
The Sensing and Measurement of
Frustration with Computers

Carson Jonathan Reynolds
B. S. Technical Communication
University of Washington
May 1999

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in Partial Fulfillment for the Requirements for the Degree of

Master of Science in Media Arts and Sciences at the
Massachusetts Institute of Technology

May 2001

© Massachusetts Institute of Technology, 2001. All rights reserved

Signature of Author: Carson J. Reynolds
Program of Media Arts and Sciences
May 11, 2001

Certified by: Rosalind W. Picard
Associate Professor of Media Arts and Sciences
Thesis Supervisor

Accepted by: Stephen A. Benton
Chair, Committee for Graduate Students
Program of Media Arts and Sciences

The Sensing and Measurement of
Frustration with Computers

Carson Jonathan Reynolds

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning, on May 14, 2001,
in Partial Fulfillment for the Requirements for the Degree of
Master of Science in Media Arts and Sciences

Abstract
By giving users a way to vent, we transform their frustration
into a valuable source of information for adapting interfaces.
Drawing from psychophysiology and tactile sensing, we pres-
ent frustration sensors as a way of incorporating user feed-
back into interface design processes. This thesis documents
the development of designs for several sensors aimed at
detecting user frustration with computers. Additionally the
thesis explores the design space between active sensors that
facilitate the communication of frustration and passive sen-
sors that detect frustration without demanding the user’s
attention. During evaluations we learned several things:

• Participants liked having devices to communicate
frustration.

• The data that was collected during active and passive
user interactions can be used for redesigning and
adapting systems (either by hand, or automatically).

• User behaved differently during usability problems.
In a comparative study of three active designs (Frustrometer,
Squeezemouse, and traditional feedback web page) we found
that users prefer the Frustrometer to a web feedback page.
Preliminary results suggest that frustration-stimulated behav-
ior can also be detected through passive sensors. When
combined with other contextual information, these sensors
provide a crucial building block in systems that interact and
adapt to human behavior by indicating where and when
change is needed.

Thesis Supervisor: Rosalind Picard
Title: Associate Professor of Media Arts and Sciences

The Sensing and Measurement of
Frustration with Computers

Carson Jonathan Reynolds

The following people served as readers for this thesis:

Hiroshi Ishii
Associate Professor
MIT Media Laboratory

Ted Selker
Associate Professor
MIT Media Laboratory

Acknowledgements

To begin with I’d like to thank all of the folks who helped
directly with this thesis. My readers, Hiroshi Ishii and Ted
Selker, have been generous with their time and patience.
Raul Fernandez, Jocelyn Scheirer, and Mike Ananny provided
invaluable council at various points during this work. Matt
Norwood and Ali Rahimi provided intellectual and moral
support for this work. Daryl Carlson deserves more thanks
than I can give for all of his time and endurance.

In addition, all of the undergraduates and graduate researchers
who assisted with this work also deserve special thanks.
UROPs: Regina Sam, Sataporn Pornpromlikit, Maik Flanagin,
Ian Finn, David Alexander, and Lindsey Wolf. Grads: All of the
Affective Computing Group, Sumit Basu, Brian Clarkson, Rich
Duvall, Ari Benbasat, Rob Poor, Craig Wisneski, Golan Levin,
Casey Reas, and Elizabeth Sylvan.

I also need to thank the good friends who buoy me: Marshall
Smith, Courtney Humphries, Dan Johnson, Lisa Brewer, Roger
Squire, Michelle Peterson, Eli Smith, James Patten, Ben Piper,
Paul Nemirovsky, Dimitris Vyzovitis, and Susan Pearlman.

David Farkas deserves thanks for believing in me enough to get
me here.

Lastly, countless thanks to Roz for believing in me enough to
bring and keep me here.

Love to my family for just believing in me enough.

This thesis is dedicated to walking out the front door.

viii

ix

Table of Contents

1. Introduction 11

1.1 Long Term Scenario - Improvisation

1.2 Short Term Scenario - Usability Tool

1.3 Motivation

1.4 Theory

1.4.1 What is Frustration?

1.4.2 What are Sensors?

1.5 Affective Interaction

1.5.1 I’m going to teach you a lesson!

1.6 Contributions of the Thesis

1.7 Roadmap

2. Related Work 19

2.1 Psychophysiology

2.2 Tactile Sensing in Robotics

2.3 Tangible User Interfaces

2.4 Devices

2.4.1 Sentograph

2.4.2 Sheriden’s Instrumented Classrooms

2.4.3 Touch Phone

2.4.4 Many Mice

2.5 Software

2.5.1 Remote Evaluation

2.5.2 Interface Instrumentation

3. Sensor Design 27

3.1 Preliminary Investigations – Ethnography

3.1.1 Investigation Methods

3.2 Early Prototypes

3.2.1 AffQuake

3.2.2 iRX A/D Hack

3.2.3 Beanbag

3.2.4 First Mouse

3.3 First Revisions

3.3.1 Single Force Sensitive Resistor

3.3.2 Strip Chart Interface

3.3.3 Yelling Detector

3.3.4 Thumbs-Up / Thumbs-Down

3.3.5 Bayesian Network

x

3.3.6 Voodoo Doll

3.3.7 Blink Detector

3.3.8 Expletive Detector

3.4 Second Revisions

3.4.1 Serial Swiss Army Board

3.4.2 Integrating Squeezemouse

3.4.3 FSR Positioning Inquiry

3.4.4 User Interfaces

3.5 Third Revisions

3.5.1 Attentional Considerations

3.5.2 Continuous Capture

3.5.3 Unobtrusive Mouse

3.5.4 Grid-SqueezeMouse

3.5.5 PressureMouse

4. Evaluation 49

4.1 First Pilot Study

4.1.1 Methodology

4.1.2 Preliminary Results

4.1.3 Analysis

4.2 Second Pilot Study

4.2.1 Anecdotal Observations

4.3 Second Study

4.3.1 Apparatus

4.3.2 Methodology

4.3.3 Results

4.3.4 Analysis

4.3.5 Analysis Conclusions

5. Applications and Future Work 65

5.1 Distributed Usability

5.2 Interface for Reinforcement Learner

5.3 Front End to Adaptive Generative Systems

5.4 Usability Benchmark

5.5 Contextual Fusion

5.6 Further Refinements

6. Summary and Conclusions 69

11

1 Introduction

You sit in front of your computer, absolutely livid. It is hours
before an important deadline, and your word processor keeps
doing all sorts of obnoxious things. When you enter in some
new text, all of your diagrams are shifted out of place. All of the
automatic features that usually seem pretty handy are causing
you no small headache. And then it happens. The application
crashes, taking your document with it. This is the straw that
breaks the camel’s back: you start yelling. Flush with anger and
viscerally upset you start physically whacking the keyboard of
your system. You start moving the mouse in an angry manner,
as if it were not an inanimate object, but some appendage of
a very problematic and naughty animal. Then you sit back and
fume.

A sympathetic friend sees your expression and inquires,
“What’s wrong?”

“Just the usual,” You say sardonically. “Everything is fouled up
and I don’t have time to alter all the bleeding settings so that
this thing behaves properly.” The passerby nods knowingly and
feels bad, wishing that there was something that could be done
for you.

Imagine instead that the computer you are using is as sensi-
tive, and emotionally intelligent as your friend. What would
interaction be like if a computer had the capacity to detect and
respond intelligently to your expressions of frustration?

Figure 1. Displeased users
sometimes physically vent
frustration with computers.

12

1.1 Long Term Scenario - Improvisation
You are amused; the computer has finally gotten it. After a few
nasty utterances of dissatisfaction with a user interface annoy-
ance, the system has rooted out the problem and replaced it.
As you sit in front of two screens, the system has improvised
a new interface configuration on the mirror image of your cur-
rent workspace. You shift your attention to the new improvised
‘ping’ to your ‘pong.’

Like an attentive and well-trained dog, your computer notices
the satisfied sound of your voice and tracking your admiring
gaze, elects to reinforce the improvised behavior. After a hon-
eymoon phase with the new designed behavior has passed, the
system incorporates the new design. Your computer captures
the now unused workspace you previously attended to as a new
canvas for improvisation. Random walks, various mutations of
your current settings are displayed.

Like a complex diploid creature, an enormous space of differ-
ent possible behaviors is encoded in each of the workspaces.
The system stochastically explores new possibilities by looking
at what you have liked and disliked in the past. When a particu-
larly good candidate comes along, it’s applied to your unused
screen to see how you respond. And in this way you gradually
tailor a previously one-size-fits-all interface to your own likes
and dislikes.

1.2 Short Term Scenario - Usability Tool
You are not amused. Every time you use this particular feature
you experience a good dose of aggravation. You aren’t alone
in your distaste either. A histogram hosted at the open-source
project’s development site shows that many other people have
griped about this software’s implementation.

A week later, you are content. Developers associated with the
project made note of the spike on the histogram showing user
dissatisfaction with the feature. Several on-line volunteers, fear-
ing for their reputation as designers scramble to implement a
better user-interface. The resulting patch, which you download
and install, fixes the most menacing problems. Soon thereafter
the developers on the project are happy to note that the spike

Figure 2. Pleasing users should
be part of the design of
computer interfaces.

13

of frustration has receded, and focus their attention on the cre-
ation of other new and soon to be evaluated features.

1.3 Motivation
For all the leaps and bounds computer science has made in the
last few years, computers are still extremely clumsy and inele-
gant machines. To add insult to injury an increasingly comput-
erized workplace and society necessitate interacting with com-
puters on a very frequent basis. Usability engineers have tried
to remedy many of the shortcoming and inelegant flaws that
cause aggravation and irritation. But current usability practices
seem unable to keep pace with the rapid pace of computeriza-
tion. Traditional usability also seems poorly equipped to handle
problems that stem from generic one-size fits all software.

Right now there is a large cost (in terms of time) associated
with expressing feedback about shortcomings in a computer
system. Typically, the only outlet available is to submit a com-
ment on a software company’s website. Before we can dras-
tically improve computer interfaces, we must know what’s
wrong with them. But before we can do that, we need to make
it easier for people to express their likes and dislikes. This
thesis looks into interfaces and sensors that allow people to
easily express their likes and dislikes about computer systems.

Once people are given tools to easily express what they dislike
(or like) about their computer, all sorts of interesting possibili-
ties emerge. With good data about the user’s preferences, sys-
tems can begin to adapt the user interface to better fit.

Of course adaptation is no small matter. Consistency is held up
to be one of the golden maxims of user interface design. Adap-
tation in many ways runs directly in the face of it. A system
that constantly changes its behavior will be infinitely flexible,
but infinitely irritating as well. Unfortunately the converse is
equally disastrous. We have all experienced systems that are
difficult or impossible to alter and often place the burden for
change on the user. Given two extremes, amorphous inconsis-
tency on one side, and stagnant uniform-like inflexibility on
the other, what middle ground are we left to stand on?

Figure 3. OpinionLab’s interfaces
visualize user satisfaction.

Figure 4. Consistent, but generic
interfaces, may not allow
enough flexibility to ease
frustrations.

14

The space is clearly staked out when we think about the set
of circumstances when people would not only accept, but also
desire a change of behavior. In some sense, we are already
equipped with tools for training other creatures how we like
to work. When we grow frustrated or angry at a pet, child, or
friend we are often trying to get them to alter their behavior.
More specifically, to feel ‘bad’ about something they’ve done,
and to sincerely try to avoid doing it again.

Likewise, we can say that when someone is frustrated with
their computer, they are interested in changing its behavior to
help them achieve the user’s ends instead of thwarting them.
So if we can reliably detect and measure frustration, then we
also have good indicators about where, when, and why we
should adapt.

1.4 Theory
1.4.1 What is Frustration?
When early psychological experimenters began to do behavior-
ist studies, they began to more rigorously define the notion of
frustration. Psychologists came to see frustration as the neg-
ative feelings that arise when attempts to achieve a goal are
thwarted.

1.4.1.1 Frustration’s Distinction from Stress
We may be tempted to lump frustration in with the notion of
stress. The two are often used interchangeably. However there
is an important distinction to be struck between the two. Stress
arising from heavy mental, physical, or emotional workloads
does not necessarily coincide with frustration.

Briefly, someone may be stressed without being frustrated.
Conversely, someone may be frustrated, but not mentally or
physically stressed.

1.4.1.2 Frustration’s Expression
Frustration can be expressed in many ways. We may commu-
nicate frustration to others through our posture, facial expres-
sion, or tone of voice. Our autonomic nervous system may
respond to frustration by increasing skin conductivity, decreas-
ing heart rate variability, or tensing muscles. Cognitively, we

Reeves and Nass argued
in The Media Equation that
we form social relationships
with mediating technologies
like computers. [1996].

15

may verbalize or alter our behavior in response to frustration.
In this thesis we explore sensors for detecting physiological
changes (like skin conductivity or muscle tension) and behav-
ioral changes (like verbal expressing or physically venting frus-
tration).

1.4.2 What are Sensors?
If we are about to set about designing sensors, we may first
want to ask ourselves precisely what entails the notion of a
sensor. A sensor is a device that measures some observable
physical quantity.

Sensors are often transducers meaning that they convert a
physically measurable quantity (like temperature, or pressure)
into an alternative signal. A microphone, we could say, trans-
duces changes in pressure (vibrations) to a change in electrical
signal.

1.4.2.1 Active vs. Passive Sensors
What is curious is that sensors are often used as interfaces. A
mouse, the most common pointed device used with comput-
ers, is actually a two-dimensional motion sensor. But it is used
as a way to manipulate information on computers.

When a user is actively aware of a sensor and interacts with it
in a way that requires some of their attention, it becomes an
“active” sensor, something with which people interact. When a
user is not consciously aware of a transducer, it is more “pas-
sive” meaning that it performs more traditionally as a sensor
that monitors, without requiring the attention of the user. Gen-
erally, the more active the sensor, the more mental or physical
effort the user has to apply to use it. Passive sensors require
less effort on the part of the user and may be used while the
user is engaged in another task.

Much of the work presented later lies in the surprisingly abun-
dant space between passive and active sensors. Following the
experience of designing and evaluating several devices that
are hybrid sensor-interfaces, we are able to say some concrete
things about design trade-offs in this space.

16

1.5 Affective Interaction
Our communication with computers is impoverished. The
command line interface lets us say what we want the computer
to do. However, there are very few interaction styles that let me
express how I like what the computer did. If I am frustrated
by a friend’s behavior, more often than not, they can read my
expression and alter their behavior, even before I consciously
say “Could you not do that, I find it annoying.” But even the
‘smartest’ adaptive interfaces do not even begin to offer this
sort of emotional intelligence.

1.5.1 I’m Going to Teach You a Lesson!
In some sense, we already have developed behavioral sema-
phores that we use to teach each other how to interact. When
I am pleased with what a friend has done, I will smile and
convey my happiness with them. When I am angry about what
my dog has done, I may scold the dog, say “Bad Dog” loudly.
A child learning is filled with a world of good and bad expres-
sions. These expressions are gradually learned, and favorable
behavior is gradually reinforced, while distasteful behavior is
gradually learned to be avoided. However, when we look at
most adaptive interfaces today, I cannot easily train them to
avoid behavior that I dislike and to adopt behavior that I find
pleasing. Passive or active sensors that can help communicate
my affect may allow for a more interesting sort of interaction.

1.6 Contributions of the Thesis
First and foremost, this thesis documents the design of several
sensors developed as tools for the exploration of communica-
tion of user feedback related to frustration. The document also
seeks to provide information about the interplay between sen-
sors on one hand, and interfaces on the other. Lastly, this thesis
seeks to show that unobtrusive sensors can be used to distin-
guish between frustrated behavior and its converse.

1.7 Roadmap

The next chapter concerns itself with documenting previous
and ongoing related work (chapter 2). Following this is a pre-
sentation of the design process of various sensors and inter-
faces for the expression of frustration (chapter 3). A series of

17

studies which evaluate these devices and interfaces is included
immediately afterwards (chapter 4). The conclusions of data
analysis can also be found in this chapter. Lastly, various appli-
cations and future work concerning sensors that can detect
frustration are outlined (chapter 5).

18

19

2 Related Work

The path to make user interfaces more adaptive and in step
with more natural modes of human interaction is a long and
twisting one. Many sub-fields and notions must be borrowed
from in order to make meaningful progress.

2.1 Psychophysiology

Human factors engineers have long concerned themselves
with the quantification of the physiological and psychological
effects of different machinery. Psychophysiology seeks to find
biological signals or behavior that are linked to stress (among
other states). Lie detector tests, and an extensive amount of
work on workplace satisfaction are rooted in the inquiries of
psychophysiology.

Previously, engineers had used different physiological mea-
sures of strain to assess designs [Backs and Boucsein, 1999].
But more recently, Picard suggested that “frustration could be
measured, quantified, and incorporated into the evaluation of
new products” [Picard, 1997]. The sensing of affect, or emo-
tional expression, provides a mechanism for triggering adap-
tation. Affect sensing focuses on the measurement of signals
related to the expression of frustration, and emotion in gen-
eral.

Work in the affective computing group and elsewhere has
shown that different affective states can begin to be distin-
guished by computers. For instance, a 24-subject experiment
was run and galvanic skin response, blood-volume pressure,
and mouse-click behavior were recorded from test subjects
who were intentionally frustrated. The resulting data set could
be recognized by a classification program with 67.4% accuracy
[Scheirer et al., 2001].

Another approach that does not use biosignals, but instead
builds upon computer vision, is the classification of facial
expression using Paul Ekman’s Facial Action Coding System
[1978]. Work done at Carnegie-Mellon University’s Affect Anal-
ysis group was able to correctly classify different facial expres-
sions with accuracy rates greater than 90% [Tian et al., 2001].

Figure 5. Face classified by
CMU’s Automated Facial
Expression Analysis system.

20

The obvious next question is that if we can begin to detect
affective states—like frustration—with the aid of electrodes
and cameras pointed at the user’s face, can we do the same
with less obtrusive sensing technologies? For instance can we
determine someone’s stance toward a computer by examining
touch patterns?

2.2 Tactile Sensing in Robotics

Robotics offers us not really an answer to this question, but
some implements with which to explore it. The field of tactile
sensing in robotics concerns itself with making mechanical
and electrical transducers for touch. If truly embodied robots
are to be realized, clearly they need to be able to grasp and
touch. But they may also need to carefully run their fingers
over, or maybe even caress.

Starting with the simplest sort of information, a single bit
(touching / not touching), sensors have gradually expanded
the range and resolution of the touch that can be transduced.
A one-bit touch sensor has become a simple matter to pro-
duce. We can use mechanical switches, a photodiode, and elec-
trodes (for conductive surfaces). For instance, older supermar-
kets made use of one-bit touch sensors to open doors. Many
robots have used antenna-like feelers to avoid repeatedly bump-
ing into things.

One-dimensional sensors provide a degree of information
instead of a single bit. Various force sensitive resistors and
capacitive sensors have been used widely in this capacity: not
simply to determine if something is touching or not touching
but also to determine how hard something is touching.

Crowder provides an excellent survey of different tactile sen-
sors that have been used in automation and robotics [1998].
He taxonomizes tactile sensing by dividing it into touch, spa-
tial-tactile, and slip sensing. He also enumerates different tech-
niques that can be used to build touch sensors:

Figure 6. The MIT Artificial
Intelligence Lab’s Genghis robot
uses antennas as tactile sensors.

Figure 7. The Harvard Tactile
Sensing Project’s tactile fingers
make use of video flow analysis
to sense touch.

21

 o Mechanical

 • Load

 • Pressure

 o Electrical Measurement

 • Resistive

 • Capacitive

 • Magnetic

 o Optical Measurement

 • Photoelastic

 • Fiber optic

Most recently, researchers have been working to develop
deformable arrays of tactile sensors to coat surfaces. Nicolson
and Fearing have developed non-conformable planar and cylin-
drical tactile sensors that are a strong step in this direction
[2001]. Perhaps the best example so far of a conformable sensor
is Pressure Profile Systems’ 8x8 conformable array.

2.3 Tangible User Interfaces

Closely related to this endeavor is the exploration of haptic
interfaces to computation and the work of the Tangible Media
group at the MIT Media Lab. The group’s early work envi-
sioned giving users the ability “to ‘grasp & manipulate’ bits
. . . by coupling the bits with everyday physical objects and
architectural surfaces”[Ishii and Ullmer, 1997]. The Tangible
Media Group’s Phicons are a concatenation of “Physical” and
“Icons” meaning graspable representations for software bits.
This idea was developed into the notion of a feedback device
for affect by Matt Norwood’s “thumbs-up” and “thumbs-down”
interface for Mr. Java, an enhanced coffee machine [2000].

2.4 Devices

Communicating expression is actually a very old pursuit in
many senses. Almost every musical instrument could be said
to perform in this capacity. Instruments act as a translator
between physical manipulations and the communication of
some sound, which often conveys some mood. Very recently,
people begun to think of these physical manipulations as some-
thing that could be quantified and distinguished between.

22

2.4.1 Sentograph
Manfred Clynes built an artifact for expressing emotion,
inspired by the breadth of expression distinguishable in mas-
sage via touch [1977].

His sentograph allowed a user’s touch to be measured and
visualized along a two-dimensional space. By categorizing the
resulting shapes, Clynes was able to distinguish between eight
fundamental classes of tactile emotion expression: anger, hate,
grief, joy, love, romantic love, reverence, no emotion. Clynes
found that common expression of these shapes exists across
cultures.

2.4.2 Sheriden’s Instrumented Classrooms

Another early attempt of communicating expression through
the use of artifacts had quite a different end-goal. Twenty-five
years ago, Sheridan discussed instrumentation of various
public speaking locations (classrooms, council meetings, etc..)
with switches so that the audience could respond and direct dis-
cussion by voting [1975]. If a particular topic was of interest to
the majority of the audience, they could flip physical switches
to express this preference.

2.4.3 Touch Phone

Jocelyn Scheirer’s touch phone is another instance of a tan-
gible interface for expressing emotion [Scheirer and Picard
2000]. It converts grip strength sensed on a conductive foam
surface into a colored representation on a computer. It is used
to communicate expressive pressure changes to other people
(as opposed to the computer itself).

2.4.4 Many Mice

Several different people have stumbled on the idea of using
the mouse as medium for sensing affect related to computers.
Various approaches have been tried, from examining mouse
movement behavior [see Mueller and Lockerd, 2001] to embed-
ding electrodes onto a mouse. Each of the following mice rep-
resents a tangible interface that can be used to collect informa-
tion about the user’s affect.

Figure 8. The Clynes Sentograph.

23

2.4.4.1 Sentic Mouse
Kirsch developed a mouse modeled after Manfred Clynes’ sen-
tograph [1997]. The mouse made use of a force-resistor to
sense directional input. Kirsch used this mouse as part of study
in which participants were shown imagery from Lang’s Inter-
national Picture Affective System.

2.4.4.2 Touch Mouse
Borrowing aspects of the Touch Phone design, Norwood imple-
mented a mouse that could detect how hard someone was
squeezing around a line of conductive foam. Using a data
acquisition board, this signal was passed into a computer and
visualized using a color swatch in a similar manner to the
Touch Phone.

2.4.4.3 Squeekee
Squeekee is a mouse that detects how hard users have clicked
its buttons. A commercial product, it seems to be targeted at
games, but its inventors are also interested in other innovative
HCI applications. Although it is not used explicitly to detect
affect, it provides a dimension of information about clicking; it
seems a likely candidate device that could be used to detect the
expression of frustration.

2.4.4.4 MS Touch Mouse
Microsoft’s Ken Hinckley developed a touch sensitive mouse
that relayed information back to the user’s interface [1999].
The mouse only conveyed a single bit of information: whether
the user was touching the mouse or not. This bit in turn
was used to determine whether application toolbars should be
made available. It is perhaps one of the simplest, but better
realized examples of a perceptual user interface.

Figure 9. Kirsch’s Sentic Mouse.

Figure 10. Squeekee detects how
hard users click.

Figure 11. The MS Touch mouse
makes application toolbars
visible when touch is detected.

24

2.4.4.5 IBM Emotion Mouse
A comparatively elaborate approach is being pursued by
researchers at IBM. The emotion mouse developed in their
lab is used to gather temperature, galvanic skin response, and
somatic movement from computer users. Coupled with heart
rate information that is acquired from a separate chest-strap
sensor, researchers used the mouse to distinguish between six
different emotions: anger, fear, sadness, disgust, happiness,
and surprise. Preliminary results suggest that they were able to
achieve 66% recognition accuracy rates using this device [Ark
et al., 1999].

2.5 Software

 Usability researchers have also pursued the idea of using soft-
ware interfaces to communicate affective information about
computers. The simplest manifestation of this idea is the nearly
ubiquitous feedback web page. As crude as comment textboxes
are, they are an important step towards facilitating the com-
munication of frustration. In some sense they convey parts of
the usability lab or marketing department directly into the use
environment. This idea is developed more fully by the notion
of remote evaluation.

2.5.1 Remote Evaluation
Remote evaluation, put simply, is using communication sys-
tems to collect usability information over a distance. Castillo
et al. introduced the notion of remote evaluation through the
use of critical incident reporting tools [1997]. More specifi-
cally, Hartson et al. suggest that remote tools can be especially
useful when supporting “formative evaluation” after software
has been released [1996]. But Castillo et al. also note that
remote usability can be used during product development and
as part of customer support. They suggest a myriad of differ-
ent methods from the more mundane questionnaire submit-
ted remotely up to video-conferencing and screen sharing soft-
ware in support of evaluation.

Figure 12. The IBM Emotion
mouse collects temperature,
galvanic skin response, and
somatic movement.

25

Harston et al. performed a feasibility case study that “deter-
mined that user-reported critical incident method was a fea-
sible method” for collecting usability data [1998]. Elsewhere
they conclude that semi-instrumented remote evaluation tools
could “provide approximately the same amount and value of
qualitative data” as what would be obtained through more tra-
ditional usability laboratory based methods.

2.5.2 Interface Instrumentation
Interface instrumentation is the recording of interface usage
data for analysis. Various research and commercial systems
have been developed to explore the idea of instrumenting
interfaces. For instance WinWhatWhere™ provides software
for monitoring activity on remote systems [2000]. Reportedly,
researchers at IBM have also developed live-motion screen cap-
ture software called UCDCam, based on Lotus ScreenCam™
[1998].

Swallow et al. argue that “thousands of users could be using
instrumented applications”[1997]. They also note that auto-
matically recorded information can be used to detect usability
problems. They developed a set of problem indicators such as
the invocation of on-line help, or triggering of an error mes-
sage that can be monitored.

2.5.2.1 OpinionLab
One of the most developed and commercial successful remote
evaluation tools is a small widget that is embedded in compa-
ny’s web pages. OpinionLab’s animated [+/-] icon serves as a
remote evaluation tools so that web site designers can focus
their efforts on the more problematic parts of their website.

Figure 13. OpinionLab’s remote
evaluation interface.

26

27

3 Sensor Design

This chapter details the design process that was used to build
upon the work documented in the related work chapter. It
begins by explicating a participatory design process that influ-
enced many of the later design decisions. Descriptions of the
very first (but somewhat crude) prototypes that were developed
follow. The remaining bulk of the chapter details iterative revi-
sion of these early prototypes into more developed and mature
designs.

Figure 14: The chart above
details the development of the
different sensors explicated in
this chapter. The successive
levels of depth represent the
number of iterations. A large
breadth of sensors populates
the space spanned by the
notions of passive and active
user interaction. The ecology
of sensors was gradually culled
down into the promising and
more-fully realized prototypes.

3.1 Preliminary Investigations - Ethnography

This thesis’ design process was motivated by an effort to under-
stand how people might go about using adaptive systems. So
the work of sensor design actually began as an contextual
inquiry into how people might use adaptive systems.

Two driving questions were: How should people initiate and
use adaptation? And how should adaptive systems that respond
to frustration be represented? Much of the work that is pre-
sented further on is based on the findings of this inquiry.

28

A small pilot inquiry was performed to try to work through
many of the theoretical and practical issues surrounding the
powerful but nebulous notion of adaptation. Borrowing Holtz-
blatt and Beyer’s concept of participatory and contextual design
[1997], I chose to form a small group of two representative
users with whom I could perform critical design reviews in
which my collaborators would role-play scenarios with low-
fidelity paper mock-ups.

3.1.1 Investigation Methods
During each iteration I would present a “thesis” about how
they might use adaptation in the form of a paper mock-up.
My collaborators were encouraged to redesign the interface to
better suit their needs. This was considered the “anti-thesis”.
Then, we would form (and cognitively walk through) a “synthe-
sis” which took the best attributes of the prototype and their
response to it. This synthesis then served as the blueprint for
the next low-fidelity mock-up that I created offline and was
used as the “thesis” for the next interview. So the forming
of the interface was an iterative, dialectical process of sorts.
Think-aloud protocol, in combination with narrative storylines,
was used to try to tease out the collaborators’ opinions about
particular interface metaphors and task structures.

3.1.2.1 Thesis 1: Accessible
Starting from Holtzblatt and Beyer’s suggestion to “invent
solutions grounded in user work practice” I began by thinking
of ways to integrate adaptive capabilities into existing interface
paradigms. After casually observing users, I noted that users
typically searched menus looking for alternatives when they
reached some sort of usability stumbling block that caused
frustration. Based on this anecdotal evidence, I developed my
first thesis about how adaptation ought to be integrated into the
user’s interface: it should be accessible.

More specifically, I decided that adaptive features should be as
available as help menus, or perhaps should be considered part
of help. Accordingly, I developed prototype mock-ups using
Microsoft Visual J++:

29

I then printed screen shots of the menus and mock-ups for use
during my interviews. I encouraged participants to annotate
these mock-ups and alter them in any ways they found useful.
My collaborators made similar observations about this thesis:

• “Edit” seems to be the intuitive place to find tools to
adapt the interface

• If adaptation would not be limited to just one appli-
cation, then the tailoring tool should not be part of
the program, but part of something “above” it like the
operating system.

• The tool should not just be accessible but visible
• This prototype helps users who know what they want to

get rid of; the interface should be more intelligent.
Using this mock-up as a springboard, the participants and
I collaboratively developed a new storyboard for how action
might go. This storyboard was the synthesis of the original pro-
totype and their criticisms.
3.1.2.2 Thesis 2: Intelligent

I also developed several alternative menus for the prototypes:

Figure 15: AdaptNote mock-up,
with Adapt menu.

Figure 16: Various menu
configurations for AdaptNote
mock-up.

Figure 17: Dialog invoked by
AdaptNote menus.

30

The consensus seemed to be that the menus did not provide
an adequate interface for adaptive features. Furthermore, the
task analysis that I originally performed seemed inadequate.
Consequently, a new interface and task structure was designed
for my second round of interviews.

 The second iteration focused on a method to intelligently help
users of the system by suggesting alternatives. Since novice
users seem to have a hard time locating features I reasoned
that it would be better if the system could interrupt the user
when they were sufficient frustrated and present an alternative.
The second prototype consisted of a tailoring avatar and accom-
panying “wizard”.

My collaborators responded very negatively to this mock-up of
the interface. Their previous bad associations with Microsoft’s
Office Assistants ruled out the use of an avatar altogether. They
felt that the avatar assumed a certain amount of childishness
and lack of intelligence in users, which made them feel uncom-
fortable. Furthermore, they disliked the idea of a program con-
tinuously interrupting them. They preferred to be in control.

Clearly, this was not the vision of adaptive intelligence they
were after. The whole experience was beautifully summed up
by one participant: “There is a fine line between knowing
you and trying to think for you!” Accordingly, my co-designers
asked me to look for other ways of monitoring and responding
to frustration that were not so obnoxious.

3.1.2.3 Thesis 3: Perceptual
At this point I was somewhat at a loss as to how to move ahead.
Fortunately for me, a talk by Mathew Turk on perceptual com-
puting provided me with some direction. I decided to redefine
the task structure to include: continuous monitoring of frus-
tration, intelligent suggestion of alternatives, and assisting in
applying an alternative. From this I developed a somewhat
unorthodox perceptual interface to help the computer monitor
user frustration:

In my third round of interviews my collaborators found this

Figure 18: Office Assistant
interface mock-up.

31

model to be much better than the previous iteration. They did
have some misgivings though, they had strong objections to
the computer interrupting and suggesting alternatives, even if
the interruption was in the form of dialogs instead of avatars;
they wanted the interface to be less obtrusive. They also sug-
gested that it would be beneficial if the system allowed them
to experiment with and “undo” the various alternative compo-
nents.

3.1.2.4 Thesis 4: Transparent
I synthesized the notes from my last interviews into one final
thesis. It seems that the adaptive interface should follow a task
structure that includes:

· Transparent monitoring of frustration
· User to control and initiate adaptation
· Intelligently assist user in finding alternatives
· Help user apply and undo various components

Of course, due to the extremely small number of participatory
designers, these initial observations needed to be confirmed by
building and evaluating more prototypes.

3.2 Early Prototypes

Starting from this initial inquiry, I began to focus my attention
on building actual prototypes that facilitated the communica-
tion of frustration. The more promising of these were gradu-
ally refined into more elaborate and higher-fidelity prototypes.

3.2.1 AffQuake
One early notion of how a software interface might sense affect
was AffQuake. As an application for the Galvactivator glove,
AffQuake transduced galvanic skin responses and caused ava-
tars within the game to respond to this signal [Picard and

Figure 19: Conceptual imagery
of perceptual interfaces for
adaptive system.

32

Scheirer, 2001].

In AffQuake, if the player became startled, (their skin con-
ductivity sharply peaked) then their avatar within the game
would also reflect the state of being startled by jumping back.
A more elaborate version involved changing the size of charac-
ters within the game in relation to the level of arousal detected.
The more excited a player got, the more their GSR signal would
rise. The resultant signal was passed into quake causing the
player’s avatar to be scaled correspondingly.

AffQuake let me investigate one possible way in which some-
one’s affect would alter interaction. I found that skin conduc-
tivity is convenient, because it can be acquired from the user’s
hand. However I also found this inconvenient because users
had to plug in a cable, which sometimes interfered with typing.
Furthermore, I observed that skin conductivity changes at a
relatively slow rate, and lags slightly behind the inducing psy-
chological stimulus. Consequently, real-time interaction that
makes use of skin conductivity seems to be slow and unrespon-
sive to end-users.

Figure 20: AffQuake sized
avatars in response to skin
conductivity.

Figure 21: Jocelyn Scheirer’s
galvactivator communicates skin
conductivity through a LED and
a jack which analog data can be
acquired through.

33

3.2.2 iRX A/D Hack
AffQuake required a data acquisition board. Most off-the-shelf
PCI acquisition boards were expensive, and can only be
installed in one computer. A much simpler sensing board that
cost less and could be easily attached to computers was needed.
After some inquiry, I was able to combine the work of the iRX
project and the sensing technology used as part of the smart
shoe project. More specifically, I altered the iRX board to use
a PIC16C711, microcontroller, which incorporates an analog to
digital converter.

3.2.3 Beanbag
Another early, and promising way in which people can com-
municate their frustration to the computer was through the
use of a beanbag interface. In an effort to construct a tangible
interface that people could physically manipulate we disas-
sembled a mouse and placed its parts inside a beanbag. As
the beanbag was squeezed or struck, the beans inside rolled
against the mouse’s wheels causing data to be sent. It was—in
some sense—a one-bit touch sensor, able to determine if the
beanbag was jostled.

The beanbag was tied in with simple monitoring which was
able to relay squeeze messages to open applications. A simple
version of Word was created which shut off the Paperclip office
assistant when its proxy, the beanbag, was struck.

3.2.4 First Mouse
At the same time, I wanted to explore more traditional inter-
faces that could be augmented to transmit information about
the user’s affect to the computer. After examining Matt Nor-
wood’s Mouse (See section 2.4.5) I undertook the building of
a squeeze sensitive mouse. One of the shortcomings of Nor-
wood’s mouse design was that it responded differently depend-
ing on where the user squeezed the mouse. I settled on a sim-
plification that made only a single location on the mouse sensi-
tive.

The sensor consisted of metal plates separated by conductive
foam. As the plates were squeezed together by the user’s tight-
ening grip, the conductivity between the two plates increased.

Figure 22: Beanbag touch
sensor.

34

The difficulty experienced with this design was that it was hard
for the user to control. Its response was not easily predictable
from the user’s perspective. In addition, the dynamic range of
the sensor was limited.

3.3 First Revisions

These crude prototypes gave us some devices with which we
could think critically about sensor design. Although these first
versions had their limitations, they served as a stepping-stone
to more complex designs.

3.3.1 Single Force Sensitive Resistor
In order to get a more uniform response, we turned our atten-
tion to sensors that transduce force. Interlink Electronic’s force-
sensitive resistors (FSRs) had previously been used in the cre-
ation of electronic musical instruments. Force sensitive resis-
tors consist of a printed electrode pattern positioned over a con-
ductive polymer

We used the force sensitive resistor as a variable resistor in
a circuit that we added to the iRX analog to digital converter.
The FSR forms the top half of a voltage divider, which changes
the amount of voltage passed to the ADC as the user squeezes
harder. This design was beneficial because it was easy for
the user to locate and use the pressure sensitive spot, and
the response of the resistor to pressure was very predictable.
What’s more, the design was simple to construct and facilitated
rapidly prototyping different designs. We were later able to
build and compare many different arrangements for the FSR,
like under the user’s palm, closer to the heel of the hand, and
beneath the user’s thumb. (See section 3.4.3)

3.3.2 Strip Chart Interface
We decided to provide feedback to the user about pressing on
the mouse. Inspired by logging oscilloscopes we set about to
visualize the mouse input as a plot on a strip chart graph. This
was beneficial, because it allowed for users to see a short his-
tory of their input using the mouse. We added a threshold line
so that users can see when they are squeezing very hard.

Figure 23: Force Sensitive
Resistor.

Figure 24: FSR block diagram.

Figure 25: Strip Chart Interface.

35

3.3.3 Yelling Detector
After starting with touch, I became interested in other modali-
ties that people might use to express frustration. One idea was
to build a simple yelling detector. Using a PC microphone I
built an interface that detected the amplitude of a sound sam-
pled from the microphone. Sounds over a certain amplitude
were assumed to represent yelling.

3.3.4 Thumbs-Up / Thumbs-Down
Each of the interfaces created thus far mapped well to the
notion of arousal, or the level of user excitation. However these
interfaces were not good at allowing the communication of
valence, whether the excitation is positive or negative.

To better provide for more sophisticated models for emotional
behavior like Schlosberg’s [1953], I began to explore interfaces
that communicate valence. I designed and built thumbs-up
and thumbs-down icons so that the user can register pleasure
or displeasure with different interactions.

3.3.5 Bayesian Network
As part of a conceptual demonstration, the single FSR squeeze
mouse was coupled with the yelling detector and thumbs-up

Figure 26: Yelling Detector
interface.

Figure 28: Schlosberg suggested
arousal and valence as two
primary dimensions of emotion.

Figure 27: Thumbs-Up / Thumbs-
Down

36

/ thumbs-down, to provide indicators of the users frustration
which were passed into a network to estimate the conditional
probability. I collaborated with Jack Breese, who used the
Microsoft Bayesian Network Toolkit to design the network
graph. The output of this network was broadcast to appli-
cations. One demonstration application altered the conversa-
tional behavior of the Microsoft Office Assistant when the user
was detected to be in a frustrated state. The Bayesian network
provides a good framework for sensor fusion, when the inputs
of the sensors may not be completely reliable.

3.3.6 Voodoo Doll
The Beanbag interface (section 3.2.2) initially seemed one of
the more promising early prototypes. People liked to play with
it, and the interaction mapped directly to a real world meta-
phor: the use of voodoo dolls.

Figure 29: The Voodoo Doll in
action.

37

But it had several strong shortcomings. The Beanbag was a
one-bit touch sensor; it doesn’t give any indication of the depth
of the user’s frustration. It was also cabled to the computer,
limiting its use. The Beanbag could not easily be thrown.
What’s more, if the computer it was tethered to crashed then
any sort of data collected would be lost as well.

With the help of several undergraduate researchers, but most
notably Daryl Carlson, I set about to remedy these shortcom-
ings. We chose to use Craig Wisneski’s personal ambient dis-
play design as a jumping off point for our transmitter [1999].
The voodoo doll owes a strong debt to the design used by
Wiseneski’s personal ambient displays. Craig pioneered an
architecture for transmitting RF information between base sta-
tion and small ambient displays. Craig’s Master’s thesis envi-
sioned people interacting with abstract information through
tangible, subtle interaction. For instance, one personal ambient
display relayed information about the user’s stocks by grow-
ing hot when the market was up, and growing colder when the
market was down.

Following Wisneski’s design, we chose to divide (and conquer)
the design into two components:

• A proxy (accelerometer and transmitter)
• A base station (receiver, microcontroller, and serial

adapter)
We then proceeded by choosing a physical form factor. Archie
McPhee’s (www.mcphee.com) sells gag voodoo dolls for people
who are frustrated with their computer. We figured this was an
ideal starting point, since it already evoked the idea of punish-
ing your computer.

We ordered several dolls and quickly turned to assessing differ-
ent wireless radio transmitters. After looking at several radio
frequency (RF) modules we settled on the HP-II series trans-
mitter from Linx Technologies (www.linxtechnologies.com).
We started with an evaluation kit that contained prototype
boards and transmitter / receiver modules. We discovered that
the transmitter board was much too large to fit inside the
voodoo doll I wished to use. This meant that we had to set
about developing our own transmitter board.

Figure 30: The original use of
the Voodoo Doll.

38

3.3.6.1 Digital Voodoo
We began by examining prototypes of Ari Benbasat’s [check
spelling] gesture tracking accelerometer transmitter board.
We chose to use the ADXL210AQC, a 2-axis accelerometer
from Analog Devices that uses a pulse-width modulation
scheme (http://www.analog.com/industry/iMEMS/products/
ADXL210.html).

In order to use a checksum scheme, ensure line balancing, and
avoid signal attenuation, we chose to embed a small microcon-
troller on the transmitter board. Because of our familiarity with
the series, we selected Microchip’s PIC microcontroller family
(http://www.microchip.com). The PIC16F84 is a small 8-bit
core that runs at 10 Mhz and is well suited for small digital
decoding tasks.

We then constructed a preliminary PCB design using the
ProTel circuit design package. The design was not very com-
pact, but was still small enough to fit inside of the voodoo
doll. This first revision worked correctly, but was large and a
little unstable. Consequently, we made another revision. This
second PCB was designed to be much more compact.

The second transmitter board consists of:

• Several capacitors for noise reduction
• An LED to indicate PIC status
• A 5-volt voltage regulator
• A 10 MHz oscillator
• A dip switch to select the transmitter frequency
• A PIC16C84 microcontroller
• A Linx transmitter module
• The transmitter’s whip antenna

We used AP Circuits (www.apcircuits.com) as a board fabrica-
tion house. They had a two-day turn around which allowed for
quick prototyping. AP provided us with printed circuit boards,
which we soldered components to and tested. With the trans-
mitter workably designed, we turned our attention to the base
station next. Thankfully, it did not prove to be as difficult a
design problem.

Figure 31: Voodoo PCB
schematic.

39

3.3.6.2 Base Design
Since the base station did not have to operate under the strict
space constraints of the transmitter the design was compara-
tively very straightforward. We were able to “piggy-back” an
iRX board with a PIC16F84 microcontroller onto the base sta-
tion and use its existing antenna and power scheme.

Next we wired up the board’s DB-9 serial adapter to a MAXIM
233CP RS232 level converter so that the base station could com-
municate through its serial port to the computer that would be
hosting the embodied applications.

After some quick testing with a function generator we were
able to confirm that the base station and transmitter were able
to successfully communicate with one another.

Next we needed to turn our attention to the firmware design
for the base station and voodoo doll’s microcontrollers. The
voodoo doll’s microcontroller needed to decode the acceler-
ometer’s pulse width modulation stream, while the base sta-
tion needed to decode the transmitter’s checksum scheme and
transmit information to the serial port.

After several weeks of design and debugging we arrived at
a completed research prototype. It was coupled with the exist-
ing usability-feedback applications that we’d prepared for the
Squeezemouse.

It had some shortcomings though. We desired to make several
prototypes to give to a small pool of testers. But the cost and

Figure 32: Voodoo Doll circuit
board.

Figure 33: Voodoo Doll base
station.

40

complexity of the design of the Voodoo Doll were prohibitive.
Consequently, we pursued cheaper alternatives.

3.3.6.3 Analog Aggravation
One idea was to try to remove the microcontroller from the
transmitter board and to directly transmit the output of an
analog accelerometer to the base station. Measurement Spe-
cialties carries a 3-axis analog accelerometer. We set about
building a breadboard mock up of the components that were to
sit inside the voodoo doll. Initially it seemed best to try to take
the three analog signals output by the accelerometer and send
them into the Linx transmitter. This required the development
of some glue-logic to interface the two integrated circuits. We
first attempted to use a Zetex 3V voltage regulator but found
that this could not source enough current for the transmitter.
We then tried an elaborate scheme involving several diodes
and a voltage divider borrowed from The Art of Electronics
[Horowitz and Hill, 1980]. However, this scheme also did not
provide enough current. We then tried to buffer the output
of the accelerometer using an operational amplifier. The first
op amp I selected, a National Semiconductor LM386N, also
proved to require too much current from my accelerometer.
Finally we settled on a Maxim MAX473, which was a nice sin-
gle-source op amp that did not require much current to drive,
but provided sufficient current to the RF transmitter.

After all of that trouble, we soon discovered that we had another
problem altogether. The analog signals that we were transmit-
ting were prone to interference from other RF devices trans-
mitting on the same carrier frequency.

 It turned out that ambient RF noise was very hard to differen-
tiate from the actual shaking that my accelerometer would be
recording. After speaking again to some people more knowl-
edgeable about RF design than ourselves we learned that it is
much better (as we originally had done) to transmit digital sig-
nals since checksums can be performed on them to ensure data
integrity. What’s more, digital signals are easier to design with
and don’t require the elaborate glue schemes we attempted
with the analog setup.

Figure 34: Analog Voodoo Doll
prototype.

41

3.3.7 Blink Detector
 There is some evidence from psychophysiology that suggests
that as stress increases with a task, the rate of eye blinks
increases [Backs and Boucsein, 1999]. Another idea for a device
that could detect stressful applications is a vision system that
detects and counts eye blinks.

Apparently, vision researchers already use image differencing
and blink detection as a head-tracking method [Reignier, 1995].
We coded up a crude prototype and feature detector to explore
the feasibility of the idea.

While this is a promising avenue for inquiry, there are some
shortcomings to this approach. Users may feel uncomfortable
with having cameras pointed at their face, especially if those
cameras are trying to assess the user’s affective state. Further-
more, although it is not real-time, the work of the CMU facial
affect recognition group [Tian, 2001] has already surpassed
simplistic models like just detecting eye blinks.

3.3.8 Expletive Detector
The Yelling Detector (section 3.3.3) indicated that prosodic
parameters such as intensity and pitch could be used as fea-
tures to detect outbursts of expletives in speech. Some prelimi-
nary work was performed to see if an expletive detector could
be built.

The problem is an interesting one, which has not been well
explored. Jay’s Cursing in America provides an excellent
introduction to the academic study of obscenity [1991].

The most straightforward approach, trying to use a speech rec-
ognizer, is problematic. Speech recognizers are often trained to
recognize business speech, and consequently assign low prior
probabilities to obscenities. What is needed instead is a speech
system that is capable of analyzing prosody.

In an early attempt to set about creating a prosodic analyzer, I
took a somewhat novel approach. In order to gather a database
that could be used to train a patter recognizer, I rented several
movies split into two classes: expletive-rich and expletive-less.

Figure 35: Blink Detector
prototype.

42

To extract specific audio clips to use, I had a set of volunteers
‘vote’ on whether an utterance represented an angry, obscenity-
laden, outburst.

The resulting database of sounds was used to compute the
mean and variance of the sets in a two-dimensional space
defined by average pitch and intensity. Using two-dimensional
guassians to model the clusters, I developed the pictured deci-
sion boundary, which led greater-than-random recognition
accuracy.

Afterwards energy was briefly focused on making a real-time
expletive detector that could be used in experiments. Due to
time constraints, I was unable to fully develop this idea, but the
prototype may represent a good jumping off point for further
research.

Figure 36: Expletive Detector
voting interface.

Figure 37: Expletive decision
boundary.

Figure 38: Real-time expletive
detector prototype.

3.4 Second Revisions

In an iterative, rapid prototyping process, one revision begets
another round of design and critique. In the previous section
we presented several first revisions that represent shaky, ten-
tative steps towards communicating frustration to your com-
puter. This section deals with their revision and subsumption
by more complex and more realistic prototypes.

3.4.1 Serial Swiss Army Board
After the initial hack to the iRX board (Section 3.2.2) that
allowed us to collect analog data and transmit it to the com-
puter, it became clear that we needed a custom analog data

43

acquisition board whose purpose was to transduce analog sig-
nals and transfer them to the serial port of a computer.

The result was a simple printed circuit board that hangs off
the serial port of a PC. It uses a PIC16C711, which has an on
board analog to digital converter. The firmware periodically
polls the analog line and transmits converted ASCII text out
on the serial port. This board was used as a conversion board
for the next set of mouse designs that we evaluated. It was
designed to incorporate a connector that allowed it to be used
with various prototypes.

3.4.2 Integrating Squeezemouse
Using this board, we made another revision of the squeeze-
mouse that used a set of force sensitive resistors spread out
over the surface of the mouse. These were routed into a sum-
ming junction that integrated the signal into a single signal.
The resistors were covered with some neoprene foam, since
foam affords squeezing. What we found is that, although the
mouse had good coverage across the surface, the coverage was
not uniform. Furthermore, because it was not clear where the
FSRs were located, people had a lot of difficulty using it as an
active interface.

3.4.3 FSR Positioning Inquiry
It soon became clear that we would need to evaluate which
placements of force sensitive resistors (FSRs) were most com-
fortable to the user, and also did the best job of transducing
squeezes. To that end a series of mice that positioned force-
sensitive resistors in different promising spots were built.

Figure 39: Serial Swiss Army
board iterations.

Figure 40: Squeezemouse and
Voodoo iterations.

44

After some informal experimentation, I found that if the
Squeezemouse was treated as an active sensor, one of the most
favorable positioning spots was beneath the thumb. It is easy to
grasp the mouse and put force on the resistor in this position.

3.4.4 User Interfaces
While not traditionally thought of as a sensor, the Thumbs-Up
/ Thumbs-Down interface (section 3.3.4) proved to be an inex-
pensive and easily embeddable mechanism for users to express
frustration. Consequently, we did not limit inquiry into modal-
ities for communicating affect to tangible and physical inter-
faces.

3.4.4.1 Frustrometer
However, Thumbs-Up/ Thumbs-Down did not provide a mech-
anism to communicate the severity of the usability incident,
only whether a favorable or unfavorable event had occurred.
Judith Ramey of the University of Washington had once men-
tioned that in usability tests, a cardboard “frustrometer” was
used to help users express themselves [Ramey, personal com-
munication]. Borrowing from this idea, we developed a soft-
ware version. This interface allowed for a severity scale to be
communicated.

3.4.4.2 Gripe
One potential application for this technology was remote evalu-
ation of software. Consequently, we started to build “Gripe,” an
application embedded into the user’s interface to send gripes,
or feedback to usability specialists.

The first version of Gripe focused on allowing screen-shot cap-
ture to be triggered by squeezing the mouse and to be transmit-
ted over a network. It also provided feedback about the mouse
pressure input using the strip chart interface.

Gripe also acted as interface instrumentation by providing a
log of which applications were running at the time of frustra-
tion incidents. More specifically, it enumerated the open dia-
logs, and which dialog had the user’s focus at the time of a frus-
tration incident.

Figure 41: Squeezemouse with
FSR positioned beneath thumb.

Figure 42: Early Frustometer
prototype.

45

3.4.4.3 Task model Revisions
The first model of gripe was something akin to sending elec-
tronic mail. But it soon became clear that there were several
tasks which users might want to perform when sending feed-
back: typing textual comments, queuing up incidents to submit
at a later time, and annotation of screenshots.

3.4.4.4 Privacy Considerations
Following discussions with several colleagues about what
would make them want to use a piece offeedback software, it
became clear that feedback software must allow users to main-
tain their privacy.

I consequently implemented tools to allow user to control
which information was sent back, and to edit that information.
These included a simple photo-manipulation program for eras-
ing private content from screenshots.

3.5 Third Revisions

3.5.1 Attentional Considerations
After informal testing, it also became clear that initial versions
of gripe consumed entirely too much screen real estate. Conse-
quently, its interface was compressed to only consume a spot
on the taskbar when it was not detecting high arousal states.

Figure 43: The first version of
Gripe.

Figure 44: Task model revisions
to Gripe.

Figure 45: Privacy revisions to
Gripe.

46

The activated state was also compressed into a control-panel-
style dialog. This was ordered to show the most pertinent infor-
mation in the foreground, and the less relevant aspects in the
background. Two versions of this interface were built, one that
made use of the Squeezemouse, and a second that embedded
the Frustrometer.

A final small revision was made to provide a much clearer met-
aphor when using the squeezemouse feedback software. The
graphing software was replaced by a thermometer widget (not
to be confused with the frustrometer). Informal testing showed
that the thermometer interface was much easier to understand,
since it made reference to a familiar real world object.

3.5.2 Continuous Capture
During these many iterations we began to think of the
Squeezemouse less as a tangible interface and more as a sensor.
Consequently, we developed a transparent Squeezemouse driver
that continuously captured and labeled data collected from the
mouse. Its job was to log input from the Squeezemouse to a
remote network server.

3.5.3 Unobtrusive Mouse
Our earliest prototypes routed the electronics used to detect
pressure along the surface of the mouse. We found the cir-
cuitry interfered with free movement of the mouse. As a result
we focused on building a less obtrusive prototype that placed
much of the wiring for the pressure sensors inside the mouse
itself.

3.5.4 Grid-SqueezeMouse
After experimenting with mice that used just a single force sen-

Figure 46: Unobtrusive Gripe.

Figure 47: Frustrometer version
of Gripe.

Figure 48: Thermometer
squeezemouse interface.

Figure 49: Unobtrusive mouse.

47

sitive resistor, we continued to develop the idea of treating the
mouse less like an interface and more like a sensor. To this
end, we made a Squeezemouse which used 144 small force
sensitive resistors to cover the surface of the mouse. During
the development of this mouse, we discovered that the Force
Sensitive Resistors were not sensitive enough to transduce the
small load placed on them by the hand resting on the mouse.

The data sheets for the Force Sensitive Resistors (FSRs) noted
that components act nonlinear when they are loaded with less
than 100 grams. Experimenting with a postal scale, we discov-
ered that the FSRs operate like an open circuit with less than
30 grams of force applied.

Consequently, we abandoned development of this mouse and
instead turned our attention to developing transducers that
operated with less than 30 grams of force applied.

3.5.5 PressureMouse
The insensitivity of the FSRs necessitated an examination of
the different materials that can be used to transduce touch.
We briefly considered the use of Indium-Tin Oxide and other
materials, but shied away from their use because of toxic prop-
erties or the high temperatures required to cure them.

After a hasty literature review, we learned that force sensitive
resistors are composed of a conductive elastomer of some sort
and electrodes. As force is applied to the elastomer or foam,
it becomes more dense, and more conductive. As a result, to
make more sensitive force-sensitive material, what is needed is
a conductive foam that compresses under light loads.

The anti-static foam that is used to package electronic com-
ponents works well as a conductive elastomer for light loads.
Beginning with circular electrodes manufactured for a differ-
ent variety of elastomer I constructed my own sensors.

These sensors have a greater dynamic range because the foam
compresses under light loads. Unfortunately, they are not very
elastic, meaning that after being loaded, they take some small
amount of time to decompress.

Figure 50: Pressuremouse,
equipped with eight sensors:
four foam sensors at the back
of the mouse and two on each
side.

Figure 51: Pressuremouse tactile
sensors.

48

These sensors, applied to several points of a mouse, allow us
to determine if the user is touching the mouse or not, and
how hard the user is touching the mouse. Their construction
allowed for an experiment to see if user frustration can be
detected passively, without requiring conscious manipulation
from the user.

49

4 Evaluation

During the development of the various devices and interfaces
in the last chapter, we began to perform more formal evalua-
tions. These evaluations centered on performing studies con-
taining stimuli designed to be frustrating. The first study was
a comparison between different interfaces and sensors that
were designed to help the user actively communicate frustra-
tion. The second pilot served to refine protocol and to examine
using the Pressuremouse as a passive sensor. The final study,
focused on the Pressuremouse as a passive sensor, gathered
data from 16 users, and analyzed this data using signal pro-
cessing and pattern recognition techniques. Finally, this chap-
ter gives initial results on the use of pattern recognition to dis-
tinguish frustration events from non-frustration events.

4.1 First Pilot Study

Given a selection of designs for frustration sensors, we are
interested in how these sensors compare. To assess the utility
of these sorts of sensors, we designed an experiment to com-
pare two different frustration sensor designs and a more tradi-
tional customer-feedback form.

We wished to compare the two sensors we developed against
a baseline. After a bit of discussion we agreed that a web feed-
back form, like those currently in use on many websites repre-
sents one commonly used feedback mechanism. Consequently
we designed a simple web form for the control group to use.

4.1.1 Methodology
Subjects for our study were solicited with flyers posted in the
area around our laboratory. Spots were filled in a non-ran-
dom, first-come-first serve basis, which led to the selection of
nine male and four female participants. Participants in the
study were read a script asking them to complete a registration
sequence from Jobtrack.com:

“We’d like you to fill out the registration
sequence for a popular job search site. We’d
like to strongly encourage you to use [feedback
device for condition] to send feedback about
any problems you have as you progress through

50

the registration process. Afterwards, we’d like
to ask you to answer some questions about
your experience, and fill out a questionnaire.
That’s basically it. We are trying to evaluate the
usability of the web site. So, we need you to be
a tester. Okay?”

The registration sequence consisted of six web pages asking
users for information that would be typically found on a
resume. The users were encouraged to evaluate the web form
by providing feedback using a modality defined by the condi-
tion to which they were assigned. The conditions were:

• Web Form (Figure 52): a feedback web page consisting
of a simple web form. This served as the control condi-
tion.

• Frustrometer (Figure 53): a severity slider with optional
text feedback and recorded screenshots and window
listings.

• Squeezemouse (Figures 54): FSR attached to a mouse
along with optional text feedback and recorded screen-
shots and window listings.

Subjects in each condition were given a brief tutorial on how to
use each of the various feedback mechanisms. Care was taken
to make sure that each of the tutorials was similar both within
the conditions, and between the conditions. Specifically the
wording of the tutorials in the script was made to be as similar
as possible, and the tutorials were set up to be approximately
the same length (see Appendix B).

After the users completed the registration sequence, they were
interviewed and asked to fill out a questionnaire for their con-
dition. Each participant was only assigned to one condition,
and the whole experience took less than an hour.

Unbeknownst to the participants, the web forms were designed
by us to be moderately frustrating. This was achieved by vio-
lating known usability heuristics. Studies have shown that
users respond poorly to varied, slow response times [Butler,
1983]. Consequently, some pages were made to load especially
slowly. To further exacerbate problems, certain long forms

Figure 52: Web Form interface.

Figure 53: Frustrometer.

Figure 54: Squeezemouse text
entry interface.

51

were designed so that no matter what sort of information was
entered, the form would report errors that needed to be cor-
rected, and forced the user to start filling in the page from
scratch [Neilsen, 1999].

After being interviewed and filling out a brief questionnaire,
users were debriefed and told of the deception carried out. It
was emphasized that the deception was necessary, since it is
very difficult to elicit emotional states like frustration if sub-
jects know you are trying to frustrate them. Furthermore, it
was emphasized that the web pages we used are not actual
jobtrack.com designs, but frustrating variations designed for
the purposes of our research.

4.1.2 Preliminary Results
All participants were asked on a questionnaire (see Appendix
B) about the usability and responsiveness of the registration
sequence. The questionnaire presented a seven-point scale
from (Very Easy) to (Very Hard). For the purposes of this
thesis, I’ve chosen to label (Very Easy) as 1 and (Very Hard) as
7. The questions and mean responses (in brackets) are shown
below:

How hard was the job registration web form to use?
(Very Easy) • • (3.08) • • • • (Very Hard)

How responsive was the job registration website?
(Very Fast) • • • • (4.63) • • (Very Slow)

Since we were actually interested in the performance of our var-
ious frustration feedback sensors, the remainder of the ques-
tionnaire dealt more specifically with the sensors. For instance,
the participants were asked about how difficult it was to send
feedback:

“How hard was it to send feedback about the web form?”
The mean and standard deviation for each condition are sum-
marized in Table 1.

The participants were then asked about the feedback device for
their condition specifically:

• Did you like using the [Web Form, Squeezemouse,
Frustrometer] feedback device?

• Did sending feedback interfere with filling out the
form?

Table 1: Difficulty sending
feedback.

52

• How interested are you in using the [Web Form,
Squeezemouse, Frustrometer] again?

Each condition had similar questions. For instance, the users of
the web feedback form were asked “Did you like using the feed-
back page?” instead of “Did you like using the Squeezemouse
feedback device?” The responses for each condition to these
questions are summarized below:

Finally, in addition to these questionnaire responses the feed-
back provided while using the different feedback devices was
examined. The number of feedback responses recorded by each
device was also tallied. The mean results are summarized in
Table 2

4.1.3 Analysis
What seems clear from these preliminary results is that the
Frustrometer interface performed better in each of the catego-
ries we surveyed. We can see from Table 1 that the Frustrometer
was reported to be not as hard to use as either the web form or
the Squeezemouse. If we examine Figure 55, we see that people
reported that they liked using it more than either the mouse,
or the traditional web form. Furthermore, Figure 55 shows that
people reported the slider’s use interfered less than either the
mouse or the web form. Finally, people were nearly twice as
likely to indicate that they’d use the slider again.

Figure 55: Questionnaire data
from first pilot.

Table 2: Number of feedback
responses.

53

If we perform a single tailed t-test, where the null hypothesis
is that the control participants report that they are as interested
in using the web form again as the Frustrometer users, we get
a p-value of 0.025. So we should reject the null hypothesis and
accept the alternative hypothesis, that the Frustrometer partic-
ipants are more interested in using it again. Likewise, if we
hypothesize that the Squeezemouse users are as interested in
using it again as the Frustrometer users, we calculate a p-value
of 0.003. Again, we must reject the null hypothesis and accept
that Frustrometer participants are more interested in using
their interface again. Of course, this assumes that our data
is approximately guassian, which may not be a good assump-
tion. Furthermore, with such low population sizes, it is ill
advised to draw strong conclusions from these results. How-
ever, taken as preliminary results, they seems to indicate that
the Frustrometer is a more popular interface.

So why did the Frustrometer perform better than the
Squeezemouse or the web form? We theorize that it is because
the Frustrometer was the most accessible, most straightfor-
ward interface, and consequently led to a lessened cognitive
load when reporting feedback. In short: it was less frustrating
and distracting than the other options.

The post-test interviews also provide some clues as to why
the Frustrometer performed so well. One user noted that “It
was convenient, easy to use.” As a contrasting example, a
Squeezemouse user described it as “hard to use” and men-
tioned that it was difficult to get the hang of squeezing hard
enough. It is useful to note here that the Squeezemouse tested
also included a relatively complex interface for storing and
annotation feedback. The interface’s complexity may have con-
founded results with respect to the Squeezemouse.

Overall users seemed enthusiastic about being able to send in
feedback. One participant noted “I think being able to send
feedback while in the middle of a process is cool and sort of
prevented me from really losing my temper.” Another partici-
pant enthusiastically noted, “The feedback option gave me a
sense of power, in the sense that I could complain or compli-
ment about features I dislike or like.” Most users seemed to

54

respond positively to the convenience of accessible and easy to
use feedback mechanisms: “I liked it being set up such that as
soon as I realized there was a problem, I could gripe.”

4.2 Second Pilot Study

After performing the data analysis for the first experiment, we
became increasingly interested in seeing if the Pressuremouse
would gather useful information if subjects were not told to
actively manipulate it when frustrated. In short—would sub-
jects use it differently when frustrated, without consciously
thinking about the Pressuremouse? This was motivated, in
part, by the realization that users did not like interrupting their
work to send feedback about what made them frustrated. Per-
haps, a better method for sending feedback would involve no
interruption or demands on the user’s attention.

Consequently, we altered the experimental design such that
subjects were still exposed to frustration, but were given the
newer very sensitive Pressuremouse. But they were not given
any explicit training; all references to the mouse were removed
from the script. The goal of the second experiment was to see
if we could correctly distinguish between the data produced by
the control group, who experienced no frustration stimulus,
and the effect group.

Additionally, some shortcomings of the first study were rem-
edied. The second pilot randomly assigned participants to the
conditions. Demographic information was also collected about
the participants, so that more concrete statements about the
applicability of the data could be made.

The second pilot, however, mainly served as a mechanism for
refining our test protocol and script. We were also able to
adjust the parameters of our frustration stimulus. The stimu-
lus was decided to be network delays that varied between 0 and
30 seconds. Additionally, it was decided that subjects should be
placed under time pressure. Lastly, all subjects were subjected
to a single loss-of-data event, which we believed would cause
frustration.

55

During the loss-of-data event, users were told that some infor-
mation on the pervious page they had entered was incorrect
(see sidebar). They were then sent back to this pervious page,
only to discover that all the information they had entered had
been erased. The participants had no choice but to re-enter all
of the data on this page again.

Video and audio recordings were captured, along with mouse
pressure profiles. The continuous capture driver (discussed in
section 3.5.5) was augmented with the addition of labels for
whether the participants were experiencing network delay or
data loss stimulus.

4.2.1 Anecdotal Observations
Since the second pilot study was primarily used to refine the
experimental protocol, the data produced from the experiment
is not suitable for rigorous data analysis. However we were able
to make some observations as we ran the seven pilot partici-
pants.

The first was that our stimulus was indeed causing some
response. The participants, under time pressure, felt that the
site was too slow. And most felt aggravated by this:

• “I don’t know if it is the connection, but it responds
very slow, and I get very impatient”

• “The software is REALLY too slow” (emphasis in origi-
nal)

4.3 Second Study

With our protocol more firmly established by the second pilot,
we set about collecting data for our final study. The study was
much less a comparative exercise between different interfaces,
and more of an inquiry into the type of data created by an
advanced prototype of the Pressuremouse. Superficially, there
are many commonalities between this final design, and the
first pilot. However the two studies had very different end
goals.

More specifically, partici-
pants were asked to enter a
date in a four-digit format.
Users who entered the date
either in two or four digits
were taken to page inform-
ing them they had made
a mistake. When they
returned to the first page to
correct their mistake, users
found that all of the infor-
mation they inputted had
been “lost.” (See figure 60)

56

4.3.1 Apparatus
The second experiment was enabled by the creation of a sensi-
tive mouse device, which collected pressure data (see section
3.5.8). Users were placed in front of a computer with a web
browser. A video camera was positioned on a tripod behind the
user, and focused on the screen and their hand. Additionally,
we made use of a common kitchen egg timer, to display the
amount of time elapsed to participants.

4.3.2 Methodology
The design of the second full-blown experiment was a two-
by-one condition, between subjects. The independent variable
was the network delay applied. The dependent variable was the
transduced signal captured from the squeezemouse through-
out the experiment session. A total of 16 subjects were run,
eight in the control condition and eight in the delay condition.

Subjects for our second study were also solicited with flyers.
The flyers were posted by a service at several public kiosks
at many different campuses around Boston. Participants were
scheduled and randomly assigned by a web application we
designed. Demographic information was collected using the
same system.

Participants, (regardless of condition) were read the script
below. The beginning of the script was very similar to what was
used in the first pilot:

“Thank you for coming and participating in
this study! We’d like you to fill out the brief reg-
istration sequence for a popular job search site.
We will be performing a usability test to see
how users respond to it.”

In addition, users were read a series of paragraphs to convey
the time-criticalness of the task we were asking them to per-
form. This served to amplify the effect of the network delay:

 “After the experiment, we’d like to ask you to
fill out a quick questionnaire and answer some
questions about your experience. We know
your time is important so we won’t take too
long. Okay? When you’re done, the computer
will notify you to get up and come get me—and

57

I’ll be right out here. At that point I’ll give you a
quick, 1-page paper questionnaire to fill out and
conduct a short interview.”

Here the diction (“short”, “quick”) was chosen to try to focus
the participant’s perception on time and performance. To be
safe we also read the following paragraph to further reinforce
the importance of completing the forms in a speedy manner:

“During our pilot study we found that the entire
experience, start to finish, should take you less
than 15 minutes. Some graduate students from
campus here were able to move through the
webpages in 10 minutes. But we don’t expect
you to go that fast, we figure it shouldn’t take
average folks all that much longer. You should
be aware of how much time you’re spending.
This clock will show you how much time is
left.”
“If you run out of time, please continue until
you are finished. If there’s a problem, try to
work through it. I’ll be right outside the room.
Otherwise, good luck!”

Depending on their condition, participants experienced either
no delay (control condition) or randomly varying network
delays (delay condition). All participants, no matter the condi-
tion, experienced a usability bug which caused them to re-enter
data.

After participants completed the web site’s forms, they were
given a questionnaire (See appendix B). Afterwards, they were
interviewed in an effort to get a more subjective assessment
of their experience. The results from these, and our analysis
of the data recorded from the squeezemouse are presented
below.

4.3.3 Results
4.3.3.1 Questionnaire Data
As in the previous study all participants were asked on the
questionnaire about the usability and responsiveness of the
registration sequence. The questionnaire presented a seven-
point scale for several categories (i.e. Very Fast – Very Slow).

58

The mean results for condition A (no delays) were:
How hard was the software to use?

(Very Easy) • (2.33) • • • • • (Very Hard)
How responsive was the software?
(Very Fast) • (2.33) • • • • • (Very Slow)
How frustrating was the experience?
(Very Much) • • • • (4.89) • • (Not at All)
How mentally difficult was it to use the software?
(Very Much) • • • • (5.33) • • (Not at All)
Did you like using the software?
(Very Much) • • • • (5.33) • • (Not at All)
How interested are you in using the software again?
(Very Much) • • • • (5.33) • • (Not at All)

For condition B (0-30 second delays) the mean results were:
How hard was the software to use?

(Very Easy) • • (2.78) • • • • (Very Hard)
How responsive was the software?
(Very Fast) • • • • • (6.44) • (Very Slow)
How frustrating was the experience?
(Very Much) • • (3.56) • • • • (Not at All)
How mentally difficult was it to use the software?
(Very Much) • • • • • (6.33) • (Not at All)
Did you like using the software?
(Very Much) • • • • (5.11) • • (Not at All)
How interested are you in using the software again?
(Very Much) • • • • (4.56) • • (Not at All)

These results are summarized and shown with 95% confidence
intervals in the figure 56. For the convenience of the reader,
when the scale was inverted (viz. question ending in “Not at
All”) the graph shows the opposite.

4.3.3.2 Mouse Data
The Pressuremouse collected eight channels worth of data, and
was synchronized with a label as to whether the participants
were experiencing network delays or data loss. Below is an
example of how Pressuremouse data log (Figure 57). The last
column, which is separated by a dashed line, encodes what
stimulus the user is experiencing. The data was sampled at 8
bits of resolution, at a rate of 60 Hz.

59

4.3.4 Analysis
4.3.4.1 Questionnaire Data
Looking over the summarizing graph (Figure 56), we can
observe several things about the questionnaire data. First and
foremost we see the effect condition, which experienced delays,
found the web pages to be significantly less responsive than
the control group. The findings that the software was harder to
use, that they liked it less, and were less interested in using the
web site again than the control were not significant at the 95%
confidence level.

Both the control and effect conditions reported some frus-
tration. This is likely to be a result of the loss-of-data event
both groups experienced. However, the network-delay condi-
tion reported more frustration than the control, as would be
expected (significant at p-value 0.059).

One interesting observation about the data set is that the delay
condition reported that the website was less mentally difficult
than the control group reported (significant at p-value 0.073).

Figure 56: Questionnaire data
from second study.

5 2 2 47 0 30 19 0 1

36 0 0 45 0 30 18 1 1

30 1 2 46 0 30 19 0 1

21 1 1 48 1 31 20 2 2

21 0 0 46 0 331 19 1 2
Figure 57: Data sampled from
pressure mouse.

60

This lends credence to the idea that cognitive load and stress
are distinct from frustration.

4.3.4.2 Mouse Data
The unprocessed mouse data is 8 dimensions of 8-bit analog
data captured at 60 Hz.

In order to make it possible to perform data analysis on the
data set, we elected to compute a series of descriptive features

Figure 58: Sample plot of
eight channels for delay
condition.

on each channel. These let us more easily discern and sum-
marize the differences in the data. I worked to develop a set
of useful features that might help us discriminate between the
two datasets. Below are plots combining the sum of each of
the eight channels that let the reader see the visual difference
between the datasets.

4.3.4.3 Pattern Recognition of Mouse Data
We broke the data set up into two separate classes of two condi-
tions:

• Segments during loss-of-data events vs. no stimulus
segments

• Segments of network-delay vs. no network delay

61

• Mean
• Variance
• Skewness
• Range

I will describe each feature in closer detail to aid others seeking
to reproduce this work.

Figure 59: Sample plot of delay
condition. Red denotes network
delay.

Figure 60: Sample plot of data
loss from control condition.
Green denotes first visit of web
page. Red denotes second visit
after data loss.

We chose to screen out delay segments which were shorter
than .5 seconds since they were likely not noticeable to partici-
pants. For each of the remaining sets of segments we calcu-
lated feature vectors of containing six elements:

• Zero-Crossing Rate
• Activity

62

4.3.4.3.1 Zero-Crossing Rate
We wanted a feature to capture the high-frequency behavior of
the signals. One simple approach to this would be to extract
the zero-crossing rate after the time-varying mean has been
removed to yield the signal:

Let x
lp
[n] be the zero-phase low-pass filtered version of x[n],

where x is the raw signal for any given channel. The signal and
its time-reversed version are first convolved with a low-pass
filter

and their outputs averaged to remove the phase-delay

The low-pass filter is a simple rectangular window of length M
chosen to be one second worth of data:

The zero-crossing rate is then defined on the detrended signal
y as follows:

4.3.4.3.2 Activity
Additionally we compute a feature that was related to how
much “activity” we observed in a particular signal. This was
an indicator of number of transitions between a threshold just
above noise and clear pressure being applied to the mouse. We
defined activity to be:

y n x n x nLP[] [] []= −

x n x n h nLPf
[] []* []=

x n
x n x N n

LP

LP LPf b[]
[] []

=
+ −

2

x n x N n h nLPb
[] []* []= −

h n
M

n M[] ,...,= = −
1

0 1

z
N

y n y n
n

N

= − −
=

∑1
1

0

sgn([]) sgn([])

63

 where:

We empirically found a value of ε = 1 to be a good separator
between activity and no activity states.

4.3.4.3.3 Mean
Another feature we selected was the mean of each of the eight
channel segments. The sample mean is defined as:

4.3.4.3.4 Unbiased Estimator of Variance
We chose to also compute the variance of the segments.

4.3.4.3.5 Skewness
Since the rise times of some of the peaks in the data surround-
ing the events seemed to vary between the two classes, we also
chose to compute the skewness s for the segments:

where:

4.3.4.3.6 Range
Lastly, we chose to look at the range of segments :

a
N

w n w n
n

N

= − −
=

−

∑1
1

0

1

sgn([] sgn([])

µ =
=

−

∑1

0

1

N
x n

n

N

[]

w n
x n if x n

otherwise
[]

[] []
=

− >



ε ε
0

σ µu
n

N

N
x n n2 2

0

11

1
=

−
−

=

−

∑ ([] [])

s
N

x n n

nbn

N

=
−









=

−

∑1
2

3

0

1 [] []

[]

µ
σ

σ σb u

N

N
n2 21

=
−

[]

r x n x n= −max([]) min([])

64

This feature reflected the peaks observed during some of the
events, but also the relative flatness of other sections.

4.3.4.4 Principal Component Analysis
We reduced the dimensionality of the feature vectors compiled
from the segments. Using principal component analysis, the
data sets were projected from the original 40-D space down
into a 5-D data space. This 5-D space captured 99% of the vari-
ation in the data sets. This aggressive reduction reflects the
strong colinearity between the eight channels.

4.3.4.5 Testing / Training Division
Following this dimensionality reduction we separated the data-
set into 75% training data and 25% testing data. The data was
randomly separated by computing permutations.

4.3.4.6 Support Vector Machine
Next we used Scott Gunn’s MATLAB implementation of Vap-
nik’s Support Vector Machine [Vapnik, 1995]. This provided us
with a decision boundary derived from our training sets with
which to test recognition accuracy. The support vector machine
classified the data-loss event vs. control testing data with an
accuracy of 68.75%.

4.3.5 Analysis Conclusions
Following this analysis we can conclude that the stimulus
caused a noticeable difference in pressure applied to the mouse.
Furthermore, we can also report that a classifier trained on
data collected during the second experiment was able to detect
states coinciding with frustration stimulus with an accuracy
rate of 68.75%. This suggests that we can detect user responses
to frustration with passive sensors (and without electrodes) at a
rate better than chance, but still far from ideal.

65

5 Applications and Future Work

5.1 Distributed Usability

One compelling application for this technology is the creation
of universal and distributed usability services. If we distribute
interfaces that allow people to easily send feedback about
aspects of their systems, then we can begin to continuously
collect usability information from them. We get a broader and
more complete picture of what our users find frustrating, and
one drawn from real world use settings instead of an artificial
laboratory.

5.2 Interface for Reinforcement Learner

Another potential application for this work is as a front end
to a machine learning process like reinforcement learning.
Reinforcement learning models a process where an agent is
trying to explore a space of possible actions and is rewarded
by some function for positive behavior. One possible source
of this reward function is, of course, a human trainer. But if
this trainer is going to work with the system they must be able
to easily communicate their reward feedback to the system.
A command line interface where users continuously type in
numerical evaluations does not seem even the least bit satisfac-
tory.

5.3 Front End to Adaptive Generative Systems

Still another interesting application for this technology is as
the front end for a generative system. A genetic algorithm, for
instance, can stochastically search a space of genetic combina-
tions. With a fitness function that evaluates a particular com-
bination, we can gradually crawl around the space in search
of progressively better combinations. This metaphor can be
borrowed to allow people to creatively explore different design
possibilities. We can easily imagine a set up where someone
sits with a modified version of Photoshop or the Gnu Image
Manipulation Program. This version takes a composition and
randomly tries different filters and transformations. The user’s
affective response is recorded. Gradually the system can encode
and learn different combinations of actions that you like.
After a good amount of interaction, the system can gradually

66

learn to customize compositions to your previously encoded
tastes. There are some similarities to relevance learning prob-
lem where we are trying to determine how relevant particular
search result is to a particular user.

5.4 Usability Benchmark

Perhaps and most promising use of this technology is as an
alternative usability benchmark. Time on task is one bench-
mark that usability specialists often use to evaluate systems. Of
course, optimizing for the system that allows users to do some-
thing as quickly as possible has its problems. We may arrive
at an interface that allows something to be done very quickly,
but we do not know how distasteful this is for the user. For
instance Time-Motion studies were often conducted around
the turn of the century to try to make different assembly line
tasks more efficient [Taylor, 1911]. However, these studies may
have also made the worker’s jobs less comfortable, since the
more efficient series of actions may also be the most likely to
cause repetitive stress injuries.

What is needed is a quantifiable and measurable benchmark
that can be used in lieu of or to meaningfully augment subjec-
tive evaluations. If we can sense (by analyzing voice records
or looking at pressure profiles) the user’s continuous response
to a particular piece of software, then we have the makings
of a valuable design tool. It allows us to see if we are making
improvements to not just the efficiency, but also the pleasant-
ness of a particular interface.

5.5 Contextual Fusion

The sensors discussed here should not exist in a vacuum.
There are a whole myriad of contextual clues about what the
user is attending to, and what they intend to do. For instance, if
the sensors are coupled with a gaze tracking system like Eye-R
[Selker et al, 2001] assigning credit or blame to a particular
interface element becomes possible. Using a Bayesian network
to combine sparse information from several sensors may also
allow us to come to more concrete assessments of the user’s
intentions.

67

5.6 Further Refinements

The sensor design and pattern recognition work presented ear-
lier is in many ways a first attempt at the problem of distin-
guishing frustration passively. The better-than-random results
are an indication that further pattern recognition work should
be performed. Removing noise from the data sets and consid-
ering different features will most likely lead to higher recogni-
tion rates.

68

69

6 Summary and Conclusions

If we carefully consider the problem of making an adaptive
system, we come to realize that the field has been progressing
in the wrong manner. Many researchers have been building
disembodied intelligences that do not take into account the
subtleness or whimsy of human behavior. Without feedback
and sensors to feed adaptive systems, these systems will not
respond in ways that benefit users. Without any regard for the
feelings of the user, these systems may result in heightened
frustration and irritation for people. Clearly we need some
measurable criterion around which to adapt.

We have progressed by inverting the problem of adaptive
system design. We focus on the percepts rather than the intel-
ligence in order to sense a criterion that can be used to shape
behavior. We have found that frustration is a useful human
behavior around which to structure change. The negative reac-
tion frustration induces frequently coincides with the desire to
alter behavior towards something more favorable.

Following surveys of psychophysiology, tangible user inter-
faces, and tactile sensor design, we see that many of the com-
ponents exist for building sensors to detect signs of frustra-
tion many of the sensors that have been used to detect frustra-
tion force an uncomfortable relationship between the user and
computer. Electrodes, for instance, may cause physical discom-
fort, while cameras focused on the user’s face can be intrusive.

During a lengthy design process we were able to learn many
things about the favorable attributes of sensors used to detect
frustration. Starting with a large breadth of lo-fidelity proto-
types and iterating we slowly narrowed the field of viable sen-
sors.

The salient outcome of this process is several sensors and
interfaces; but we think a more important outcome is what we
learned during our evaluations:

• Participants liked having devices to communicate
frustration.

• The data that was collected from both active and pas-

70

sive sensors can be used for redesigning and adapting
systems (either by hand, or automatically).

• More specifically, there are signs of different user
behavior during usability problems. With active sen-
sors, this is clearly discernible. With passive, the pic-
ture is more ambiguous, but may potentially be clear
with additional pattern recognition and context sens-
ing.

During the first pilot evaluation of these devices we found
that participants preferred the sensor designs to more tradi-
tional feedback mechanisms like web comment forms. In addi-
tion, we found that the devices and interfaces that placed the
lowest burden of change on the user were the most thoroughly
accepted.

The second study gave us a window into the phenomena that
arise when users are intentionally frustrated. We used pattern
recognition to help observe the complex ways in which people
respond to frustrating stimuli. As a first inquiry into how frus-
tration can be detected, it provided positive indications. We
were able to classify data from frustration events and distin-
guish it from baseline data at a better-than-random rate.

A more developed form of this classifier will be a fundamental
building block of user interface systems that adapt to user
behavior. It will provide a measure that allows us to direct the
design of interfaces towards not just more efficient, but more
pleasing interactions. It could detect real emotion and quan-
tify it in a way that can guide meaningful changes in interface
design.

71

References
Ark, W. Dryler, C. D., Davia, J. L. (1999). The Emotion Mouse. Pro-

ceedings of HCI International Conference (Munich, Germany,
August 1999).

Backs, R. W. and Boucsein, W. (Eds.). (1999). Engineering
Psychophysiology. Mahwah, NJ.

Beyer, H. Holtzblatt, K. (1997). Contextual Design : A Customer-
Centered Approach to Systems Designs. Morgan Kaufmann. San
Francisco, CA.

Butler, T. W. (1983). Computer Response Time and User Perfor-
mance, in Proceedings of CHI ’83 (Dec, 1983)

Castillo, J., Hartson, H.R., and Hix, D. (1975). The User-Reported
Critical Incident Method at a Glance. Virginia Polytechnic
Institute TR-97-13. <http://ei.cs.vt.edu:8090/Dienst/UI/2.0/
Describe/ncstrl.vatech_cs%2fTR-97-13>.

Crowder, R. M. (1998). <http://www.soton.ac.uk/~rmc1/robotics/
artactile.htm>.

Ekman P, Friesen WV (1978). Facial Action Coding System, Investi-
gator’s Guide Part 2, Consulting Psychologists Press Inc.

Hartson, H. R., and Castillo, J. (1998). Remote Evaluation for Post-
Deployment Usability Improvement, in Proceeding of the Work-
ing Conference on Advanced Visual Interface (L’Aquila, Italy,
May 1998).

Hartson, H. R., Castillo, J., Kelso, J., Kamler, J., and Neale, W. (1995).
Remote Evaluation: The Network as an Extension of the Usabil-
ity Laboratory, in Proceedings of CHI ’96 (Vancover, BC, April
1995) ACM Press.

Hinckley, K., Sinclair, M. (1999) Touch-Sensing Input Devices, Pro-
ceedings of Conference on Human Factors in Computing Sys-
tems (CHI ‘99), Pittsburgh, Pennsylvania, ACM Press, 223-230.

Horowitz, P. and Hill, W. (1989). The Art of Electronics, Cambridge,
UK, Cambridge University Press, 52.

Ishii, H. and Ullmer, B. (1997). Tangible Bits: Towards Seamless
Interfaces between People, Bits and Atoms. Proceedings of Con-
ference on Human Factors in Computing Systems (CHI ‘97),
Atlanta, Georgia, ACM Press, 234-241.

Jay, Timothy (1992). Cursing in America. Philadelphia: John Ben-
jamins.

72

Kirsch, D. (1997). The Sentic Mouse: Developing a tool for Measur-
ing Emotional Valence. MIT Media Laboratory Perceptual Com-
puting Section Technical Report No. 495.

Mueller, F and Lockerd, A. (2001). Cheese: Tracking Mouse Move-
ment Activity on Websites, a Tool for User Modeling. Extended
Abstracts of the Conference on Human Factors in Computing
Systems (CHI ‘01), Seattle, Washington, ACM Press, 279-280.

Neilsen, J. (1999). Top Ten New Mistakes of Web Design. <http://
www.useit.com/alertbox/990530.html>

Neilsen, J. (1998). Cost of User Testing a Website. <http://
www.useit.com/alertbox/980503.html>.

Nicolson, E. and Fearing, R. (1993). Sensing Capabilities of Linear
Elastic Cylindrical Fingers, In Proceedings, IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems ‘93, Yoko-
hama, Japan, pp. 178-185.

Norwood, M. R. (2000). Affective Feedback Devices for Continuous
Usability Assessment. Master’s Thesis, Massachusetts Institute
of Technology.

OpinionLab <http://www.opinionlab.com>

Picard, R. W. (1997). Affective Computing. MIT Press.

Reeves, B. and Nass, C. (1996) The Media Equation, Center for the
Study of Language and Information, Stanford University.

Reignier, P. (1995). <http://www-prima.imag.fr/ECVNet/IRS95/
node13.html>

Scheirer, J., Fernandez, R., Klein, J. Picard, R. W. (2001). Frustrating
the User On Purpose: A Step Toward Building an Affective Com-
puter. To appear in special issue of Interacting With Computers.

Scheirer, J. and Picard, R. W. (2000). Affective Objects. MIT Media
Laboratory Perceptual Computing Section Technical Report No.
524.

Selker, T. Lockerd, A., Martinez, J. (2001). Eye-R, a Glasses-Mounted
Eye Motion Detection Interface. Extended Abstracts of the Con-
ference on Human Factors in Computing Systems (CHI ‘01),
Seattle, Washington, ACM Press, 179-180.

Sheridan, T. (1975). Community Dialog Technology. Proceedings of
the IEEE 63, 3 (March, 1975). 463-475.

Squeekee <http://www.squeekee.com/>

73

Swallow, J. Hameluck, D. and Carey, T. (1997). User Interface
Instrumentation for Usability Analysis: A Case Study. In
Cascon ’97 (Toronto, Ontario, November, 1997). <http://
watserv1.uwaterloo.ca/~tcarey/casestudy.html>.

Taylor, F. W. (1911). The Principles of Scientific Management. W. W.
Norton & Company, Inc., New York, NY.

Tian, Y. Kanade, T. and Cohn, J. F. (2001). Recognizing Action Units
for Facial Expression Analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 23, No. 2, February,
2001.

UCD cam <http://miso.cs.vt.edu/~usab/remote/
docs/avi98_remoteusab.pdf>

Vapnik, V. (1995). The Nature of Statistical Learning Theory, chapter
5. Springer-Verlag, New York.

WinWhatWhere Investigator. <http://www.winwhatwhere.com/
index.htm>.

74

75

Appendix A (Code)

ADC conversion code
// File: adc.c
//
// ADC converion rmware for sensitve-mouse
//
// Carson Reynolds <carsonr@media.mit.edu>
// MIT Media Lab
// April, 2001
// Adapted from Rob Poor’s iRX Hello World
#case
#include <16C74A.H>

// Congure PIC to use: HS clock, DISABLE Watchdog Timer,
// no code protection, enable Power Up Timer
//
#fuses HS,NOWDT,NOPROTECT,PUT

// Tell compiler clock is 20MHz. This is required for delay_ms()
// and for all serial I/O (such as printf(...). These functions
// use software delay loops, so the compiler needs to know the
// processor speed.
//
#use DELAY(clock=20000000)

// Declare that we’ll manually establish the data direction of
// each I/O pin on port B.
//
#use fast_io(B)

// Standard denitions from the irx2_1 board
//
#dene RS232_XMT PIN_B1 // (output) RS232 serial transmit
#dene RED_LED PIN_B2 // (output) Red LED (low true)
#dene RS232_RCV PIN_B5 // (input) RS232 serial receive

// Macros to simplify I/O operations
//
#dene RED_LED_ON output_low(RED_LED)
#dene RED_LED_OFF output_high(RED_LED)

// Default tri-state port direction bits: all PORT B bits are
// output except for RC232_RCV (bit 5).
//
#dene B_TRIS 0b00100000

// Inform printf() and friends of the desired baud rate
// and which pins to use for serial I/O.

76

//
#use rs232(baud=9600, xmit=RS232_XMT, rcv=RS232_RCV)

// Decleare variable to store data from one pass of ADC
//
unsigned int value;

// Counter
//
int i;

void main() {
 // since we’ve declared #use fast_io(B) (above), we MUST
 // include a call to set_tris_b() at startup.
 //
 set_tris_b(B_TRIS);

 RED_LED_ON; // reality check at startup
 delay_ms(200);
 RED_LED_OFF;

 setup_port_a(ALL_ANALOG);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);

 while (1) {
 for (i=0;i<8;i++) {
 // choose sensor
 set_adc_channel(i);
 delay_ms(1);
 // get value
 value = read_adc();
 // send to serial port
 printf(“%u “, value);
 }
 // delimit line of spaces
 // with newlines and loop
 printf(“\n”);
 }
}

77

ADC Acquisition and Labeling Driver

import java.io.*;

import java.net.*;

import java.util.*;

import java.text.*;

import javax.comm.*;

public class NetSqueeze extends Thread implements Runnable,

SerialPortEventListener {

 static CommPortIdentier portId;

 static Enumeration portList;

 static DataOutputStream os;

 static PrintWriter pw;

 static String directory;

 static String leName = “data.txt”;

 static NetSqueeze ns;

 static int label = -1;

 /*

 Matlab Color Label Key

 0 = page 1 delay

 1 = page 1

 2 = page 1 handler delay

 3 = page 1 handler

 4 = page 2 delay

 5 = page 2

 6 = page 2 handler delay

 7 = page 2 handler

 8 = page 3 delay

 9 = page 3

 10 = page 3 handler delay

 11 = page 3 handler

 12 = page 4 delay

 13 = page 4

 14 = page 4 handler delay

 15 = page 4 handler

 16 = page 5 delay

 17 = page 5

 18 = page 6 delay

78

 */

 InputStream inputStream;

 BufferedReader br;

 SerialPort serialPort;

 Thread readThread;

 String fullLine;

 static nal int HUNT = 0;

 static nal int CHAN1 = 1;

 static nal int CHAN2 = 2;

 static nal int CHAN3 = 3;

 static nal int CHAN4 = 4;

 static nal int CHAN5 = 5;

 static nal int CHAN6 = 6;

 static nal int CHAN7 = 7;

 static nal int CHAN8 = 8;

 int state = HUNT;

 public static void main(String[] args) {

 System.err.println(“----------------------------------”);

 System.err.println(“|Network Squeezemouse Driver Init|”);

 System.err.println(“----------------------------------”);

 portList = CommPortIdentier.getPortIdentiers();

 while (portList.hasMoreElements()) {

 portId = (CommPortIdentier) portList.nextElement();

 if (portId.getPortType() == CommPortIdentier.PORT_SERIAL) {

 if (portId.getName().equals(“COM1”)) {

 // init serial port grabber

 System.out.println(“* Using: “ + portId.getName());

 ns = new NetSqueeze();

 break;

 }

 }

 }

 }

 public NetSqueeze() {

 try {

 serialPort = (SerialPort)

79

portId.open(“SimpleReadApp”, 2000);

 } catch (PortInUseException e) {

 System.out.println(e);

 }

 try {

 inputStream = serialPort.getInputStream();

 br = new BufferedReader(new InputStreamReader(inputStream));

 } catch (IOException e) {

 System.out.println(e);

 }

 try {

 serialPort.addEventListener(this);

 } catch (TooManyListenersException e) {

 System.out.println(e);

 }

 serialPort.notifyOnDataAvailable(true);

 try {

 serialPort.setSerialPortParams(9600,

 SerialPort.DATABITS_8,

 SerialPort.STOPBITS_1,

 SerialPort.PARITY_NONE);

 } catch (UnsupportedCommOperationException e) {

 System.out.println(e);

 }

 readThread = new Thread(this);

 readThread.start();

 }

 public static void setDir(String dir) {

 synchronized (NetSqueeze.class){

 //set internal eld to be used as directory

 directory = dir;

 //create new le here

 try {

 String path = directory + “/” + leName;

 os = new DataOutputStream(new FileOutputStream(path));

 pw = new PrintWriter(os);

 } catch(IOException x)

 {x.printStackTrace();}

80

 }

 }

 public static void setLabel(int labelPassed) {

 synchronized (NetSqueeze.class){

 label = labelPassed;

 }

 }

 public void handleData() {

 byte[] readBuffer = new byte[20];

 // read bytes from serial port

 try {

 // 0 is not a magic number

 inputStream.read(readBuffer, 0, inputStream.available());

 // iterator over characters in string, and parse them

 StringCharacterIterator sci

 = new StringCharacterIterator(new String(readBuffer));

 for(char c = sci.rst(); c != sci.DONE; c = sci.next()) {

 parse(c);

 }

 } catch (IOException e) { System.err.println(e); }

 }

 public void parse(char c) {

 switch(state) {

 case HUNT:

 if (c == ‘\n’) {

 if (fullLine != null) {

 fullLine = fullLine + label;

 if (pw != null) {

 pw.println(fullLine);

 } else {

 System.out.println(fullLine);

 }

 }

 fullLine = “”;

 state = CHAN1;

 }

 break;

81

 case CHAN1:

 case CHAN2:

 case CHAN3:

 case CHAN4:

 case CHAN5:

 case CHAN6:

 case CHAN7:

 stateMachineHelper(c, state + 1);

 break;

 case CHAN8:

 stateMachineHelper(c, HUNT);

 break;

 }

 }

 private void stateMachineHelper(char c, int nextState) {

 if (Character.isDigit(c)) {

 fullLine = fullLine + c;

 } else if (Character.isSpaceChar(c)) {

 fullLine = fullLine + c;

 state = nextState;

 }

 }

 public static void kill() {

 try {

 pw.close();

 os.close();

 } catch (IOException e) {}

 System.exit(0);

 }

 public void run() {

 ServerSocket serverSocket = null;

 boolean listening = true;

 try {

 serverSocket = new ServerSocket(4444);

 } catch (IOException e) {

 System.err.println(“Could not listen on port: 4444.”);

 System.exit(-1);

82

 }

 while (listening) {

 // learn to speak again.

 try {

 new SqueezeServerThread(serverSocket.accept()).start();

 yield();

 } catch (IOException e) {}

 }

 try {

 serverSocket.close();

 } catch (IOException e) {}

 try {

 Thread.sleep(20000);

 } catch (InterruptedException e) {}

 }

 public void serialEvent(SerialPortEvent event) {

 switch(event.getEventType()) {

 case SerialPortEvent.BI:

 case SerialPortEvent.OE:

 case SerialPortEvent.FE:

 case SerialPortEvent.PE:

 case SerialPortEvent.CD:

 case SerialPortEvent.CTS:

 case SerialPortEvent.DSR:

 case SerialPortEvent.RI:

 case SerialPortEvent.OUTPUT_BUFFER_EMPTY:

 break;

 case SerialPortEvent.DATA_AVAILABLE:

 handleData();

 break;

 }

 }

}

83

Appendix B (Evaluations):

(First Study Materials)

Briefing script
Read to all subjects upon arrival at laboratory

(comments to the administrator in bold)

NOTE: Be very friendly to the subject, but in a natural way.

Greet the subject with this script, the consent form, and a signed payment voucher, and lead them

to a seat in the testing area.

If the subject asks any questions during this process, politely state:

“I’m sorry, but I’m only allowed to read from this script. I will be able to answer any questions you

have when the experiment is completed.”

Otherwise, read the following script:

“Thank you for coming and participating in this study!”

“We’d like you to fill out the registration sequence for a popular job search site. We’d like to strongly

encourage you to use [feedback device for condition] to send feedback about any problems you have

as you progress through the registration process. Afterwards, we’d like to ask you to answer some

questions about your experience, and fill out a questionnaire. That’s basically it. We are trying to

evaluate the usability of the web site. So, we need you to be a tester. Okay?”

“Okay. You’ll be asked to fill out the registration form for jobtrack.com. Let me show you how to

use: [depending upon condition]

· Customer Service Web Form

· Gripe

· Squeezemouse

[Customer Service Web Form]

“If you have any problems, you can use the web form at http://behaved.media.mit.edu/study/

comments.jsp” [type in this URL and show user form] It’s a standard form. All you have to do is type in

comments to report your frustration and hit the submit button.

84

[Gripe]

“If you have any problems, you can use this piece of software [show user gripe interface]. If you click

on this icon and choose “send report” Gripe (as we call it) will record some information about what’s

happening. Gripe will also bring up a slider. Use that slider to report your frustration. You can also type

in comments on the comments tab. [show user comments tab] Once you’re done click the Send Report

button.

[Squeezemouse]

“If you have any problems, you can use this mouse and software [show user gripe interface]. If you

squeeze the mouse hard it will record some information about what’s happening. The longer you

squeeze it, the more the system registers your frustration. You can bring up an event you’ve captured

by clicking on this icon and choosing this event. In addition you can click on the icon and choose “Send

report” to start sending feedback immediately. You can also type in comments on the comments tab.

[show user comments tab] Once you’re done click the Send Report button.

Now you try. [Watch User Try]

When you’re done, the computer will notify you to get up and come get me—and I’ll be right out

here—and I’ll conduct a short interview give you a brief, 1-page paper questionnaire to fill out. The

entire experience, start to finish, should take you less than 1 hour. Okay?

“First, we’d like to give you your payment voucher, redeemable at the cashier’s office (building 10, at the

dollar bill mural in the Infinite Corridor, if they’ve never been). [have them fill out voucher, and have

them hand it back to you to copy.]

“Now, we’d like you to read and fill out this consent form.” [hand subject consent form, and pen if

necessary. While subject fills out consent form, copy the filled-out payment voucher, and/or otherwise

look busy; do not rush the subject, or make them feel nervous.] When they are done filling out the

consent form, say, “Thanks. Okay, let’s get you started. Right this way.”

Lead the subject into the experiment room, and offer them a seat in front of the computer. Turn on the

video camera, and then say to the subject:

“If there’s a problem, I’ll be right outside the room. Otherwise, good luck!”

85

QUESTIONNAIRE A
Please answer the following questions:

NOTE: Filling out this questionnaire is very important to our research, but is entirely
voluntary. Feel free to skip any question you don’t want to answer.

1. How hard was the job registration web form to use?
(Very Easy) = = = = = = = (Very Hard)

2. How responsive was the job registration website?
(Very Fast) = = = = = = = (Very Slow)

3. How hard was it to send feedback about the web form?
(Very Easy) = = = = = = = (Very Hard)

4. Did you like using the feedback page?
(Very Much) = = = = = = = (Not at All)

5. Did sending feedback interfere with lling out the form?
(Very Much) = = = = = = = (Not at All)

6. How interested are you in using the feedback page again?
(Very Much) = = = = = = = (Not at All)

7. Prior to today, have you ever been a participant in a usability test?
=Yes =No

8. What are your impressions of the whole experience of lling out the form,

and sending in feedback?

86

QUESTIONNAIRE B
Please answer the following questions:

NOTE: Filling out this questionnaire is very important to our research, but is entirely
voluntary. Feel free to skip any question you don’t want to answer.

1. How hard was the job registration web form to use?
(Very Easy) = = = = = = = (Very Hard)

2. How responsive was the job registration website?
(Very Fast) = = = = = = = (Very Slow)

3. How hard was it to send feedback about the web form?
(Very Easy) = = = = = = = (Very Hard)

4. Did you like using the Gripe feedback software?
(Very Much) = = = = = = = (Not at All)

5. Did sending feedback interfere with lling out the form?
(Very Much) = = = = = = = (Not at All)

6. How interested are you in using Gripe again?
(Very Much) = = = = = = = (Not at All)

7. Prior to today, have you ever been a participant in a usability test?
=Yes =No

8. What are your impressions of the whole experience of lling out the form,

and sending in feedback?

87

QUESTIONNAIRE C
Please answer the following questions:

NOTE: Filling out this questionnaire is very important to our research, but is entirely
voluntary. Feel free to skip any question you don’t want to answer.

1. How hard was the job registration web form to use?
(Very Easy) = = = = = = = (Very Hard)

2. How responsive was the job registration website?
(Very Fast) = = = = = = = (Very Slow)

3. How hard was it to send feedback about the web form?
(Very Easy) = = = = = = = (Very Hard)

4. Did you like using the Squeezemouse feedback device?
(Very Much) = = = = = = = (Not at All)

5. Did sending feedback interfere with lling out the form?
(Very Much) = = = = = = = (Not at All)

6. How interested are you in using the Squeezemouse again?
(Very Much) = = = = = = = (Not at All)

7. Prior to today, have you ever been a participant in a usability test?
=Yes =No

8. What are your impressions of the whole experience of lling out the form,

and sending in feedback?

88

(Second Study Materials)

Briefing script

Read to all subjects upon arrival at laboratory

(comments to the administrator in bold)

NOTE: Be very friendly to the subject, but in a natural way.
Greet the subject with this script, the consent form, and a signed payment voucher, and lead
them to a seat in the testing area.

Apparatus:
 • Video camera focused on user’s screen over shoulder
 • Pressure Sensitive Mouse
 • Instrumented software which collects mouse data
 • Timer Clock

If the subject asks any questions during this process, politely state:
“I’m sorry, but I’m only allowed to read from this script. I will be able to answer any
questions you have when the experiment is completed.”

Otherwise, read the following script:
“Thank you for coming and participating in this study! We’d like you to fill out the brief
registration sequence for a popular job search site. We will be performing a usability test to
see how users respond to it.”

“With your consent as you use the job search site audio, video, and mouse input will be
recorded.”

[Hand subject consent form, and pen if necessary. While subject fills out consent form,
Look busy; do not make them feel nervous.] When they are done filling out the consent
form, say,

“Next, we’d like you to sign your payment voucher. Once we make a copy for our records,
We’ll give you the original which is redeemable at the cashier’s office immediately following
the experiment. (building 10, at the dollar bill mural in the Infinite Corridor, if they’ve never
been)

[have them sign voucher, and make copy for our records.]

89

[setup mouse, and ensure all the camera is on]

“After the experiment, we’d like to ask you to fill out a quick questionnaire and answer some
questions about your experience. We know your time is important so we won’t take too long.
Okay?”

“When you’re done, the computer will notify you to get up and come get me—and I’ll be right
out here. At that point I’ll give you a quick, 1-page paper questionnaire to fill out and conduct
a short interview.”

[Bring up http://arsenal.media.mit.edu/study/start.html, and select their condition]

[Be a little insulting here]

“During our pilot study we found that the entire experience, start to finish, should take you
less than 15 minutes. Some graduate students from campus here were able to move through
the webpages in 10 minutes. But we don’t expect you to go that fast, we figure it shouldn’t take
average folks all that much longer. You should be aware of how much time you’re spending.
This clock will show you how much time is left.”

[Start the clock at 15 mins (go to 30 and then back)]

“If you run out of time, please continue until you are finished. If there’s a problem, try to work
through it. I’ll be right outside the room. Otherwise, good luck!”

90

QUESTIONNAIRE
Please answer the following questions:

NOTE: Filling out this questionnaire is very important to our research, but is entirely
voluntary. Feel free to skip any question you don’t want to answer.

1. How hard was the software to use?
(Very Easy) = = = = = = = (Very Hard)

2. How responsive was the software?
(Very Fast) = = = = = = = (Very Slow)

3. How frustrating was the experience?
(Very Much) = = = = = = = (Not At All)

4. How mentally difcult was it to use the software?
(Very Much) = = = = = = = (Not at All)

5. Did you like using the software?
(Very Much) = = = = = = = (Not at All)

6. How interested are you in using the software again?
(Very Much) = = = = = = = (Not at All)

7. Prior to today, have you ever been a participant in a usability test?
=Yes =No

8. What are your impressions of the whole experience of using the software?

91

