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Abstract
By giving users a way to vent, we transform their frustration 
into a valuable source of information for adapting interfaces. 
Drawing from psychophysiology and tactile sensing, we pres-
ent frustration sensors as a way of incorporating user feed-
back into interface design processes. This thesis documents 
the development of designs for several sensors aimed at 
detecting user frustration with computers. Additionally the 
thesis explores the design space between active sensors that 
facilitate the communication of frustration and passive sen-
sors that detect frustration without demanding the user’s 
attention. During evaluations we learned several things:

• Participants liked having devices to communicate 
frustration.

• The data that was collected during active and passive 
user interactions can be used for redesigning and 
adapting systems (either by hand, or automatically).

• User behaved differently during usability problems. 
In a comparative study of three active designs (Frustrometer, 
Squeezemouse, and traditional feedback web page) we found 
that users prefer the Frustrometer to a web feedback page. 
Preliminary results suggest that frustration-stimulated behav-
ior can also be detected through passive sensors. When 
combined with other contextual information, these sensors 
provide a crucial building block in systems that interact and 
adapt to human behavior by indicating where and when 
change is needed.
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1 Introduction

You sit in front of your computer, absolutely livid. It is hours 
before an important deadline, and your word processor keeps 
doing all sorts of obnoxious things. When you enter in some 
new text, all of your diagrams are shifted out of place. All of the 
automatic features that usually seem pretty handy are causing 
you no small headache. And then it happens. The application 
crashes, taking your document with it. This is the straw that 
breaks the camel’s back: you start yelling. Flush with anger and 
viscerally upset you start physically whacking the keyboard of 
your system. You start moving the mouse in an angry manner, 
as if it were not an inanimate object, but some appendage of 
a very problematic and naughty animal. Then you sit back and 
fume.

A sympathetic friend sees your expression and inquires, 
“What’s wrong?”

“Just the usual,” You say sardonically. “Everything is fouled up 
and I don’t have time to alter all the bleeding settings so that 
this thing behaves properly.” The passerby nods knowingly and 
feels bad, wishing that there was something that could be done 
for you.

Imagine instead that the computer you are using is as sensi-
tive, and emotionally intelligent as your friend. What would 
interaction be like if a computer had the capacity to detect and 
respond intelligently to your expressions of frustration? 

Figure 1. Displeased users 
sometimes physically vent 
frustration with computers.
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1.1 Long Term Scenario - Improvisation
You are amused; the computer has finally gotten it. After a few 
nasty utterances of dissatisfaction with a user interface annoy-
ance, the system has rooted out the problem and replaced it. 
As you sit in front of two screens, the system has improvised 
a new interface configuration on the mirror image of your cur-
rent workspace. You shift your attention to the new improvised 
‘ping’ to your ‘pong.’ 

Like an attentive and well-trained dog, your computer notices 
the satisfied sound of your voice and tracking your admiring 
gaze, elects to reinforce the improvised behavior. After a hon-
eymoon phase with the new designed behavior has passed, the 
system incorporates the new design. Your computer captures 
the now unused workspace you previously attended to as a new 
canvas for improvisation. Random walks, various mutations of 
your current settings are displayed.

Like a complex diploid creature, an enormous space of differ-
ent possible behaviors is encoded in each of the workspaces. 
The system stochastically explores new possibilities by looking 
at what you have liked and disliked in the past. When a particu-
larly good candidate comes along, it’s applied to your unused 
screen to see how you respond. And in this way you gradually 
tailor a previously one-size-fits-all interface to your own likes 
and dislikes.  

1.2 Short Term Scenario - Usability Tool
You are not amused. Every time you use this particular feature 
you experience a good dose of aggravation. You aren’t alone 
in your distaste either. A histogram hosted at the open-source 
project’s development site shows that many other people have 
griped about this software’s implementation. 

A week later, you are content. Developers associated with the 
project made note of the spike on the histogram showing user 
dissatisfaction with the feature. Several on-line volunteers, fear-
ing for their reputation as designers scramble to implement a 
better user-interface. The resulting patch, which you download 
and install, fixes the most menacing problems. Soon thereafter 
the developers on the project are happy to note that the spike 

Figure 2. Pleasing users should 
be part of the design of 
computer interfaces.



13

of frustration has receded, and focus their attention on the cre-
ation of other new and soon to be evaluated features.

1.3 Motivation
For all the leaps and bounds computer science has made in the 
last few years, computers are still extremely clumsy and inele-
gant machines. To add insult to injury an increasingly comput-
erized workplace and society necessitate interacting with com-
puters on a very frequent basis. Usability engineers have tried 
to remedy many of the shortcoming and inelegant flaws that 
cause aggravation and irritation. But current usability practices 
seem unable to keep pace with the rapid pace of computeriza-
tion. Traditional usability also seems poorly equipped to handle 
problems that stem from generic one-size fits all software.

Right now there is a large cost (in terms of time) associated 
with expressing feedback about shortcomings in a computer 
system. Typically, the only outlet available is to submit a com-
ment on a software company’s website. Before we can dras-
tically improve computer interfaces, we must know what’s 
wrong with them. But before we can do that, we need to make 
it easier for people to express their likes and dislikes. This 
thesis looks into interfaces and sensors that allow people to 
easily express their likes and dislikes about computer systems.

Once people are given tools to easily express what they dislike 
(or like) about their computer, all sorts of interesting possibili-
ties emerge. With good data about the user’s preferences, sys-
tems can begin to adapt the user interface to better fit.

Of course adaptation is no small matter. Consistency is held up 
to be one of the golden maxims of user interface design. Adap-
tation in many ways runs directly in the face of it. A system 
that constantly changes its behavior will be infinitely flexible, 
but infinitely irritating as well. Unfortunately the converse is 
equally disastrous. We have all experienced systems that are 
difficult or impossible to alter and often place the burden for 
change on the user. Given two extremes, amorphous inconsis-
tency on one side, and stagnant uniform-like inflexibility on 
the other, what middle ground are we left to stand on?  

Figure 3. OpinionLab’s interfaces 
visualize user satisfaction.

Figure 4. Consistent, but generic 
interfaces, may not allow 
enough flexibility to ease 
frustrations.
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The space is clearly staked out when we think about the set 
of circumstances when people would not only accept, but also 
desire a change of behavior. In some sense, we are already 
equipped with tools for training other creatures how we like 
to work. When we grow frustrated or angry at a pet, child, or 
friend we are often trying to get them to alter their behavior. 
More specifically, to feel ‘bad’ about something they’ve done, 
and to sincerely try to avoid doing it again.

Likewise, we can say that when someone is frustrated with 
their computer, they are interested in changing its behavior to 
help them achieve the user’s ends instead of thwarting them. 
So if we can reliably detect and measure frustration, then we 
also have good indicators about where, when, and why we 
should adapt. 

1.4 Theory
1.4.1 What is Frustration?
When early psychological experimenters began to do behavior-
ist studies, they began to more rigorously define the notion of 
frustration. Psychologists came to see frustration as the neg-
ative feelings that arise when attempts to achieve a goal are 
thwarted.

1.4.1.1 Frustration’s Distinction from Stress
We may be tempted to lump frustration in with the notion of 
stress. The two are often used interchangeably. However there 
is an important distinction to be struck between the two. Stress 
arising from heavy mental, physical, or emotional workloads 
does not necessarily coincide with frustration.

Briefly, someone may be stressed without being frustrated. 
Conversely, someone may be frustrated, but not mentally or 
physically stressed. 

1.4.1.2 Frustration’s Expression
Frustration can be expressed in many ways. We may commu-
nicate frustration to others through our posture, facial expres-
sion, or tone of voice. Our autonomic nervous system may 
respond to frustration by increasing skin conductivity, decreas-
ing heart rate variability, or tensing muscles. Cognitively, we 

Reeves and Nass argued 
in The Media Equation that 
we form social relationships 
with mediating technologies 
like computers. [1996].
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may verbalize or alter our behavior in response to frustration. 
In this thesis we explore sensors for detecting physiological 
changes (like skin conductivity or muscle tension) and behav-
ioral changes (like verbal expressing or physically venting frus-
tration).

1.4.2 What are Sensors?
If we are about to set about designing sensors, we may first 
want to ask ourselves precisely what entails the notion of a 
sensor. A sensor is a device that measures some observable 
physical quantity. 

Sensors are often transducers meaning that they convert a 
physically measurable quantity (like temperature, or pressure) 
into an alternative signal. A microphone, we could say, trans-
duces changes in pressure (vibrations) to a change in electrical 
signal.

1.4.2.1 Active vs. Passive Sensors
What is curious is that sensors are often used as interfaces. A 
mouse, the most common pointed device used with comput-
ers, is actually a two-dimensional motion sensor. But it is used 
as a way to manipulate information on computers.

When a user is actively aware of a sensor and interacts with it 
in a way that requires some of their attention, it becomes an 
“active” sensor, something with which people interact. When a 
user is not consciously aware of a transducer, it is more “pas-
sive” meaning that it performs more traditionally as a sensor 
that monitors, without requiring the attention of the user. Gen-
erally, the more active the sensor, the more mental or physical 
effort the user has to apply to use it. Passive sensors require 
less effort on the part of the user and may be used while the 
user is engaged in another task.

Much of the work presented later lies in the surprisingly abun-
dant space between passive and active sensors. Following the 
experience of designing and evaluating several devices that 
are hybrid sensor-interfaces, we are able to say some concrete 
things about design trade-offs in this space.
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1.5 Affective Interaction
Our communication with computers is impoverished. The 
command line interface lets us say what we want the computer 
to do. However, there are very few interaction styles that let me 
express how I like what the computer did. If I am frustrated 
by a friend’s behavior, more often than not, they can read my 
expression and alter their behavior, even before I consciously 
say “Could you not do that, I find it annoying.” But even the 
‘smartest’ adaptive interfaces do not even begin to offer this 
sort of emotional intelligence. 

1.5.1 I’m Going to Teach You a Lesson!
In some sense, we already have developed behavioral sema-
phores that we use to teach each other how to interact. When 
I am pleased with what a friend has done, I will smile and 
convey my happiness with them. When I am angry about what 
my dog has done, I may scold the dog, say “Bad Dog” loudly. 
A child learning is filled with a world of good and bad expres-
sions. These expressions are gradually learned, and favorable 
behavior is gradually reinforced, while distasteful behavior is 
gradually learned to be avoided. However, when we look at 
most adaptive interfaces today, I cannot easily train them to 
avoid behavior that I dislike and to adopt behavior that I find 
pleasing. Passive or active sensors that can help communicate 
my affect may allow for a more interesting sort of interaction.

1.6 Contributions of the Thesis
First and foremost, this thesis documents the design of several 
sensors developed as tools for the exploration of communica-
tion of user feedback related to frustration. The document also 
seeks to provide information about the interplay between sen-
sors on one hand, and interfaces on the other. Lastly, this thesis 
seeks to show that unobtrusive sensors can be used to distin-
guish between frustrated behavior and its converse.

1.7 Roadmap

The next chapter concerns itself with documenting previous 
and ongoing related work (chapter 2). Following this is a pre-
sentation of the design process of various sensors and inter-
faces for the expression of frustration (chapter 3). A series of 
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studies which evaluate these devices and interfaces is included 
immediately afterwards (chapter 4). The conclusions of data 
analysis can also be found in this chapter. Lastly, various appli-
cations and future work concerning sensors that can detect 
frustration are outlined (chapter 5).
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2 Related Work

The path to make user interfaces more adaptive and in step 
with more natural modes of human interaction is a long and 
twisting one. Many sub-fields and notions must be borrowed 
from in order to make meaningful progress. 

2.1 Psychophysiology

Human factors engineers have long concerned themselves 
with the quantification of the physiological and psychological 
effects of different machinery. Psychophysiology seeks to find 
biological signals or behavior that are linked to stress (among 
other states). Lie detector tests, and an extensive amount of 
work on workplace satisfaction are rooted in the inquiries of 
psychophysiology.

Previously, engineers had used different physiological mea-
sures of strain to assess designs [Backs and Boucsein, 1999]. 
But more recently, Picard suggested that “frustration could be 
measured, quantified, and incorporated into the evaluation of 
new products” [Picard, 1997]. The sensing of affect, or emo-
tional expression, provides a mechanism for triggering adap-
tation. Affect sensing focuses on the measurement of signals 
related to the expression of frustration, and emotion in gen-
eral.

Work in the affective computing group and elsewhere has 
shown that different affective states can begin to be distin-
guished by computers. For instance, a 24-subject experiment 
was run and galvanic skin response, blood-volume pressure, 
and mouse-click behavior were recorded from test subjects 
who were intentionally frustrated. The resulting data set could 
be recognized by a classification program with 67.4% accuracy 
[Scheirer et al., 2001].

Another approach that does not use biosignals, but instead 
builds upon computer vision, is the classification of facial 
expression using Paul Ekman’s Facial Action Coding System 
[1978]. Work done at Carnegie-Mellon University’s Affect Anal-
ysis group was able to correctly classify different facial expres-
sions with accuracy rates greater than 90% [Tian et al., 2001].

Figure 5. Face classified by 
CMU’s Automated Facial 
Expression Analysis system.
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The obvious next question is that if we can begin to detect 
affective states—like frustration—with the aid of electrodes 
and cameras pointed at the user’s face, can we do the same 
with less obtrusive sensing technologies? For instance can we 
determine someone’s stance toward a computer by examining 
touch patterns?

2.2 Tactile Sensing in Robotics

Robotics offers us not really an answer to this question, but 
some implements with which to explore it. The field of tactile 
sensing in robotics concerns itself with making mechanical 
and electrical transducers for touch. If truly embodied robots 
are to be realized, clearly they need to be able to grasp and 
touch. But they may also need to carefully run their fingers 
over, or maybe even caress.

Starting with the simplest sort of information, a single bit 
(touching / not touching), sensors have gradually expanded 
the range and resolution of the touch that can be transduced.  
A one-bit touch sensor has become a simple matter to pro-
duce. We can use mechanical switches, a photodiode, and elec-
trodes (for conductive surfaces). For instance, older supermar-
kets made use of one-bit touch sensors to open doors. Many 
robots have used antenna-like feelers to avoid repeatedly bump-
ing into things.

One-dimensional sensors provide a degree of information 
instead of a single bit. Various force sensitive resistors and 
capacitive sensors have been used widely in this capacity: not 
simply to determine if something is touching or not touching 
but also to determine how hard something is touching.

Crowder provides an excellent survey of different tactile sen-
sors that have been used in automation and robotics [1998]. 
He taxonomizes tactile sensing by dividing it into touch, spa-
tial-tactile, and slip sensing. He also enumerates different tech-
niques that can be used to build touch sensors:

Figure 6. The MIT Artificial 
Intelligence Lab’s Genghis robot 
uses antennas as tactile sensors.

Figure 7. The Harvard Tactile 
Sensing Project’s tactile fingers 
make use of video flow analysis 
to sense touch.
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 o  Mechanical

  • Load

  • Pressure

 o  Electrical Measurement

  • Resistive

  • Capacitive

  • Magnetic

 o  Optical Measurement

  • Photoelastic

  • Fiber optic

Most recently, researchers have been working to develop 
deformable arrays of tactile sensors to coat surfaces. Nicolson 
and Fearing have developed non-conformable planar and cylin-
drical tactile sensors that are a strong step in this direction 
[2001]. Perhaps the best example so far of a conformable sensor 
is Pressure Profile Systems’ 8x8 conformable array.

2.3 Tangible User Interfaces

Closely related to this endeavor is the exploration of haptic 
interfaces to computation and the work of the Tangible Media 
group at the MIT Media Lab. The group’s early work envi-
sioned giving users the ability “to ‘grasp & manipulate’ bits 
. . . by coupling the bits with everyday physical objects and 
architectural surfaces”[ Ishii and Ullmer, 1997].  The Tangible 
Media Group’s Phicons are a concatenation of “Physical” and 
“Icons” meaning graspable representations for software bits. 
This idea was developed into the notion of a feedback device 
for affect by Matt Norwood’s “thumbs-up” and “thumbs-down” 
interface for Mr. Java, an enhanced coffee machine [2000].

2.4 Devices

Communicating expression is actually a very old pursuit in 
many senses. Almost every musical instrument could be said 
to perform in this capacity. Instruments act as a translator 
between physical manipulations and the communication of 
some sound, which often conveys some mood. Very recently, 
people begun to think of these physical manipulations as some-
thing that could be quantified and distinguished between.
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2.4.1 Sentograph
Manfred Clynes built an artifact for expressing emotion, 
inspired by the breadth of expression distinguishable in mas-
sage via touch [1977].

His sentograph allowed a user’s touch to be measured and 
visualized along a two-dimensional space. By categorizing the 
resulting shapes, Clynes was able to distinguish between eight 
fundamental classes of tactile emotion expression: anger, hate, 
grief, joy, love, romantic love, reverence, no emotion. Clynes 
found that common expression of these shapes exists across 
cultures.

2.4.2 Sheriden’s Instrumented Classrooms

Another early attempt of communicating expression through 
the use of artifacts had quite a different end-goal. Twenty-five 
years ago, Sheridan discussed instrumentation of various 
public speaking locations (classrooms, council meetings, etc..) 
with switches so that the audience could respond and direct dis-
cussion by voting [1975]. If a particular topic was of interest to 
the majority of the audience, they could flip physical switches 
to express this preference.

2.4.3 Touch Phone

Jocelyn Scheirer’s touch phone is another instance of a tan-
gible interface for expressing emotion [Scheirer and Picard 
2000]. It converts grip strength sensed on a conductive foam 
surface into a colored representation on a computer. It is used 
to communicate expressive pressure changes to other people 
(as opposed to the computer itself).

2.4.4 Many Mice

Several different people have stumbled on the idea of using 
the mouse as medium for sensing affect related to computers. 
Various approaches have been tried, from examining mouse 
movement behavior [see Mueller and Lockerd, 2001] to embed-
ding electrodes onto a mouse. Each of the following mice rep-
resents a tangible interface that can be used to collect informa-
tion about the user’s affect.

Figure 8. The Clynes Sentograph.
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2.4.4.1 Sentic Mouse 
Kirsch developed a mouse modeled after Manfred Clynes’ sen-
tograph [1997]. The mouse made use of a force-resistor to 
sense directional input. Kirsch used this mouse as part of study 
in which participants were shown imagery from Lang’s Inter-
national Picture Affective System.

2.4.4.2 Touch Mouse
Borrowing aspects of the Touch Phone design, Norwood imple-
mented a mouse that could detect how hard someone was 
squeezing around a line of conductive foam. Using a data 
acquisition board, this signal was passed into a computer and 
visualized using a color swatch in a similar manner to the 
Touch Phone.

2.4.4.3 Squeekee
Squeekee is a mouse that detects how hard users have clicked 
its buttons. A commercial product, it seems to be targeted at 
games, but its inventors are also interested in other innovative 
HCI applications. Although it is not used explicitly to detect 
affect, it provides a dimension of information about clicking; it 
seems a likely candidate device that could be used to detect the 
expression of frustration.

2.4.4.4 MS Touch Mouse 
Microsoft’s Ken Hinckley developed a touch sensitive mouse 
that relayed information back to the user’s interface [1999]. 
The mouse only conveyed a single bit of information: whether 
the user was touching the mouse or not. This bit in turn 
was used to determine whether application toolbars should be 
made available. It is perhaps one of the simplest, but better 
realized examples of a perceptual user interface.

Figure 9. Kirsch’s Sentic Mouse.

Figure 10. Squeekee detects how 
hard users click.

Figure 11. The MS Touch mouse 
makes application toolbars 
visible when touch is detected.
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2.4.4.5 IBM Emotion Mouse 
A comparatively elaborate approach is being pursued by 
researchers at IBM. The emotion mouse developed in their 
lab is used to gather temperature, galvanic skin response, and 
somatic movement from computer users. Coupled with heart 
rate information that is acquired from a separate chest-strap 
sensor, researchers used the mouse to distinguish between six 
different emotions: anger, fear, sadness, disgust, happiness, 
and surprise. Preliminary results suggest that they were able to 
achieve 66% recognition accuracy rates using this device [Ark 
et al., 1999].

2.5 Software

 Usability researchers have also pursued the idea of using soft-
ware interfaces to communicate affective information about 
computers. The simplest manifestation of this idea is the nearly 
ubiquitous feedback web page. As crude as comment textboxes 
are, they are an important step towards facilitating the com-
munication of frustration. In some sense they convey parts of 
the usability lab or marketing department directly into the use 
environment. This idea is developed more fully by the notion 
of remote evaluation.

2.5.1 Remote Evaluation 
Remote evaluation, put simply, is using communication sys-
tems to collect usability information over a distance. Castillo 
et al. introduced the notion of remote evaluation through the 
use of critical incident reporting tools [1997]. More specifi-
cally, Hartson et al. suggest that remote tools can be especially 
useful when supporting “formative evaluation” after software 
has been released [1996]. But Castillo et al. also note that 
remote usability can be used during product development and 
as part of customer support. They suggest a myriad of differ-
ent methods from the more mundane questionnaire submit-
ted remotely up to video-conferencing and screen sharing soft-
ware in support of evaluation.

Figure 12. The IBM Emotion 
mouse collects temperature, 
galvanic skin response, and 
somatic movement.
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Harston et al. performed a feasibility case study that “deter-
mined that user-reported critical incident method was a fea-
sible method” for collecting usability data [1998]. Elsewhere 
they conclude that semi-instrumented remote evaluation tools 
could “provide approximately the same amount and value of 
qualitative data” as what would be obtained through more tra-
ditional usability laboratory based methods.

2.5.2 Interface Instrumentation
Interface instrumentation is the recording of interface usage 
data for analysis. Various research and commercial systems 
have been developed to explore the idea of instrumenting 
interfaces. For instance WinWhatWhere™ provides software 
for monitoring activity on remote systems [2000]. Reportedly, 
researchers at IBM have also developed live-motion screen cap-
ture software called UCDCam, based on Lotus ScreenCam™ 
[1998].

Swallow et al. argue that “thousands of users could be using 
instrumented applications”[1997]. They also note that auto-
matically recorded information can be used to detect usability 
problems. They developed a set of problem indicators such as 
the invocation of on-line help, or triggering of an error mes-
sage that can be monitored.

2.5.2.1 OpinionLab
One of the most developed and commercial successful remote 
evaluation tools is a small widget that is embedded in compa-
ny’s web pages. OpinionLab’s animated [+/-] icon serves as a 
remote evaluation tools so that web site designers can focus 
their efforts on the more problematic parts of their website.

Figure 13. OpinionLab’s remote 
evaluation interface.
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3 Sensor Design

This chapter details the design process that was used to build 
upon the work documented in the related work chapter. It 
begins by explicating a participatory design process that influ-
enced many of the later design decisions. Descriptions of the 
very first (but somewhat crude) prototypes that were developed 
follow. The remaining bulk of the chapter details iterative revi-
sion of these early prototypes into more developed and mature 
designs.

Figure 14: The chart above 
details the development of the 
different sensors explicated in 
this chapter. The successive 
levels of depth represent the 
number of iterations. A large 
breadth of sensors populates 
the space spanned by the 
notions of passive and active 
user interaction. The ecology 
of sensors was gradually culled 
down into the promising and 
more-fully realized prototypes.

3.1 Preliminary Investigations - Ethnography

This thesis’ design process was motivated by an effort to under-
stand how people might go about using adaptive systems. So 
the work of sensor design actually began as an contextual 
inquiry into how people might use adaptive systems.

Two driving questions were: How should people initiate and 
use adaptation? And how should adaptive systems that respond 
to frustration be represented? Much of the work that is pre-
sented further on is based on the findings of this inquiry.
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A small pilot inquiry was performed to try to work through 
many of the theoretical and practical issues surrounding the 
powerful but nebulous notion of adaptation. Borrowing Holtz-
blatt and Beyer’s concept of participatory and contextual design 
[1997], I chose to form a small group of two representative 
users with whom I could perform critical design reviews in 
which my collaborators would role-play scenarios with low-
fidelity paper mock-ups.

3.1.1 Investigation Methods
During each iteration I would present a “thesis” about how 
they might use adaptation in the form of a paper mock-up. 
My collaborators were encouraged to redesign the interface to 
better suit their needs. This was considered the “anti-thesis”. 
Then, we would form (and cognitively walk through) a “synthe-
sis” which took the best attributes of the prototype and their 
response to it. This synthesis then served as the blueprint for 
the next low-fidelity mock-up that I created offline and was 
used as the “thesis” for the next interview. So the forming 
of the interface was an iterative, dialectical process of sorts. 
Think-aloud protocol, in combination with narrative storylines, 
was used to try to tease out the collaborators’ opinions about 
particular interface metaphors and task structures. 

3.1.2.1   Thesis 1: Accessible
Starting from Holtzblatt and Beyer’s suggestion to “invent 
solutions grounded in user work practice” I began by thinking 
of ways to integrate adaptive capabilities into existing interface 
paradigms. After casually observing users, I noted that users 
typically searched menus looking for alternatives when they 
reached some sort of usability stumbling block that caused 
frustration. Based on this anecdotal evidence, I developed my 
first thesis about how adaptation ought to be integrated into the 
user’s interface: it should be accessible.

More specifically, I decided that adaptive features should be as 
available as help menus, or perhaps should be considered part 
of help. Accordingly, I developed prototype mock-ups using 
Microsoft Visual J++: 
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I then printed screen shots of the menus and mock-ups for use 
during my interviews. I encouraged participants to annotate 
these mock-ups and alter them in any ways they found useful. 
My collaborators made similar observations about this thesis:

• “Edit” seems to be the intuitive place to find tools to 
adapt the interface 

• If adaptation would not be limited to just one appli-
cation, then the tailoring tool should not be part of 
the program, but part of something “above” it like the 
operating system.  

• The tool should not just be accessible but visible 
• This prototype helps users who know what they want to 

get rid of; the interface should be more intelligent.
Using this mock-up as a springboard, the participants and 
I collaboratively developed a new storyboard for how action 
might go. This storyboard was the synthesis of the original pro-
totype and their criticisms.
3.1.2.2 Thesis 2: Intelligent

I also developed several alternative menus for the prototypes:

Figure 15: AdaptNote mock-up, 
with Adapt menu.

Figure 16: Various menu 
configurations for AdaptNote 
mock-up.

Figure 17: Dialog invoked by 
AdaptNote menus.
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The consensus seemed to be that the menus did not provide 
an adequate interface for adaptive features. Furthermore, the 
task analysis that I originally performed seemed inadequate. 
Consequently, a new interface and task structure was designed 
for my second round of interviews.

 The second iteration focused on a method to intelligently help 
users of the system by suggesting alternatives. Since novice 
users seem to have a hard time locating features I reasoned 
that it would be better if the system could interrupt the user 
when they were sufficient frustrated and present an alternative.  
The second prototype consisted of a tailoring avatar and accom-
panying “wizard”.

My collaborators responded very negatively to this mock-up of 
the interface. Their previous bad associations with Microsoft’s 
Office Assistants ruled out the use of an avatar altogether. They 
felt that the avatar assumed a certain amount of childishness 
and lack of intelligence in users, which made them feel uncom-
fortable. Furthermore, they disliked the idea of a program con-
tinuously interrupting them. They preferred to be in control.

Clearly, this was not the vision of adaptive intelligence they 
were after. The whole experience was beautifully summed up 
by one participant:  “There is a fine line between knowing 
you and trying to think for you!” Accordingly, my co-designers 
asked me to look for other ways of monitoring and responding 
to frustration that were not so obnoxious.

3.1.2.3     Thesis 3: Perceptual
At this point I was somewhat at a loss as to how to move ahead. 
Fortunately for me, a talk by Mathew Turk on perceptual com-
puting provided me with some direction. I decided to redefine 
the task structure to include: continuous monitoring of frus-
tration, intelligent suggestion of alternatives, and assisting in 
applying an alternative.  From this I developed a somewhat 
unorthodox perceptual interface to help the computer monitor 
user frustration:

In my third round of interviews my collaborators found this 

Figure 18: Office Assistant 
interface mock-up.
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model to be much better than the previous iteration. They did 
have some misgivings though, they had strong objections to 
the computer interrupting and suggesting alternatives, even if 
the interruption was in the form of dialogs instead of avatars; 
they wanted the interface to be less obtrusive. They also sug-
gested that it would be beneficial if the system allowed them 
to experiment with and “undo” the various alternative compo-
nents.

3.1.2.4 Thesis 4: Transparent
I synthesized the notes from my last interviews into one final 
thesis. It seems that the adaptive interface should follow a task 
structure that includes:

· Transparent monitoring of frustration
· User to control and initiate adaptation
· Intelligently assist user in finding alternatives 
· Help user apply and undo various components

Of course, due to the extremely small number of participatory 
designers, these initial observations needed to be confirmed by 
building and evaluating more prototypes.

3.2 Early Prototypes

Starting from this initial inquiry, I began to focus my attention 
on building actual prototypes that facilitated the communica-
tion of frustration. The more promising of these were gradu-
ally refined into more elaborate and higher-fidelity prototypes.

3.2.1 AffQuake 
One early notion of how a software interface might sense affect 
was AffQuake. As an application for the Galvactivator glove, 
AffQuake transduced galvanic skin responses and caused ava-
tars within the game to respond to this signal [Picard and 

Figure 19: Conceptual imagery 
of perceptual interfaces for 
adaptive system.
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Scheirer, 2001].

In AffQuake, if the player became startled, (their skin con-
ductivity sharply peaked) then their avatar within the game 
would also reflect the state of being startled by jumping back. 
A more elaborate version involved changing the size of charac-
ters within the game in relation to the level of arousal detected. 
The more excited a player got, the more their GSR signal would 
rise. The resultant signal was passed into quake causing the 
player’s avatar to be scaled correspondingly.

AffQuake let me investigate one possible way in which some-
one’s affect would alter interaction. I found that skin conduc-
tivity is convenient, because it can be acquired from the user’s 
hand. However I also found this inconvenient because users 
had to plug in a cable, which sometimes interfered with typing. 
Furthermore, I observed that skin conductivity changes at a 
relatively slow rate, and lags slightly behind the inducing psy-
chological stimulus. Consequently, real-time interaction that 
makes use of skin conductivity seems to be slow and unrespon-
sive to end-users. 

Figure 20: AffQuake sized 
avatars in response to skin 
conductivity.

Figure 21: Jocelyn Scheirer’s 
galvactivator communicates skin 
conductivity through a LED and 
a jack which analog data can be 
acquired through.
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3.2.2 iRX A/D Hack
AffQuake required a data acquisition board. Most off-the-shelf 
PCI acquisition boards were expensive, and can only be 
installed in one computer. A much simpler sensing board that 
cost less and could be easily attached to computers was needed. 
After some inquiry, I was able to combine the work of the iRX 
project and the sensing technology used as part of the smart 
shoe project. More specifically, I altered the iRX board to use 
a PIC16C711, microcontroller, which incorporates an analog to 
digital converter.

3.2.3 Beanbag
Another early, and promising way in which people can com-
municate their frustration to the computer was through the 
use of a beanbag interface. In an effort to construct a tangible 
interface that people could physically manipulate we disas-
sembled a mouse and placed its parts inside a beanbag. As 
the beanbag was squeezed or struck, the beans inside rolled 
against the mouse’s wheels causing data to be sent. It was—in 
some sense—a one-bit touch sensor, able to determine if the 
beanbag was jostled.

The beanbag was tied in with simple monitoring which was 
able to relay squeeze messages to open applications. A simple 
version of Word was created which shut off the Paperclip office 
assistant when its proxy, the beanbag, was struck.

3.2.4 First Mouse
At the same time, I wanted to explore more traditional inter-
faces that could be augmented to transmit information about 
the user’s affect to the computer. After examining Matt Nor-
wood’s Mouse (See section 2.4.5) I undertook the building of 
a squeeze sensitive mouse. One of the shortcomings of Nor-
wood’s mouse design was that it responded differently depend-
ing on where the user squeezed the mouse. I settled on a sim-
plification that made only a single location on the mouse sensi-
tive. 

The sensor consisted of metal plates separated by conductive 
foam. As the plates were squeezed together by the user’s tight-
ening grip, the conductivity between the two plates increased. 

Figure 22: Beanbag touch 
sensor.



34

The difficulty experienced with this design was that it was hard 
for the user to control. Its response was not easily predictable 
from the user’s perspective. In addition, the dynamic range of 
the sensor was limited.

3.3 First Revisions

These crude prototypes gave us some devices with which we 
could think critically about sensor design. Although these first 
versions had their limitations, they served as a stepping-stone 
to more complex designs.

3.3.1 Single Force Sensitive Resistor
In order to get a more uniform response, we turned our atten-
tion to sensors that transduce force. Interlink Electronic’s force-
sensitive resistors (FSRs) had previously been used in the cre-
ation of electronic musical instruments. Force sensitive resis-
tors consist of a printed electrode pattern positioned over a con-
ductive polymer

We used the force sensitive resistor as a variable resistor in 
a circuit that we added to the iRX analog to digital converter. 
The FSR forms the top half of a voltage divider, which changes 
the amount of voltage passed to the ADC as the user squeezes 
harder. This design was beneficial because it was easy for 
the user to locate and use the pressure sensitive spot, and 
the response of the resistor to pressure was very predictable. 
What’s more, the design was simple to construct and facilitated 
rapidly prototyping different designs. We were later able to 
build and compare many different arrangements for the FSR, 
like under the user’s palm, closer to the heel of the hand, and 
beneath the user’s thumb. (See section 3.4.3)

3.3.2 Strip Chart Interface
We decided to provide feedback to the user about pressing on 
the mouse. Inspired by logging oscilloscopes we set about to 
visualize the mouse input as a plot on a strip chart graph. This 
was beneficial, because it allowed for users to see a short his-
tory of their input using the mouse. We added a threshold line 
so that users can see when they are squeezing very hard.

Figure 23: Force Sensitive 
Resistor.

Figure 24: FSR block diagram.

Figure 25: Strip Chart Interface.



35

3.3.3 Yelling Detector
After starting with touch, I became interested in other modali-
ties that people might use to express frustration. One idea was 
to build a simple yelling detector. Using a PC microphone I 
built an interface that detected the amplitude of a sound sam-
pled from the microphone. Sounds over a certain amplitude 
were assumed to represent yelling.

3.3.4 Thumbs-Up / Thumbs-Down 
Each of the interfaces created thus far mapped well to the 
notion of arousal, or the level of user excitation. However these 
interfaces were not good at allowing the communication of 
valence, whether the excitation is positive or negative.

To better provide for more sophisticated models for emotional 
behavior like Schlosberg’s [1953], I began to explore interfaces 
that communicate valence. I designed and built thumbs-up 
and thumbs-down icons so that the user can register pleasure 
or displeasure with different interactions.

3.3.5 Bayesian Network
As part of a conceptual demonstration, the single FSR squeeze 
mouse was coupled with the yelling detector and thumbs-up 

Figure 26: Yelling Detector 
interface.

Figure 28: Schlosberg suggested 
arousal and valence as two 
primary dimensions of emotion.

Figure 27: Thumbs-Up / Thumbs-
Down
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/ thumbs-down, to provide indicators of the users frustration 
which were passed into a network to estimate the conditional 
probability. I collaborated with Jack Breese, who used the 
Microsoft Bayesian Network Toolkit to design the network 
graph. The output of this network was broadcast to appli-
cations. One demonstration application altered the conversa-
tional behavior of the Microsoft Office Assistant when the user 
was detected to be in a frustrated state. The Bayesian network 
provides a good framework for sensor fusion, when the inputs 
of the sensors may not be completely reliable. 

3.3.6 Voodoo Doll 
The Beanbag interface (section 3.2.2) initially seemed one of 
the more promising early prototypes. People liked to play with 
it, and the interaction mapped directly to a real world meta-
phor: the use of voodoo dolls.

Figure 29: The Voodoo Doll in 
action.
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But it had several strong shortcomings. The Beanbag was a 
one-bit touch sensor; it doesn’t give any indication of the depth 
of the user’s frustration. It was also cabled to the computer, 
limiting its use. The Beanbag could not easily be thrown. 
What’s more, if the computer it was tethered to crashed then 
any sort of data collected would be lost as well.

With the help of several undergraduate researchers, but most 
notably Daryl Carlson, I set about to remedy these shortcom-
ings. We chose to use Craig Wisneski’s personal ambient dis-
play design as a jumping off point for our transmitter [1999]. 
The voodoo doll owes a strong debt to the design used by 
Wiseneski’s personal ambient displays. Craig pioneered an 
architecture for transmitting RF information between base sta-
tion and small ambient displays. Craig’s Master’s thesis envi-
sioned people interacting with abstract information through 
tangible, subtle interaction. For instance, one personal ambient 
display relayed information about the user’s stocks by grow-
ing hot when the market was up, and growing colder when the 
market was down.

Following Wisneski’s design, we chose to divide (and conquer) 
the design into two components:

•  A proxy (accelerometer and transmitter)
• A base station (receiver, microcontroller, and serial 

adapter) 
We then proceeded by choosing a physical form factor.  Archie 
McPhee’s (www.mcphee.com) sells gag voodoo dolls for people 
who are frustrated with their computer. We figured this was an 
ideal starting point, since it already evoked the idea of punish-
ing your computer.

We ordered several dolls and quickly turned to assessing differ-
ent wireless radio transmitters. After looking at several radio 
frequency (RF) modules we settled on the HP-II series trans-
mitter from Linx Technologies (www.linxtechnologies.com). 
We started with an evaluation kit that contained prototype 
boards and transmitter / receiver modules. We discovered that 
the transmitter board was much too large to fit inside the 
voodoo doll I wished to use.  This meant that we had to set 
about developing our own transmitter board.

Figure 30: The original use of 
the Voodoo Doll.
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3.3.6.1 Digital Voodoo
We began by examining prototypes of Ari Benbasat’s [check 
spelling] gesture tracking accelerometer transmitter board. 
We chose to use the ADXL210AQC, a 2-axis accelerometer 
from Analog Devices that uses a pulse-width modulation 
scheme (http://www.analog.com/industry/iMEMS/products/
ADXL210.html).

In order to use a checksum scheme, ensure line balancing, and 
avoid signal attenuation, we chose to embed a small microcon-
troller on the transmitter board. Because of our familiarity with 
the series, we selected Microchip’s PIC microcontroller family 
(http://www.microchip.com). The PIC16F84 is a small 8-bit 
core that runs at 10 Mhz and is well suited for small digital 
decoding tasks.

We then constructed a preliminary PCB design using the 
ProTel circuit design package. The design was not very com-
pact, but was still small enough to fit inside of the voodoo 
doll. This first revision worked correctly, but was large and a 
little unstable. Consequently, we made another revision. This 
second PCB was designed to be much more compact.
 
The second transmitter board consists of:

• Several capacitors for noise reduction
• An LED to indicate PIC status
• A 5-volt voltage regulator
• A 10 MHz oscillator
• A dip switch to select the transmitter frequency
• A PIC16C84 microcontroller
• A Linx transmitter module
• The transmitter’s whip antenna

We used AP Circuits (www.apcircuits.com) as a board fabrica-
tion house. They had a two-day turn around which allowed for 
quick prototyping. AP provided us with printed circuit boards, 
which we soldered components to and tested. With the trans-
mitter workably designed, we turned our attention to the base 
station next. Thankfully, it did not prove to be as difficult a 
design problem.

Figure 31: Voodoo PCB 
schematic.
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3.3.6.2 Base Design
Since the base station did not have to operate under the strict 
space constraints of the transmitter the design was compara-
tively very straightforward. We were able to “piggy-back” an 
iRX board with a PIC16F84 microcontroller onto the base sta-
tion and use its existing antenna and power scheme.

Next we wired up the board’s DB-9 serial adapter to a MAXIM 
233CP RS232 level converter so that the base station could com-
municate through its serial port to the computer that would be 
hosting the embodied applications.

After some quick testing with a function generator we were 
able to confirm that the base station and transmitter were able 
to successfully communicate with one another.

Next we needed to turn our attention to the firmware design 
for the base station and voodoo doll’s microcontrollers. The 
voodoo doll’s microcontroller needed to decode the acceler-
ometer’s pulse width modulation stream, while the base sta-
tion needed to decode the transmitter’s checksum scheme and 
transmit information to the serial port.

After several weeks of design and debugging we arrived at 
a completed research prototype. It was coupled with the exist-
ing usability-feedback applications that we’d prepared for the 
Squeezemouse.

It had some shortcomings though. We desired to make several 
prototypes to give to a small pool of testers. But the cost and 

Figure 32: Voodoo Doll circuit 
board.

Figure 33: Voodoo Doll base 
station.



40

complexity of the design of the Voodoo Doll were prohibitive. 
Consequently, we pursued cheaper alternatives.

3.3.6.3 Analog Aggravation
One idea was to try to remove the microcontroller from the 
transmitter board and to directly transmit the output of an 
analog accelerometer to the base station. Measurement Spe-
cialties carries a 3-axis analog accelerometer. We set about 
building a breadboard mock up of the components that were to 
sit inside the voodoo doll.  Initially it seemed best to try to take 
the three analog signals output by the accelerometer and send 
them into the Linx transmitter.  This required the development 
of some glue-logic to interface the two integrated circuits. We 
first attempted to use a Zetex 3V voltage regulator but found 
that this could not source enough current for the transmitter. 
We then tried an elaborate scheme involving several diodes 
and a voltage divider borrowed from The Art of Electronics 
[Horowitz and Hill, 1980]. However, this scheme also did not 
provide enough current. We then tried to buffer the output 
of the accelerometer using an operational amplifier. The first 
op amp I selected, a National Semiconductor LM386N, also 
proved to require too much current from my accelerometer. 
Finally we settled on a Maxim MAX473, which was a nice sin-
gle-source op amp that did not require much current to drive, 
but provided sufficient current to the RF transmitter.

After all of that trouble, we soon discovered that we had another 
problem altogether. The analog signals that we were transmit-
ting were prone to interference from other RF devices trans-
mitting on the same carrier frequency.

 It turned out that ambient RF noise was very hard to differen-
tiate from the actual shaking that my accelerometer would be 
recording. After speaking again to some people more knowl-
edgeable about RF design than ourselves we learned that it is 
much better (as we originally had done) to transmit digital sig-
nals since checksums can be performed on them to ensure data 
integrity.  What’s more, digital signals are easier to design with 
and don’t require the elaborate glue schemes we attempted 
with the analog setup.

Figure 34: Analog Voodoo Doll 
prototype.
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3.3.7 Blink Detector
 There is some evidence from psychophysiology that suggests 
that as stress increases with a task, the rate of eye blinks 
increases [Backs and Boucsein, 1999]. Another idea for a device 
that could detect stressful applications is a vision system that 
detects and counts eye blinks.

Apparently, vision researchers already use image differencing 
and blink detection as a head-tracking method [Reignier, 1995]. 
We coded up a crude prototype and feature detector to explore 
the feasibility of the idea.

While this is a promising avenue for inquiry, there are some 
shortcomings to this approach. Users may feel uncomfortable 
with having cameras pointed at their face, especially if those 
cameras are trying to assess the user’s affective state. Further-
more, although it is not real-time, the work of the CMU facial 
affect recognition group [Tian, 2001] has already surpassed 
simplistic models like just detecting eye blinks.

3.3.8 Expletive Detector
The Yelling Detector (section 3.3.3) indicated that prosodic 
parameters such as intensity and pitch could be used as fea-
tures to detect outbursts of expletives in speech. Some prelimi-
nary work was performed to see if an expletive detector could 
be built.

The problem is an interesting one, which has not been well 
explored. Jay’s Cursing in America provides an excellent 
introduction to the academic study of obscenity [1991].

The most straightforward approach, trying to use a speech rec-
ognizer, is problematic. Speech recognizers are often trained to 
recognize business speech, and consequently assign low prior 
probabilities to obscenities. What is needed instead is a speech 
system that is capable of analyzing prosody.

In an early attempt to set about creating a prosodic analyzer, I 
took a somewhat novel approach. In order to gather a database 
that could be used to train a patter recognizer, I rented several 
movies split into two classes: expletive-rich and expletive-less. 

Figure 35: Blink Detector 
prototype.
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To extract specific audio clips to use, I had a set of volunteers 
‘vote’ on whether an utterance represented an angry, obscenity-
laden, outburst.

The resulting database of sounds was used to compute the 
mean and variance of the sets in a two-dimensional space 
defined by average pitch and intensity. Using two-dimensional 
guassians to model the clusters, I developed the pictured deci-
sion boundary, which led greater-than-random recognition 
accuracy.

Afterwards energy was briefly focused on making a real-time 
expletive detector that could be used in experiments. Due to 
time constraints, I was unable to fully develop this idea, but the 
prototype may represent a good jumping off point for further 
research.

Figure 36: Expletive Detector 
voting interface.

Figure 37: Expletive decision 
boundary.

Figure 38: Real-time expletive 
detector prototype.

3.4 Second Revisions

In an iterative, rapid prototyping process, one revision begets 
another round of design and critique. In the previous section 
we presented several first revisions that represent shaky, ten-
tative steps towards communicating frustration to your com-
puter. This section deals with their revision and subsumption 
by more complex and more realistic prototypes.

3.4.1 Serial Swiss Army Board
After the initial hack to the iRX board (Section 3.2.2) that 
allowed us to collect analog data and transmit it to the com-
puter, it became clear that we needed a custom analog data 
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acquisition board whose purpose was to transduce analog sig-
nals and transfer them to the serial port of a computer.

The result was a simple printed circuit board that hangs off 
the serial port of a PC. It uses a PIC16C711, which has an on 
board analog to digital converter. The firmware periodically 
polls the analog line and transmits converted ASCII text out 
on the serial port. This board was used as a conversion board 
for the next set of mouse designs that we evaluated. It was 
designed to incorporate a connector that allowed it to be used 
with various prototypes.

3.4.2 Integrating Squeezemouse
Using this board, we made another revision of the squeeze-
mouse that used a set of force sensitive resistors spread out 
over the surface of the mouse. These were routed into a sum-
ming junction that integrated the signal into a single signal. 
The resistors were covered with some neoprene foam, since 
foam affords squeezing. What we found is that, although the 
mouse had good coverage across the surface, the coverage was 
not uniform. Furthermore, because it was not clear where the 
FSRs were located, people had a lot of difficulty using it as an 
active interface.

3.4.3 FSR Positioning Inquiry
It soon became clear that we would need to evaluate which 
placements of force sensitive resistors (FSRs) were most com-
fortable to the user, and also did the best job of transducing 
squeezes. To that end a series of mice that positioned force-
sensitive resistors in different promising spots were built.

Figure 39: Serial Swiss Army 
board iterations.

Figure 40: Squeezemouse and 
Voodoo iterations.
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After some informal experimentation, I found that if the 
Squeezemouse was treated as an active sensor, one of the most 
favorable positioning spots was beneath the thumb. It is easy to 
grasp the mouse and put force on the resistor in this position.

3.4.4 User Interfaces
While not traditionally thought of as a sensor, the Thumbs-Up 
/ Thumbs-Down interface (section 3.3.4) proved to be an inex-
pensive and easily embeddable mechanism for users to express 
frustration. Consequently, we did not limit inquiry into modal-
ities for communicating affect to tangible and physical inter-
faces.

3.4.4.1 Frustrometer 
However, Thumbs-Up/ Thumbs-Down did not provide a mech-
anism to communicate the severity of the usability incident, 
only whether a favorable or unfavorable event had occurred. 
Judith Ramey of the University of Washington had once men-
tioned that in usability tests, a cardboard “frustrometer” was 
used to help users express themselves [Ramey, personal com-
munication]. Borrowing from this idea, we developed a soft-
ware version. This interface allowed for a severity scale to be 
communicated.  

3.4.4.2 Gripe
One potential application for this technology was remote evalu-
ation of software. Consequently, we started to build “Gripe,” an 
application embedded into the user’s interface to send gripes, 
or feedback to usability specialists.

The first version of Gripe focused on allowing screen-shot cap-
ture to be triggered by squeezing the mouse and to be transmit-
ted over a network. It also provided feedback about the mouse 
pressure input using the strip chart interface.

Gripe also acted as interface instrumentation by providing a 
log of which applications were running at the time of frustra-
tion incidents. More specifically, it enumerated the open dia-
logs, and which dialog had the user’s focus at the time of a frus-
tration incident.

Figure 41: Squeezemouse with 
FSR positioned beneath thumb.

Figure 42: Early Frustometer 
prototype.
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3.4.4.3 Task model Revisions
The first model of gripe was something akin to sending elec-
tronic mail. But it soon became clear that there were several 
tasks which users might want to perform when sending feed-
back: typing textual comments, queuing up incidents to submit 
at a later time, and annotation of screenshots.

3.4.4.4 Privacy Considerations 
Following discussions with several colleagues about what 
would make them want to use a piece offeedback software, it 
became clear that feedback software must allow users to main-
tain their privacy.

I consequently implemented tools to allow user to control 
which information was sent back, and to edit that information. 
These included a simple photo-manipulation program for eras-
ing private content from screenshots.

3.5 Third Revisions 

3.5.1 Attentional Considerations
After informal testing, it also became clear that initial versions 
of gripe consumed entirely too much screen real estate. Conse-
quently, its interface was compressed to only consume a spot 
on the taskbar when it was not detecting high arousal states.

Figure 43: The first version of 
Gripe.

Figure 44: Task model revisions 
to Gripe.

Figure 45: Privacy revisions to 
Gripe.
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The activated state was also compressed into a control-panel-
style dialog. This was ordered to show the most pertinent infor-
mation in the foreground, and the less relevant aspects in the 
background. Two versions of this interface were built, one that 
made use of the Squeezemouse, and a second that embedded 
the Frustrometer.

A final small revision was made to provide a much clearer met-
aphor when using the squeezemouse feedback software. The 
graphing software was replaced by a thermometer widget (not 
to be confused with the frustrometer). Informal testing showed 
that the thermometer interface was much easier to understand, 
since it made reference to a familiar real world object.

3.5.2  Continuous Capture 
During these many iterations we began to think of the 
Squeezemouse less as a tangible interface and more as a sensor. 
Consequently, we developed a transparent Squeezemouse driver 
that continuously captured and labeled data collected from the 
mouse. Its job was to log input from the Squeezemouse to a 
remote network server.

3.5.3 Unobtrusive Mouse
Our earliest prototypes routed the electronics used to detect 
pressure along the surface of the mouse. We found the cir-
cuitry interfered with free movement of the mouse. As a result 
we focused on building a less obtrusive prototype that placed 
much of the wiring for the pressure sensors inside the mouse 
itself.

3.5.4 Grid-SqueezeMouse
After experimenting with mice that used just a single force sen-

Figure 46: Unobtrusive Gripe.

Figure 47: Frustrometer version 
of Gripe.

Figure 48: Thermometer 
squeezemouse interface.

Figure 49: Unobtrusive mouse.
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sitive resistor, we continued to develop the idea of treating the 
mouse less like an interface and more like a sensor. To this 
end, we made a Squeezemouse which used 144 small force 
sensitive resistors to cover the surface of the mouse. During 
the development of this mouse, we discovered that the Force 
Sensitive Resistors were not sensitive enough to transduce the 
small load placed on them by the hand resting on the mouse.

The data sheets for the Force Sensitive Resistors (FSRs) noted 
that components act nonlinear when they are loaded with less 
than 100 grams. Experimenting with a postal scale, we discov-
ered that the FSRs operate like an open circuit with less than 
30 grams of force applied.

Consequently, we abandoned development of this mouse and 
instead turned our attention to developing transducers that 
operated with less than 30 grams of force applied.

3.5.5 PressureMouse
The insensitivity of the FSRs necessitated an examination of 
the different materials that can be used to transduce touch. 
We briefly considered the use of Indium-Tin Oxide and other 
materials, but shied away from their use because of toxic prop-
erties or the high temperatures required to cure them.

After a hasty literature review, we learned that force sensitive 
resistors are composed of a conductive elastomer of some sort 
and electrodes. As force is applied to the elastomer or foam, 
it becomes more dense, and more conductive. As a result, to 
make more sensitive force-sensitive material, what is needed is 
a conductive foam that compresses under light loads.

The anti-static foam that is used to package electronic com-
ponents works well as a conductive elastomer for light loads. 
Beginning with circular electrodes manufactured for a differ-
ent variety of elastomer I constructed my own sensors.

These sensors have a greater dynamic range because the foam 
compresses under light loads. Unfortunately, they are not very 
elastic, meaning that after being loaded, they take some small 
amount of time to decompress.

Figure 50: Pressuremouse, 
equipped with eight sensors: 
four foam sensors at the back 
of the mouse and two on each 
side.

Figure 51: Pressuremouse tactile 
sensors.
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These sensors, applied to several points of a mouse, allow us 
to determine if the user is touching the mouse or not, and 
how hard the user is touching the mouse. Their construction 
allowed for an experiment to see if user frustration can be 
detected passively, without requiring conscious manipulation 
from the user.
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4 Evaluation

During the development of the various devices and interfaces 
in the last chapter, we began to perform more formal evalua-
tions. These evaluations centered on performing studies con-
taining stimuli designed to be frustrating.  The first study was 
a comparison between different interfaces and sensors that 
were designed to help the user actively communicate frustra-
tion. The second pilot served to refine protocol and to examine 
using the Pressuremouse as a passive sensor. The final study, 
focused on the Pressuremouse as a passive sensor, gathered 
data from 16 users, and analyzed this data using signal pro-
cessing and pattern recognition techniques. Finally, this chap-
ter gives initial results on the use of pattern recognition to dis-
tinguish frustration events from non-frustration events.

4.1 First Pilot Study

Given a selection of designs for frustration sensors, we are 
interested in how these sensors compare. To assess the utility 
of these sorts of sensors, we designed an experiment to com-
pare two different frustration sensor designs and a more tradi-
tional customer-feedback form.

We wished to compare the two sensors we developed against 
a baseline. After a bit of discussion we agreed that a web feed-
back form, like those currently in use on many websites repre-
sents one commonly used feedback mechanism. Consequently 
we designed a simple web form for the control group to use.

4.1.1 Methodology
Subjects for our study were solicited with flyers posted in the 
area around our laboratory. Spots were filled in a non-ran-
dom, first-come-first serve basis, which led to the selection of 
nine male and four female participants. Participants in the 
study were read a script asking them to complete a registration 
sequence from Jobtrack.com:

“We’d like you to fill out the registration 
sequence for a popular job search site. We’d 
like to strongly encourage you to use [feedback 
device for condition] to send feedback about 
any problems you have as you progress through 
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the registration process. Afterwards, we’d like 
to ask you to answer some questions about 
your experience, and fill out a questionnaire.  
That’s basically it. We are trying to evaluate the 
usability of the web site. So, we need you to be 
a tester. Okay?”

The registration sequence consisted of six web pages asking 
users for information that would be typically found on a 
resume. The users were encouraged to evaluate the web form 
by providing feedback using a modality defined by the condi-
tion to which they were assigned. The conditions were:

• Web Form (Figure 52): a feedback web page consisting 
of a simple web form. This served as the control condi-
tion.

• Frustrometer (Figure 53): a severity slider with optional 
text feedback and recorded screenshots and window 
listings.

• Squeezemouse (Figures 54): FSR attached to a mouse 
along with optional text feedback and recorded screen-
shots and window listings.

Subjects in each condition were given a brief tutorial on how to 
use each of the various feedback mechanisms. Care was taken 
to make sure that each of the tutorials was similar both within 
the conditions, and between the conditions. Specifically the 
wording of the tutorials in the script was made to be as similar 
as possible, and the tutorials were set up to be approximately 
the same length (see Appendix B).

After the users completed the registration sequence, they were 
interviewed and asked to fill out a questionnaire for their con-
dition. Each participant was only assigned to one condition, 
and the whole experience took less than an hour.

Unbeknownst to the participants, the web forms were designed 
by us to be moderately frustrating. This was achieved by vio-
lating known usability heuristics. Studies have shown that 
users respond poorly to varied, slow response times [Butler, 
1983]. Consequently, some pages were made to load especially 
slowly. To further exacerbate problems, certain long forms 

Figure 52: Web Form interface.

Figure 53: Frustrometer.

Figure 54: Squeezemouse text 
entry interface.
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were designed so that no matter what sort of information was 
entered, the form would report errors that needed to be cor-
rected, and forced the user to start filling in the page from 
scratch [Neilsen, 1999].

After being interviewed and filling out a brief questionnaire, 
users were debriefed and told of the deception carried out. It 
was emphasized that the deception was necessary, since it is 
very difficult to elicit emotional states like frustration if sub-
jects know you are trying to frustrate them. Furthermore, it 
was emphasized that the web pages we used are not actual 
jobtrack.com designs, but frustrating variations designed for 
the purposes of our research.

4.1.2 Preliminary Results
All participants were asked on a questionnaire (see Appendix 
B) about the usability and responsiveness of the registration 
sequence. The questionnaire presented a seven-point scale 
from (Very Easy) to (Very Hard). For the purposes of this 
thesis, I’ve chosen to label (Very Easy) as 1 and (Very Hard) as 
7. The questions and mean responses (in brackets) are shown 
below:

How hard was the job registration web form to use?
(Very Easy)   •  •  (3.08)  •  •  •  •  (Very Hard)

How responsive was the job registration website?
(Very Fast)   •  •  •  •  (4.63)  •  •  (Very Slow)

Since we were actually interested in the performance of our var-
ious frustration feedback sensors, the remainder of the ques-
tionnaire dealt more specifically with the sensors. For instance, 
the participants were asked about how difficult it was to send 
feedback:

“How hard was it to send feedback about the web form?”
The mean and standard deviation for each condition are sum-
marized in Table 1.

The participants were then asked about the feedback device for 
their condition specifically:

• Did you like using the [Web Form, Squeezemouse, 
Frustrometer] feedback device?

• Did sending feedback interfere with filling out the 
form?

Table 1: Difficulty sending 
feedback.
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• How interested are you in using the [Web Form, 
Squeezemouse, Frustrometer] again?

Each condition had similar questions. For instance, the users of 
the web feedback form were asked “Did you like using the feed-
back page?” instead of “Did you like using the Squeezemouse 
feedback device?” The responses for each condition to these 
questions are summarized below: 

Finally, in addition to these questionnaire responses the feed-
back provided while using the different feedback devices was 
examined. The number of feedback responses recorded by each 
device was also tallied. The mean results are summarized in 
Table 2

4.1.3 Analysis
What seems clear from these preliminary results is that the 
Frustrometer interface performed better in each of the catego-
ries we surveyed. We can see from Table 1 that the Frustrometer 
was reported to be not as hard to use as either the web form or 
the Squeezemouse. If we examine Figure 55, we see that people 
reported that they liked using it more than either the mouse, 
or the traditional web form. Furthermore, Figure 55 shows that 
people reported the slider’s use interfered less than either the 
mouse or the web form. Finally, people were nearly twice as 
likely to indicate that they’d use the slider again.

Figure 55: Questionnaire data 
from first pilot.

Table 2: Number of feedback 
responses.
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If we perform a single tailed t-test, where the null hypothesis 
is that the control participants report that they are as interested 
in using the web form again as the Frustrometer users, we get 
a p-value of 0.025. So we should reject the null hypothesis and 
accept the alternative hypothesis, that the Frustrometer partic-
ipants are more interested in using it again. Likewise, if we 
hypothesize that the Squeezemouse users are as interested in 
using it again as the Frustrometer users, we calculate a p-value 
of 0.003. Again, we must reject the null hypothesis and accept 
that Frustrometer participants are more interested in using 
their interface again. Of course, this assumes that our data 
is approximately guassian, which may not be a good assump-
tion. Furthermore, with such low population sizes, it is ill 
advised to draw strong conclusions from these results. How-
ever, taken as preliminary results, they seems to indicate that 
the Frustrometer is a more popular interface.

So why did the Frustrometer perform better than the 
Squeezemouse or the web form? We theorize that it is because 
the Frustrometer was the most accessible, most straightfor-
ward interface, and consequently led to a lessened cognitive 
load when reporting feedback. In short: it was less frustrating 
and distracting than the other options. 

The post-test interviews also provide some clues as to why 
the Frustrometer performed so well. One user noted that “It 
was convenient, easy to use.” As a contrasting example, a 
Squeezemouse user described it as “hard to use” and men-
tioned that it was difficult to get the hang of squeezing hard 
enough. It is useful to note here that the Squeezemouse tested 
also included a relatively complex interface for storing and 
annotation feedback. The interface’s complexity may have con-
founded results with respect to the Squeezemouse.

Overall users seemed enthusiastic about being able to send in 
feedback. One participant noted “I think being able to send 
feedback while in the middle of a process is cool and sort of 
prevented me from really losing my temper.” Another partici-
pant enthusiastically noted, “The feedback option gave me a 
sense of power, in the sense that I could complain or compli-
ment about features I dislike or like.” Most users seemed to 
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respond positively to the convenience of accessible and easy to 
use feedback mechanisms: “I liked it being set up such that as 
soon as I realized there was a problem, I could gripe.”

4.2 Second Pilot Study

After performing the data analysis for the first experiment, we 
became increasingly interested in seeing if the Pressuremouse 
would gather useful information if subjects were not told to 
actively manipulate it when frustrated. In short—would sub-
jects use it differently when frustrated, without consciously 
thinking about the Pressuremouse? This was motivated, in 
part, by the realization that users did not like interrupting their 
work to send feedback about what made them frustrated. Per-
haps, a better method for sending feedback would involve no 
interruption or demands on the user’s attention.

Consequently, we altered the experimental design such that 
subjects were still exposed to frustration, but were given the 
newer very sensitive Pressuremouse. But they were not given 
any explicit training; all references to the mouse were removed 
from the script. The goal of the second experiment was to see 
if we could correctly distinguish between the data produced by 
the control group, who experienced no frustration stimulus, 
and the effect group.

Additionally, some shortcomings of the first study were rem-
edied. The second pilot randomly assigned participants to the 
conditions. Demographic information was also collected about 
the participants, so that more concrete statements about the 
applicability of the data could be made.

The second pilot, however, mainly served as a mechanism for 
refining our test protocol and script. We were also able to 
adjust the parameters of our frustration stimulus. The stimu-
lus was decided to be network delays that varied between 0 and 
30 seconds. Additionally, it was decided that subjects should be 
placed under time pressure. Lastly, all subjects were subjected 
to a single loss-of-data event, which we believed would cause 
frustration.
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During the loss-of-data event, users were told that some infor-
mation on the pervious page they had entered was incorrect 
(see sidebar). They were then sent back to this pervious page, 
only to discover that all the information they had entered had 
been erased. The participants had no choice but to re-enter all 
of the data on this page again.

Video and audio recordings were captured, along with mouse 
pressure profiles. The continuous capture driver (discussed in 
section 3.5.5) was augmented with the addition of labels for 
whether the participants were experiencing network delay or 
data loss stimulus.

4.2.1 Anecdotal Observations 
Since the second pilot study was primarily used to refine the 
experimental protocol, the data produced from the experiment 
is not suitable for rigorous data analysis. However we were able 
to make some observations as we ran the seven pilot partici-
pants.

The first was that our stimulus was indeed causing some 
response. The participants, under time pressure, felt that the 
site was too slow. And most felt aggravated by this:

• “I don’t know if it is the connection, but it responds 
very slow, and I get very impatient”

• “The software is REALLY too slow” (emphasis in origi-
nal)

4.3 Second Study

With our protocol more firmly established by the second pilot, 
we set about collecting data for our final study. The study was 
much less a comparative exercise between different interfaces, 
and more of an inquiry into the type of data created by an 
advanced prototype of the Pressuremouse. Superficially, there 
are many commonalities between this final design, and the 
first pilot. However the two studies had very different end 
goals.

More specifically, partici-
pants were asked to enter a 
date in a four-digit format. 
Users who entered the date 
either in two or four digits 
were taken to page inform-
ing them they had made 
a mistake. When they 
returned to the first page to 
correct their mistake, users 
found that all of the infor-
mation they inputted had 
been “lost.” (See figure 60)
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4.3.1 Apparatus
The second experiment was enabled by the creation of a sensi-
tive mouse device, which collected pressure data (see section 
3.5.8). Users were placed in front of a computer with a web 
browser. A video camera was positioned on a tripod behind the 
user, and focused on the screen and their hand. Additionally, 
we made use of a common kitchen egg timer, to display the 
amount of time elapsed to participants.

4.3.2 Methodology
The design of the second full-blown experiment was a two-
by-one condition, between subjects. The independent variable 
was the network delay applied. The dependent variable was the 
transduced signal captured from the squeezemouse through-
out the experiment session. A total of 16 subjects were run, 
eight in the control condition and eight in the delay condition.

Subjects for our second study were also solicited with flyers. 
The flyers were posted by a service at several public kiosks 
at many different campuses around Boston. Participants were 
scheduled and randomly assigned by a web application we 
designed. Demographic information was collected using the 
same system.

Participants, (regardless of condition) were read the script 
below. The beginning of the script was very similar to what was 
used in the first pilot:

“Thank you for coming and participating in 
this study! We’d like you to fill out the brief reg-
istration sequence for a popular job search site. 
We will be performing a usability test to see 
how users respond to it.”

In addition, users were read a series of paragraphs to convey 
the time-criticalness of the task we were asking them to per-
form. This served to amplify the effect of the network delay:

 “After the experiment, we’d like to ask you to 
fill out a quick questionnaire and answer some 
questions about your experience.  We know 
your time is important so we won’t take too 
long.  Okay? When you’re done, the computer 
will notify you to get up and come get me—and 
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I’ll be right out here. At that point I’ll give you a 
quick, 1-page paper questionnaire to fill out and 
conduct a short interview.”

Here the diction (“short”, “quick”) was chosen to try to focus 
the participant’s perception on time and performance. To be 
safe we also read the following paragraph to further reinforce 
the importance of completing the forms in a speedy manner:

“During our pilot study we found that the entire 
experience, start to finish, should take you less 
than 15 minutes. Some graduate students from 
campus here were able to move through the 
webpages in 10 minutes. But we don’t expect 
you to go that fast, we figure it shouldn’t take 
average folks all that much longer. You should 
be aware of how much time you’re spending. 
This clock will show you how much time is 
left.”
“If you run out of time, please continue until 
you are finished. If there’s a problem, try to 
work through it. I’ll be right outside the room. 
Otherwise, good luck!”

Depending on their condition, participants experienced either 
no delay (control condition) or randomly varying network 
delays (delay condition). All participants, no matter the condi-
tion, experienced a usability bug which caused them to re-enter 
data.

After participants completed the web site’s forms, they were 
given a questionnaire (See appendix B). Afterwards, they were 
interviewed in an effort to get a more subjective assessment 
of their experience. The results from these, and our analysis 
of the data recorded from the squeezemouse are presented 
below.

4.3.3 Results
4.3.3.1 Questionnaire Data
As in the previous study all participants were asked on the 
questionnaire about the usability and responsiveness of the 
registration sequence. The questionnaire presented a seven-
point scale for several categories (i.e. Very Fast – Very Slow).
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The mean results for condition A (no delays) were:
How hard was the software to use?

(Very Easy)   • (2.33) •  •  •  •  •  (Very Hard)
How responsive was the software?
(Very Fast)   • (2.33) •  •  •  •  •  (Very Slow)
How frustrating was the experience?
(Very Much)   •  •  •  • (4.89) • •  (Not at All)
How mentally difficult was it to use the software?
(Very Much)   •  •  •  • (5.33) •  •  (Not at All)
Did you like using the software?
(Very Much)   •  •  •  • (5.33) •  •  (Not at All)
How interested are you in using the software again?
(Very Much)   •  •  •  • (5.33) •  •  (Not at All)

For condition B (0-30 second delays) the mean results were:
How hard was the software to use?

(Very Easy)   •  • (2.78) •  •  •  •  (Very Hard)
How responsive was the software?
(Very Fast)   •  •  •  •  • (6.44) •  (Very Slow)
How frustrating was the experience?
(Very Much)   •  • (3.56) •  •  •  •  (Not at All)
How mentally difficult was it to use the software?
(Very Much)   •  •  •  • • (6.33) •  (Not at All)
Did you like using the software?
(Very Much)   •  •  •  • (5.11) •  •  (Not at All)
How interested are you in using the software again?
(Very Much)   •  •  •  • (4.56) •  •  (Not at All)

These results are summarized and shown with 95% confidence 
intervals in the figure 56. For the convenience of the reader, 
when the scale was inverted (viz. question ending in “Not at 
All”) the graph shows the opposite.

4.3.3.2 Mouse Data
The Pressuremouse collected eight channels worth of data, and 
was synchronized with a label as to whether the participants 
were experiencing network delays or data loss. Below is an 
example of how Pressuremouse data log (Figure 57). The last 
column, which is separated by a dashed line, encodes what 
stimulus the user is experiencing. The data was sampled at 8 
bits of resolution, at a rate of 60 Hz.
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4.3.4 Analysis
4.3.4.1 Questionnaire Data
Looking over the summarizing graph (Figure 56), we can 
observe several things about the questionnaire data. First and 
foremost we see the effect condition, which experienced delays, 
found the web pages to be significantly less responsive than 
the control group. The findings that the software was harder to 
use, that they liked it less, and were less interested in using the 
web site again than the control were not significant at the 95% 
confidence level.

Both the control and effect conditions reported some frus-
tration. This is likely to be a result of the loss-of-data event 
both groups experienced. However, the network-delay condi-
tion reported more frustration than the control, as would be 
expected (significant at p-value 0.059).

One interesting observation about the data set is that the delay 
condition reported that the website was less mentally difficult 
than the control group reported (significant at p-value 0.073). 

Figure 56: Questionnaire data 
from second study.

5 2 2 47 0 30 19 0 1

36 0 0 45 0 30 18 1 1

30 1 2 46 0 30 19 0 1

21 1 1 48 1 31 20 2 2

21 0 0 46 0 331 19 1 2
Figure 57: Data sampled from 
pressure mouse.
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This lends credence to the idea that cognitive load and stress 
are distinct from frustration.

4.3.4.2 Mouse Data
The unprocessed mouse data is 8 dimensions of 8-bit analog 
data captured at 60 Hz.

In order to make it possible to perform data analysis on the 
data set, we elected to compute a series of descriptive features 

Figure 58: Sample plot of 
eight channels for delay 
condition.

on each channel. These let us more easily discern and sum-
marize the differences in the data. I worked to develop a set 
of useful features that might help us discriminate between the 
two datasets. Below are plots combining the sum of each of 
the eight channels that let the reader see the visual difference 
between the datasets.

4.3.4.3 Pattern Recognition of Mouse Data
We broke the data set up into two separate classes of two condi-
tions:

• Segments during loss-of-data events vs. no stimulus 
segments

• Segments of network-delay vs. no network delay
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• Mean
• Variance
• Skewness
• Range

I will describe each feature in closer detail to aid others seeking 
to reproduce this work.

Figure 59: Sample plot of delay 
condition. Red denotes network 
delay.

Figure 60: Sample plot of data 
loss from control condition. 
Green denotes first visit of web 
page. Red denotes second visit 
after data loss.

We chose to screen out delay segments which were shorter 
than .5 seconds since they were likely not noticeable to partici-
pants. For each of the remaining sets of segments we calcu-
lated feature vectors of containing six elements:

• Zero-Crossing Rate
• Activity
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4.3.4.3.1 Zero-Crossing Rate
We wanted a feature to capture the high-frequency behavior of 
the signals. One simple approach to this would be to extract 
the zero-crossing rate after the time-varying mean has been 
removed to yield the signal:

Let x
lp
[n] be the zero-phase low-pass filtered version of x[n], 

where x is the raw signal for any given channel. The signal and 
its time-reversed version are first convolved with a low-pass 
filter 

and their outputs averaged to remove the phase-delay

The low-pass filter is a simple rectangular window of length M 
chosen to be one second worth of data:

The zero-crossing rate is then defined on the detrended signal 
y as follows:

 

4.3.4.3.2 Activity
Additionally we compute a feature that was related to how 
much “activity” we observed in a particular signal. This was 
an indicator of number of transitions between a threshold just 
above noise and clear pressure being applied to the mouse. We 
defined activity to be:
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 where:
 
 

We empirically found a value of  ε = 1 to be a good separator 
between activity and no activity states.

4.3.4.3.3 Mean
Another feature we selected was the mean of each of the eight 
channel segments. The sample mean is defined as:

4.3.4.3.4 Unbiased Estimator of Variance
We chose to also compute the variance of the segments.

4.3.4.3.5 Skewness
Since the rise times of some of the peaks in the data surround-
ing the events seemed to vary between the two classes, we also 
chose to compute the skewness s for the segments:

where:

4.3.4.3.6 Range
Lastly, we chose to look at the range of segments :

a
N

w n w n
n

N

= − −
=

−

∑1
1

0

1

sgn( [ ] sgn( [ ])

µ =
=

−

∑1

0

1

N
x n

n

N

[ ]

w n
x n if x n

otherwise
[ ]

[ ] [ ]
=

− >



ε ε
0

σ µu
n

N

N
x n n2 2

0

11

1
=

−
−

=

−

∑ ( [ ] [ ])

s
N

x n n

nbn

N

=
−









=

−

∑1
2

3

0

1 [ ] [ ]

[ ]

µ
σ

σ σb u

N

N
n2 21

=
−

[ ]

r x n x n= −max( [ ]) min( [ ])



64

This feature reflected the peaks observed during some of the 
events, but also the relative flatness of other sections.

4.3.4.4 Principal Component Analysis
We reduced the dimensionality of the feature vectors compiled 
from the segments. Using principal component analysis, the 
data sets were projected from the original 40-D space down 
into a 5-D data space. This 5-D space captured 99% of the vari-
ation in the data sets. This aggressive reduction reflects the 
strong colinearity between the eight channels.

4.3.4.5 Testing / Training Division
Following this dimensionality reduction we separated the data-
set into 75% training data and 25% testing data. The data was 
randomly separated by computing permutations.

4.3.4.6 Support Vector Machine
Next we used Scott Gunn’s MATLAB implementation of Vap-
nik’s Support Vector Machine [Vapnik, 1995]. This provided us 
with a decision boundary derived from our training sets with 
which to test recognition accuracy. The support vector machine 
classified the data-loss event vs. control testing data with an 
accuracy of 68.75%.

4.3.5 Analysis Conclusions
Following this analysis we can conclude that the stimulus 
caused a noticeable difference in pressure applied to the mouse. 
Furthermore, we can also report that a classifier trained on 
data collected during the second experiment was able to detect 
states coinciding with frustration stimulus with an accuracy 
rate of 68.75%. This suggests that we can detect user responses 
to frustration with passive sensors (and without electrodes) at a 
rate better than chance, but still far from ideal.
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5 Applications and Future Work

5.1 Distributed Usability

One compelling application for this technology is the creation 
of universal and distributed usability services. If we distribute 
interfaces that allow people to easily send feedback about 
aspects of their systems, then we can begin to continuously 
collect usability information from them. We get a broader and 
more complete picture of what our users find frustrating, and 
one drawn from real world use settings instead of an artificial 
laboratory.

5.2 Interface for Reinforcement Learner

Another potential application for this work is as a front end 
to a machine learning process like reinforcement learning. 
Reinforcement learning models a process where an agent is 
trying to explore a space of possible actions and is rewarded 
by some function for positive behavior. One possible source 
of this reward function is, of course, a human trainer. But if 
this trainer is going to work with the system they must be able 
to easily communicate their reward feedback to the system. 
A command line interface where users continuously type in 
numerical evaluations does not seem even the least bit satisfac-
tory.

5.3 Front End to Adaptive Generative Systems

Still another interesting application for this technology is as 
the front end for a generative system. A genetic algorithm, for 
instance, can stochastically search a space of genetic combina-
tions. With a fitness function that evaluates a particular com-
bination, we can gradually crawl around the space in search 
of progressively better combinations. This metaphor can be 
borrowed to allow people to creatively explore different design 
possibilities. We can easily imagine a set up where someone 
sits with a modified version of Photoshop or the Gnu Image 
Manipulation Program. This version takes a composition and 
randomly tries different filters and transformations. The user’s 
affective response is recorded. Gradually the system can encode 
and learn different combinations of actions that you like. 
After a good amount of interaction, the system can gradually 
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learn to customize compositions to your previously encoded 
tastes. There are some similarities to relevance learning prob-
lem where we are trying to determine how relevant particular 
search result is to a particular user.

5.4 Usability Benchmark

Perhaps and most promising use of this technology is as an 
alternative usability benchmark. Time on task is one bench-
mark that usability specialists often use to evaluate systems. Of 
course, optimizing for the system that allows users to do some-
thing as quickly as possible has its problems. We may arrive 
at an interface that allows something to be done very quickly, 
but we do not know how distasteful this is for the user. For 
instance Time-Motion studies were often conducted around 
the turn of the century to try to make different assembly line 
tasks more efficient [Taylor, 1911]. However, these studies may 
have also made the worker’s jobs less comfortable, since the 
more efficient series of actions may also be the most likely to 
cause repetitive stress injuries.

What is needed is a quantifiable and measurable benchmark 
that can be used in lieu of or to meaningfully augment subjec-
tive evaluations. If we can sense (by analyzing voice records 
or looking at pressure profiles) the user’s continuous response 
to a particular piece of software, then we have the makings 
of a valuable design tool. It allows us to see if we are making 
improvements to not just the efficiency, but also the pleasant-
ness of a particular interface. 

5.5 Contextual Fusion

The sensors discussed here should not exist in a vacuum. 
There are a whole myriad of contextual clues about what the 
user is attending to, and what they intend to do. For instance, if 
the sensors are coupled with a gaze tracking system like Eye-R 
[Selker et al, 2001] assigning credit or blame to a particular 
interface element becomes possible. Using a Bayesian network 
to combine sparse information from several sensors may also 
allow us to come to more concrete assessments of the user’s 
intentions.
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5.6 Further Refinements

The sensor design and pattern recognition work presented ear-
lier is in many ways a first attempt at the problem of distin-
guishing frustration passively. The better-than-random results 
are an indication that further pattern recognition work should 
be performed. Removing noise from the data sets and consid-
ering different features will most likely lead to higher recogni-
tion rates.



68



69

6 Summary and Conclusions

If we carefully consider the problem of making an adaptive 
system, we come to realize that the field has been progressing 
in the wrong manner. Many researchers have been building 
disembodied intelligences that do not take into account the 
subtleness or whimsy of human behavior. Without feedback 
and sensors to feed adaptive systems, these systems will not 
respond in ways that benefit users. Without any regard for the 
feelings of the user, these systems may result in heightened 
frustration and irritation for people. Clearly we need some 
measurable criterion around which to adapt.

We have progressed by inverting the problem of adaptive 
system design. We focus on the percepts rather than the intel-
ligence in order to sense a criterion that can be used to shape 
behavior. We have found that frustration is a useful human 
behavior around which to structure change. The negative reac-
tion frustration induces frequently coincides with the desire to 
alter behavior towards something more favorable.

Following surveys of psychophysiology, tangible user inter-
faces, and tactile sensor design, we see that many of the com-
ponents exist for building sensors to detect signs of frustra-
tion many of the sensors that have been used to detect frustra-
tion force an uncomfortable relationship between the user and 
computer. Electrodes, for instance, may cause physical discom-
fort, while cameras focused on the user’s face can be intrusive.

During a lengthy design process we were able to learn many 
things about the favorable attributes of sensors used to detect 
frustration. Starting with a large breadth of lo-fidelity proto-
types and iterating we slowly narrowed the field of viable sen-
sors.

The salient outcome of this process is several sensors and 
interfaces; but we think a more important outcome is what we 
learned during our evaluations:

• Participants liked having devices to communicate 
frustration.

• The data that was collected from both active and pas-
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sive sensors can be used for redesigning and adapting 
systems (either by hand, or automatically).

• More specifically, there are signs of different user 
behavior during usability problems. With active sen-
sors, this is clearly discernible. With passive, the pic-
ture is more ambiguous, but may potentially be clear 
with additional pattern recognition and context sens-
ing.

During the first pilot evaluation of these devices we found 
that participants preferred the sensor designs to more tradi-
tional feedback mechanisms like web comment forms. In addi-
tion, we found that the devices and interfaces that placed the 
lowest burden of change on the user were the most thoroughly 
accepted.

The second study gave us a window into the phenomena that 
arise when users are intentionally frustrated. We used pattern 
recognition to help observe the complex ways in which people 
respond to frustrating stimuli. As a first inquiry into how frus-
tration can be detected, it provided positive indications. We 
were able to classify data from frustration events and distin-
guish it from baseline data at a better-than-random rate.

A more developed form of this classifier will be a fundamental 
building block of user interface systems that adapt to user 
behavior. It will provide a measure that allows us to direct the 
design of interfaces towards not just more efficient, but more 
pleasing interactions. It could detect real emotion and quan-
tify it in a way that can guide meaningful changes in interface 
design.
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Appendix A (Code)

ADC conversion code
// File: adc.c
//
// ADC converion rmware for sensitve-mouse
//
// Carson Reynolds <carsonr@media.mit.edu>
// MIT Media Lab
// April, 2001
// Adapted from Rob Poor’s iRX Hello World
#case
#include <16C74A.H>

// Congure PIC to use: HS clock, DISABLE Watchdog Timer, 
// no code protection, enable Power Up Timer
//
#fuses HS,NOWDT,NOPROTECT,PUT

// Tell compiler clock is 20MHz.  This is required for delay_ms()
// and for all serial I/O (such as printf(...).  These functions
// use software delay loops, so the compiler needs to know the
// processor speed.
//
#use DELAY(clock=20000000)

// Declare that we’ll manually establish the data direction of
// each I/O pin on port B.
//
#use fast_io(B)

// Standard denitions from the irx2_1 board
//
#dene RS232_XMT       PIN_B1  // (output) RS232 serial transmit
#dene RED_LED         PIN_B2  // (output) Red LED (low true)
#dene RS232_RCV       PIN_B5  // (input) RS232 serial receive

// Macros to simplify I/O operations
//
#dene RED_LED_ON      output_low(RED_LED)
#dene RED_LED_OFF     output_high(RED_LED)

// Default tri-state port direction bits: all PORT B bits are
// output except for RC232_RCV (bit 5).
//
#dene B_TRIS      0b00100000

// Inform printf() and friends of the desired baud rate 
// and which pins to use for serial I/O.



76

//
#use rs232(baud=9600, xmit=RS232_XMT, rcv=RS232_RCV)

// Decleare variable to store data from one pass of ADC
//
unsigned int value;

// Counter
//
int i;

void main() {
  // since we’ve declared #use fast_io(B) (above), we MUST 
  // include a call to set_tris_b() at startup.
  // 
  set_tris_b(B_TRIS);

  RED_LED_ON;   // reality check at startup
  delay_ms(200);
  RED_LED_OFF;

  setup_port_a(ALL_ANALOG);
  setup_adc(ADC_CLOCK_INTERNAL);
  set_adc_channel(0);

  while (1) {
 for (i=0;i<8;i++) {
   // choose sensor
   set_adc_channel(i);
   delay_ms(1);
   // get value
   value = read_adc();
   // send to serial port
   printf(“%u “, value);
 }
    // delimit line of spaces
    // with newlines and loop
    printf(“\n”);
  }
}
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ADC Acquisition and Labeling Driver

import java.io.*;

import java.net.*;

import java.util.*;

import java.text.*;

import javax.comm.*;

public class NetSqueeze extends Thread implements Runnable, 

SerialPortEventListener {

    static CommPortIdentier portId;

    static Enumeration portList;

    static DataOutputStream os;

    static PrintWriter pw;

    static String directory;

    static String leName = “data.txt”;

    static NetSqueeze ns;

    static int label = -1;

    /*

      Matlab Color Label Key

      0 = page 1 delay

      1 = page 1

      2 = page 1 handler delay

      3 = page 1 handler

      4 = page 2 delay

      5 = page 2

      6 = page 2 handler delay

      7 = page 2 handler

      8 = page 3 delay

      9 = page 3

      10 = page 3 handler delay

      11 = page 3 handler

      12 = page 4 delay

      13 = page 4

      14 = page 4 handler delay

      15 = page 4 handler

      16 = page 5 delay

      17 = page 5

      18 = page 6 delay



78

    */

    InputStream inputStream;

    BufferedReader br;

    SerialPort serialPort;

    Thread readThread;

    String fullLine;

    static nal int HUNT = 0;

    static nal int CHAN1 = 1;

    static nal int CHAN2 = 2;

    static nal int CHAN3 = 3;

    static nal int CHAN4 = 4;

    static nal int CHAN5 = 5;

    static nal int CHAN6 = 6;

    static nal int CHAN7 = 7;

    static nal int CHAN8 = 8;

    int state = HUNT;

    public static void main(String[] args) {

 System.err.println(“----------------------------------”);

 System.err.println(“|Network Squeezemouse Driver Init|”);

 System.err.println(“----------------------------------”);

        portList = CommPortIdentier.getPortIdentiers();

        while (portList.hasMoreElements()) {

            portId = (CommPortIdentier) portList.nextElement();

            if (portId.getPortType() == CommPortIdentier.PORT_SERIAL) {

                if (portId.getName().equals(“COM1”)) {

      // init serial port grabber

      System.out.println(“* Using: “ + portId.getName());

      ns = new NetSqueeze();

      break;

                }

            }

        }

    }

    public NetSqueeze() {

        try {

            serialPort = (SerialPort) 
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portId.open(“SimpleReadApp”, 2000);

        } catch (PortInUseException e) {

     System.out.println(e);

 }

        try {

            inputStream = serialPort.getInputStream();

     br = new BufferedReader(new InputStreamReader(inputStream));

        } catch (IOException e) {

     System.out.println(e);

 }

 try {

            serialPort.addEventListener(this);

 } catch (TooManyListenersException e) {

     System.out.println(e);

 }

        serialPort.notifyOnDataAvailable(true);

        try {

            serialPort.setSerialPortParams(9600,

                SerialPort.DATABITS_8,

                SerialPort.STOPBITS_1,

                SerialPort.PARITY_NONE);

        } catch (UnsupportedCommOperationException e) {

     System.out.println(e);

 }

        readThread = new Thread(this);

        readThread.start();

    }

    public static void setDir(String dir) {

 synchronized (NetSqueeze.class){

     //set internal eld to be used as directory

     directory = dir;

     //create new le here

     try {

  String path = directory + “/” + leName;

  os = new DataOutputStream(new FileOutputStream(path));

  pw = new PrintWriter(os);

     } catch(IOException x)

  {x.printStackTrace();}
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 }

    }

    public static void setLabel(int labelPassed) {

 synchronized (NetSqueeze.class){

     label = labelPassed;

 }

    }

    public void handleData() {

 byte[] readBuffer = new byte[20];

 // read bytes from serial port

 try {

     // 0 is not a magic number

     inputStream.read(readBuffer, 0, inputStream.available());

     

     // iterator over characters in string, and parse them

     StringCharacterIterator sci

  = new StringCharacterIterator(new String(readBuffer));

     for(char c = sci.rst(); c != sci.DONE; c = sci.next()) {

  parse(c);

     }

 } catch (IOException e) { System.err.println(e); }

    }

    public void parse(char c) {

 switch(state) {

 case HUNT:

     if (c == ‘\n’) {

  if (fullLine != null) {

      fullLine = fullLine + label;

      if (pw != null) {

   pw.println(fullLine);

      } else {

   System.out.println(fullLine);

      }

  }

  fullLine = “”;

  state = CHAN1;

     }

     break;
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 case CHAN1:

 case CHAN2:

 case CHAN3:

 case CHAN4:

 case CHAN5:

 case CHAN6:

 case CHAN7:

     stateMachineHelper(c, state + 1);

     break;

 case CHAN8:

     stateMachineHelper(c, HUNT);

     break;

 }

    }

    private void stateMachineHelper(char c, int nextState) {

 if (Character.isDigit(c)) {

     fullLine = fullLine + c;

 } else if (Character.isSpaceChar(c)) {

     fullLine = fullLine + c;

     state = nextState;

 }

    }

    public static void kill() {

 try {

     pw.close();

     os.close();

 } catch (IOException e) {}

 System.exit(0);

    }

    public void run() {

 ServerSocket serverSocket = null;

        boolean listening = true;

 try {

            serverSocket = new ServerSocket(4444);

        } catch (IOException e) {

            System.err.println(“Could not listen on port: 4444.”);

            System.exit(-1);
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        }

 while (listening) {

          // learn to speak again.

     try {

  new SqueezeServerThread(serverSocket.accept()).start();

  yield();

     } catch (IOException e) {}

 }

 try {

     serverSocket.close();

 } catch (IOException e) {}

        try {

            Thread.sleep(20000);

        } catch (InterruptedException e) {}

    }

    public void serialEvent(SerialPortEvent event) {

        switch(event.getEventType()) {

        case SerialPortEvent.BI:

        case SerialPortEvent.OE:

        case SerialPortEvent.FE:

        case SerialPortEvent.PE:

        case SerialPortEvent.CD:

        case SerialPortEvent.CTS:

        case SerialPortEvent.DSR:

        case SerialPortEvent.RI:

        case SerialPortEvent.OUTPUT_BUFFER_EMPTY:

            break;

        case SerialPortEvent.DATA_AVAILABLE:

     handleData();

            break;

        }

    }

}
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Appendix B (Evaluations):

(First Study Materials)

Briefing script 
Read to all subjects upon arrival at laboratory 

(comments to the administrator in bold)

NOTE:  Be very friendly to the subject, but in a natural way.

Greet the subject with this script, the consent form, and a signed payment voucher, and lead them 

to a seat in the testing area.

If the subject asks any questions during this process, politely state:  

“I’m sorry, but I’m only allowed to read from this script.  I will be able to answer any questions you 

have when the experiment is completed.”

Otherwise, read the following script:  

“Thank you for coming and participating in this study!”

“We’d like you to fill out the registration sequence for a popular job search site. We’d like to strongly 

encourage you to use [feedback device for condition] to send feedback about any problems you have 

as you progress through the registration process. Afterwards, we’d like to ask you to answer some 

questions about your experience, and fill out a questionnaire.  That’s basically it. We are trying to 

evaluate the usability of the web site. So, we need you to be a tester.  Okay?”

“Okay.  You’ll be asked to fill out the registration form for jobtrack.com. Let me show you how to 

use: [depending upon condition]

· Customer Service Web Form

· Gripe

· Squeezemouse

[Customer Service Web Form]

“If you have any problems, you can use the web form at http://behaved.media.mit.edu/study/

comments.jsp” [type in this URL and show user form] It’s a standard form. All you have to do is type in 

comments to report your frustration and hit the submit button.
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[Gripe]

“If you have any problems, you can use this piece of software [show user gripe interface]. If you click 

on this icon and choose “send report” Gripe (as we call it) will record some information about what’s 

happening. Gripe will also bring up a slider. Use that slider to report your frustration. You can also type 

in comments on the comments tab. [show user comments tab] Once you’re done click the Send Report 

button.

[Squeezemouse]

“If you have any problems, you can use this mouse and software [show user gripe interface]. If you 

squeeze the mouse hard it will record some information about what’s happening. The longer you 

squeeze it, the more the system registers your frustration. You can bring up an event you’ve captured 

by clicking on this icon and choosing this event. In addition you can click on the icon and choose “Send 

report” to start sending feedback immediately. You can also type in comments on the comments tab. 

[show user comments tab] Once you’re done click the Send Report button.

Now you try. [Watch User Try]

When you’re done, the computer will notify you to get up and come get me—and I’ll be right out 

here—and I’ll conduct a short interview give you a brief, 1-page paper questionnaire to fill out.  The 

entire experience, start to finish, should take you less than 1 hour. Okay?

“First, we’d like to give you your payment voucher, redeemable at the cashier’s office (building 10, at the 

dollar bill mural in the Infinite Corridor, if they’ve never been).  [have them fill out voucher, and have 

them hand it back to you to copy.] 

“Now, we’d like you to read and fill out this consent form.”  [hand subject consent form, and pen if 

necessary.  While subject fills out consent form, copy the filled-out payment voucher, and/or otherwise 

look busy; do not rush the subject, or make them feel nervous.]  When they are done filling out the 

consent form, say, “Thanks.  Okay, let’s get you started.  Right this way.”

Lead the subject into the experiment room, and offer them a seat in front of the computer.  Turn on the 

video camera, and then say to the subject:  

“If there’s a problem, I’ll be right outside the room. Otherwise, good luck!”
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QUESTIONNAIRE A
Please answer the following questions:

NOTE: Filling out this questionnaire is very important to our research, but is entirely 
voluntary. Feel free to skip any question you don’t want to answer.

1.  How hard was the job registration web form to use?
(Very Easy)  = = = = = = = (Very Hard)

2.  How responsive was the job registration website?
(Very Fast)  = = = = = = = (Very Slow)

3.  How hard was it to send feedback about the web form?
(Very Easy)  = = = = = = = (Very Hard)

4.  Did you like using the feedback page?
(Very Much)  = = = = = = = (Not at All)

5.  Did sending feedback interfere with lling out the form?
(Very Much)  = = = = = = = (Not at All)

6.  How interested are you in using the feedback page again?
(Very Much)  = = = = = = = (Not at All)

7.  Prior to today, have you ever been a participant in a usability test?
=Yes  =No

8. What are your impressions of the whole experience of lling out the form, 

and sending in feedback?
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QUESTIONNAIRE B
Please answer the following questions:

NOTE: Filling out this questionnaire is very important to our research, but is entirely 
voluntary. Feel free to skip any question you don’t want to answer.

1.  How hard was the job registration web form to use?
(Very Easy)  = = = = = = = (Very Hard)

2.  How responsive was the job registration website?
(Very Fast)  = = = = = = = (Very Slow)

3.  How hard was it to send feedback about the web form?
(Very Easy)  = = = = = = = (Very Hard)

4.  Did you like using the Gripe feedback software?
(Very Much)  = = = = = = = (Not at All)

5.  Did sending feedback interfere with lling out the form?
(Very Much)  = = = = = = = (Not at All)

6.  How interested are you in using Gripe again?
(Very Much)  = = = = = = = (Not at All)

7.  Prior to today, have you ever been a participant in a usability test?
=Yes  =No

8. What are your impressions of the whole experience of lling out the form, 

and sending in feedback?
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QUESTIONNAIRE C
Please answer the following questions:

NOTE: Filling out this questionnaire is very important to our research, but is entirely 
voluntary. Feel free to skip any question you don’t want to answer.

1.  How hard was the job registration web form to use?
(Very Easy)  = = = = = = = (Very Hard)

2.  How responsive was the job registration website?
(Very Fast)  = = = = = = = (Very Slow)

3.  How hard was it to send feedback about the web form?
(Very Easy)  = = = = = = = (Very Hard)

4.  Did you like using the Squeezemouse feedback device?
(Very Much)  = = = = = = = (Not at All)

5.  Did sending feedback interfere with lling out the form?
(Very Much)  = = = = = = = (Not at All)

6.  How interested are you in using the Squeezemouse again?
(Very Much)  = = = = = = = (Not at All)

7.  Prior to today, have you ever been a participant in a usability test?
=Yes  =No

8. What are your impressions of the whole experience of lling out the form, 

and sending in feedback?
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(Second Study Materials)

Briefing script 

Read to all subjects upon arrival at laboratory 

(comments to the administrator in bold)

NOTE:  Be very friendly to the subject, but in a natural way.
Greet the subject with this script, the consent form, and a signed payment voucher, and lead 
them to a seat in the testing area.

Apparatus:
 • Video camera focused on user’s screen over shoulder
 • Pressure Sensitive Mouse
 • Instrumented software which collects mouse data
 • Timer Clock

If the subject asks any questions during this process, politely state: 
“I’m sorry, but I’m only allowed to read from this script.  I will be able to answer any 
questions you have when the experiment is completed.”

Otherwise, read the following script:  
“Thank you for coming and participating in this study! We’d like you to fill out the brief 
registration sequence for a popular job search site. We will be performing a usability test to 
see how users respond to it.”

“With your consent as you use the job search site audio, video, and mouse input will be 
recorded.”

[Hand subject consent form, and pen if necessary.  While subject fills out consent form, 
Look busy; do not make them feel nervous.]  When they are done filling out the consent 
form, say, 

“Next, we’d like you to sign your payment voucher. Once we make a copy for our records, 
We’ll give you the original which is redeemable at the cashier’s office immediately following 
the experiment. (building 10, at the dollar bill mural in the Infinite Corridor, if they’ve never 
been)

[have them sign voucher, and make copy for our records.] 
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[setup mouse, and ensure all the camera is on]

“After the experiment, we’d like to ask you to fill out a quick questionnaire and answer some 
questions about your experience.  We know your time is important so we won’t take too long.  
Okay?”

“When you’re done, the computer will notify you to get up and come get me—and I’ll be right 
out here. At that point I’ll give you a quick, 1-page paper questionnaire to fill out and conduct 
a short interview.”

[Bring up http://arsenal.media.mit.edu/study/start.html, and select their condition]

[Be a little insulting here]

“During our pilot study we found that the entire experience, start to finish, should take you 
less than 15 minutes. Some graduate students from campus here were able to move through 
the webpages in 10 minutes. But we don’t expect you to go that fast, we figure it shouldn’t take 
average folks all that much longer. You should be aware of how much time you’re spending. 
This clock will show you how much time is left.”

[Start the clock at 15 mins (go to 30 and then back)]

“If you run out of time, please continue until you are finished. If there’s a problem, try to work 
through it. I’ll be right outside the room. Otherwise, good luck!”
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QUESTIONNAIRE
Please answer the following questions:

NOTE: Filling out this questionnaire is very important to our research, but is entirely 
voluntary. Feel free to skip any question you don’t want to answer.

1.  How hard was the software to use?
(Very Easy)  = = = = = = = (Very Hard)

2.  How responsive was the software?
(Very Fast)  = = = = = = = (Very Slow)

3.  How frustrating was the experience?
(Very Much)  = = = = = = = (Not At All)

4.  How mentally difcult was it to use the software?
(Very Much)  = = = = = = = (Not at All)

5.  Did you like using the software?
(Very Much)  = = = = = = = (Not at All)

6.  How interested are you in using the software again?
(Very Much)  = = = = = = = (Not at All)

7.  Prior to today, have you ever been a participant in a usability test?
=Yes  =No

8. What are your impressions of the whole experience of using the software?
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