992). There are two cases in this study where failure of the
computer algorithm to agree with the human subjects appears to be caused by E@
subjects confusing symmetry with dominant orientation. The first was Test6 (Fig.
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X

Test109 A Test110 A

Test111 A

Test112 A

Figure 7. Figure 6 continued.

10) where using the computer compensates for contrast and picks vertical and
horizontal, but the subjects picked vertical, horizontal and the diagonals. The
second was Test14 (Fig. 10) where the computer decides no contrast compensa- 1
tion is needed and picks vertical and horizontal, but the subjects picked vertical, !
horizontal and the diagonals. In both cases, very few subjects picked the
diagonals, but those who did gave them high strength. |

In both these cases, it is possible that the diagonal orientations picked by the
humans could be found by a cascade of the steerable filters, i.e. apply once, then
apply some nonlinearity to their outputs, then apply steerable filters to this
subsequent output. Consider also the hypothetical case of a texture composed of
zero mean white noise modulated with a sinusoid. For a broad range of the
modulation frequency, directionality is easily perceived by the human, but cannot
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Hmm.am

Test44

Test70 A

Test69 A

Test68 A

Test59 A

Test49
Figure 8. One dominant orientation was found by thc computer in these. An ‘A’ under an image
indicates agreement with the human study data.

be detected by the algorithm we have presented, even though the algorithm low-
pass filters and combines information over multiple scales. However, if the
stimulus contrast is first rectified, then the orientation is easily detected by the
algorithm here. How best to combine orientation detection with nonlinearities is
an important area open for research.

There were 111 — 95 = 16 textures that did not agree in any dominant orienta-
tions. Of these, one disagreed (Test44) because a strongly oriented part of the
pattern is hidden by the circular disk, and hence visible to the filters (run on the
square image) and not to the humans (who saw only the round images). This was
the only pattern which seemed to be dramatically affected by this choice of
implementation.

The 16 ‘difficult’ images are shown in Figs 13 and 14. Beside each image in the
figures the following information is given:

® How many orientations were chosen by human?

e How many orientations were chosen by computer?

e What were the orientations chosen by humans (the relative strength
indicated in parentheses)?
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Test98 Test105 Test106 A Test107

Test108

‘igure 9. Figure 8 continued.

® Did any orientations found by filters match with the human-picked orienta-
tions? If there is a match then the salience mcasure y of the peak
corresponding to the orientation is shown in parentheses.

e Speculation about why there were no matches.

A set of size 16 is small considering the large variety of data in the original set
f size 111. Also the results here are only from a first attempt at optimization.
Nonetheless, there are significant problems raised in this set of images. One of
hese problems is the filter shape and size. In images such as Test77 the orienta-
ion information is fine and should be detected at the bottom level of the pyramid.
Jowever. the filters do not detect a salient peak at this level. The probable cause
1ere is that the orientation tuning on the filters is not fine enough, i.e. the filter
thape should be narrower, perhaps achievable by using higher Gaussian
lerivatives. A similar problem appears to occur in Test90, but at the other
:xtreme, where the filters are not coarse enough.

Several of these patterns contain evidence for processes that may be higher-
evel than simple orientation detection. In particular there is evidence for
rouping of objects (Tests66, 75), of coarse-level segmentation of objects
Tests41, 88, 90). and perhaps also of object identification with shadow removal
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Test18 A

Test34

test94 A test95 A test96 A

test82 A

test103 A test104 A

Figure 10. Two dominant orientations were found by the computer in these. An ‘A’ under an image
indicates agreement with the human study data.
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Humans: 1
Computer: 0
HO = ~65° (0.43)

Humans: 2
Computer: 0
HO = —5° (0.19), 85°

(0.52) C6: levell (0.00231)
C9: level0 (0.0051), level0 Speculation: semantic
S (0.0003)
Test3 A Test85 Speculation: contrast

Figure 11. Three dominant oricntations were found by the computer in these. An ‘A’ under an image Test3l

indicates agreement with the human study data.
Humans: 2

Computer: 0

H = -55° (0.21), 75° (0.27)

C8: levell (0.0123), level3 (0.0017)
Speculation: grouping

Humans: 1
Computer: 0

HO = —55° (0.24)

C8: levell (0.0018)
Speculation: grouping

Humans: 2 Humans: 1
Test101 A Test52 Computer: 0 Computer: 0
HO = —-75° (0.42), 35° HO = —45° (0.22)
Figure 12, Four dominant oricntations were found by the computer in the two images on the left, and (0.21) C#: level2 (0.0031)

C#: level2 (0.034), (0.0143) Speculation: grouping

Speculation: contrast

five in the rightmost image. An ‘A" under an image indicates agreement with the human study data.

(Test31). The latter two phenomena may be strongly influenced by semantic
interpretation, although this is a difficult cause to verify. There may also be some
enhancement of the human-perceived orientation in Test88 due to the high
contrast along the diagonal where the image meets the black background.

Many of the other difficulties present in ‘the difficult 16’ look like they may be

Humans: 1
Computer: 0

H = 35° (0.29)
CO: level2 (0.0011)

Humans: 2
Computer: 1

HO = —65° (0.51), -5°
(0.445)

fixed by improvements in the contrast handling of the algorithm, especially by
including contrast handling at higher pyramid levels, or by adjusting the process-
ing more locally. Local processing should help especially for images like Test71
where the directional pattern is inhomogeneous.

6. SUMMARY

This study has compared the ‘dominant orientations’ perceived by forty human
subjects with the dominant orientations found by a multi-scale orientation
detection algorithm using contrast normalization. It was found that using different
thresholds with four levels of a steerable pyramid is sufficient to detect all the
perceptually dominant orientations of 68 out of 111 textured images without even
using contrast normalization. Using contrast normalization brings this number up
{0 74. If the algorithm is asked to detect at least one perceptually dominant
orientation chosen by the human subjects then the success rate rises to 95 out of
it

These numbers are significant, considering that: (1) The comparisons were
made on a large and diverse set of data—111 different images as opposed to the
typical small set of under twenty images. (2) The textures were all ‘natural’; hence
many were inhamaceneans and cantained comnlex harderline ‘non-textural’

¥ Test90

o

Figure 13. ‘Difficult’
orientations. Here the humans picked m

Co: level2 (0.0001), leveld

(0.0452)
Speculation: filters

Humans: 1
Computer: 0

H6 = 25° (0.28)
Cé: level2 (0.0460)
Speculation: filters

images where the computer

Test88

Test92

Speculation: grouping

Humans: 1
Computer: 0

Ho = 85° (0.27)

C#o: level2 (0.0129)
Speculation: contrast

and human did not agree on any of the dominant
ations than the computer.
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Humans: 0

Computer: 1

Ch = 83°, level=0 (0.0108)
H#: no match
Speculation: contrast

Humans: 0

Computer: 1

Co = 77°, level=3 (1.5094)
Hé: (0.10)

Speculation: contrast

Humans: 0
Computer: 1

Humans: 0

Computer: 1

Co = —45°, level=0 (9.6)

Hé: no match

Missing information in corner

Hé: (0.02)
Speculation: contrast

Humans: 0

Computer: 1

Ch = 11°, level=0 (0.0156)
H6: (0.09)

Speculation: contrast

Humans: 0

Computer: 1

Co = —83°, level=2 (0.2003)
Hé: (0.09)

Speculation: contrast

'
Y

Test107 Test108

Figure 14. More “difficult’ images where the computer and human did not agree on any of the
Jominant erientations. Here the computer picked more orientations than the humans.

patterns. These are much harder than synthetic textures which tend to be
homogeneous. (3) The semantic meaning of the textures was not removed (for
example by filtering), and yet it did not seem to cause much interference.

Rigorous conclusions are hard to make in an empirical study like this.
Nonetheless, there are three conclusions that this study suggests: (1) Since the
proposed computational algorithm performed closer to the humans when differ-
ent thresholds were used at each scale, this suggests that maybe the human eye
requires more ‘saliency’ from orientations at coarser levels before they are
perceived to be dominant. (2) The semantic meaning of the textures in the
Brodatz album does not interfere significantly with the ‘low-level” processing in
the proposed orientation detection algorithm. (3) Four levels of steerable pyramid
with the proposed histogram analysis, and nonlinear contrast compensation and
decision making, provide a reasonable first approximation to the human
perception of detecting dominant orientations in natural textures.

The first conclusion could be tested by a follow-up study where the humans
identify orientations at the various pyramid scales. Regarding the second
conclusion, it is widely assumed that higher-level cognitive models influence low-
level vision, but the size and nature of this influence is unknown. It is not far-
fetched to consider ‘dominant orientation’ as a type of high-level description since
non-vision researchers understand it with minimal explanation. Subsequently, the
success of the reported low-level algorithm in matching the human’s high-level
orientation perception indicates that the semantic information recognizable in the
patterns (e.o. this is lizard skin’) did not sienificantlv influence low-level orienta-

Co = —53°, level=0 (0.0107)
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tion analysis. Only in a few cases (Section 5.7) did these influcnces play a suspect
role in the failure of the steerable pyramid algorithm.

There is still room for improvement. Several areas for continuing research have
been discussed, all in the context of a large optimization problem. An open
question is ‘how universal are the current thresholds—will they work on a still
larger and more diverse set of real data’? There are fundamental constants in
fields like physics; are there fundamental ones at work in visual perception? And
finally, when a general orientation detector is found, one that works in a similar
way to human orientation perception, how much of machine perception can be
built upon it?
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NOTES

1. D45 was missing from the tape of digitized images we received.

2. For all the histograms shown in this paper, the angles along the horizontal axis are the angles at
which the filters detect orientation changes. Thus the angles are all 90 deg from the actual structure
seen at the orientation. For example, a vertical line would produce a strong peak in Hat 0 deg.

3. The analysis of the synthetic teaser images will appear in a future report.

4. Since the reproduced images in this document are smaller and of poorer quality than those
displayed to the human subjects during the test, not all the orientations clearly seen on the monitor
can be clearly seen in the figures. The original images as well as data collected during this study are
available for those interested in verifying our results.
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"To find the main orientation in a local neighborhood, an oriented energy E(8) is calculated for image
I at cach level of the pyramid where E (6) is defined as:

E0) = (fP*D? + (R ¥ 1), (A1)

“where f?is the directional filter for the steerable pyramid and A?is its approximate Hilbert transform.
Since f® and h® can be expressed as a linear combination of their basis functions, E(6) can be

expressed in the following way:

[

3 4
E(9) M \f@g *1}*+ M k,(8)h, x 1)
=0

n=10

3 4 .
L kq@fix )P+ | L knl®h*1)% (A2)

=0 n=0

where k;, 0 < 1< 3 are the interpolation functions to steer f,, the basis filters for f, and k,;, 0 £ n <

4 are the interpotation functions to steer h,, the basis filters for h. As can be seen in Eqn (A2) to
calculate E(6), image I at each level of the pyramid just has to be convolved with the basis filters for f
and k and the interpolation functions for a particular 8 can be used to give the oriented energy.

The dominant orientation 6, can be found by maximizing £(8). The solution for 6 was found by

Freeman and Adelson (1991) to be:

arg(C;, Cy) (A3)
5 s

0, =

where C, and C, are combinations of the basis filter outputs for fand 4. The strength of the orienta-

tion estimation S is defined as:

s=JCi+ 3. (A4)

The approximation stated in Eqn (A3) is exact if there is only one dominant orientation locally. The
dominant orientation measure and its strength § is measured at each pixel position (x, y). If there is
more than one dominant orientation locally, then this approximation is not correct and other methods
have to be used to find the orientations. These issues are reviewed in Gorkani (1993). Throughout
this paper the above method is used.






