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Abstract

Spectral estimation methods typically assume stationarity and uniform spacing between samples of

data. The non-stationarity of real data is usually accommodated by windowing methods, while the lack

of uniformly-spaced samples is typically addressed by methods that “fill in” the data in some way. This

paper presents a new approach to both of these problems: we use a Bayesian framework, which includes

a non-stationary Kalman filter, to jointly estimate all spectral coefficients instantaneously. The new

method works regardless whether the samples are evenly or unevenly spaced; moreover, it provides a new

approach to enabling processing when it is desirable to virtually eliminate aliasing by unevenly sampling.

An amplitude-preservation property of the new method can be used to detect if aliasing occurred. Finally,

we propose an efficient algorithm for sparsifying the spectrum estimates when we know a priori that the

signal is narrow-band in the frequency domain. We illustrate the new method on several data sets, showing

that it can perform well on unevenly sampled nonstationary signals without the use of any sliding window,

that it can estimate frequency components beyond half of the average sampling frequency when the signal

is unevenly sampled, and that it can provide more accurate estimation than several other important recent

and classical methods.

I. Introduction

Spectrum estimation has been a classical research topic in signal processing communities for

decades. Many approaches have been proposed, including the modified periodogram, estimation

based on auto-regressive modeling, the MUSIC algorithm, and the Multitaper method [1], [2], [3].

Although all these algorithms have their own advantages, they all have two basic assumptions:

first, the signal samples are evenly spaced; second, the signal is stationary, at least over the dura-

tion of a window. But in many real world applications– for example in several electrocardiogram

analysis problems where frequency analysis is performed on the beat arrival times –signals are

unevenly sampled and nonstationary.

Unevenly sampled signal may be obtained for many reasons including the random nature of

the sampling time, missing data, and deterministically designed sampling schemes. Compared

to the rich research activities on spectral estimation of evenly sampled signals, there has been

less research done for unevenly sampled signals. In the following paragraphs, we briefly review

some of the previous work on spectral analysis of unevenly sampled signals.

To estimate power spectra of a laser Doppler velocimetry signal that is unevenly sampled,

Ouahabi et al. [4] first interpolate the signal to be evenly spaced and then apply classical FFT-

based methods, while Banning [5] models the sampling time as a Poisson distribution and uses
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Kalman filtering to estimate evenly spaced “samples”. Also, Dowski [6] utilizes interpolation to

obtain spectrum estimates from unevenly sampled signals.

Besides using interpolation, another direction is to perform spectrum estimation directly from

the unevenly spaced samples. Lomb and Scargle proposed the Lomb-Scargle periodogram to

deal with unevenly sampled data The Lomb-Scargle periodogram [7], [8] models the data as a

single stationary sinusoid wave; this method was originally proposed using the Maximum likeli-

hood principle. Later Bretthorst gave it a Bayesian interpretation based on Laplace’s approx-

imation [9]. The Lomb-Scargle periodogram has been applied to economic time series, Wolf’s

relative sunspot numbers, and heart rate data [9], [10]. Also, Bronez applies generalized prolate

spheroidal sequences to spectrum estimation of unevenly sampled data [11]. Due to the high

computation burden of this method, he suggests to use approximation techniques in practice.

For nonstationary signals, most methods explicitly or implicitly use sliding windows, such as

short-time FFT and time-varying multitaper methods [12], [13].

In this paper, we propose a new Bayesian spectrum estimation method for unevenly sampled

nonstationary data. This method models the signal by a linear dynamic system and formulates

spectrum estimation as a probabilistic inference problem. The new method has the following

main features:

a. Instantaneously estimating all the spectral coefficients at the time a new sample arrives, while

neither doing interpolation when samples are unevenly spaced, nor using a sliding window when

the signal has a time-varying spectrum.

b. Jointly estimating all the frequencies, while many classical methods, for example, the Lomb-

Scargle periodogram, estimate each of the frequencies separately.

c. Preserving the virtually-aliasing-free property of unevenly sampled data, and providing a

means of detection of aliasing via an amplitude conservation property.

d. Modeling the observation noise, in contrast with most spectrum estimation or time-frequency

analysis methods that are based on deterministic transformations without noise modeling or

stochastic signal modeling.

e. Applying Bayesian inference to spectrum estimation. In this sense, this method can be viewed

as an extension of the Lomb-Scargle periodogram. Instead of just assigning values to spectral

coefficients, it provides a joint probability distribution over spectral coefficients, and easily allows

incorporation of prior information about this distribution.
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Furthermore, we propose an efficient maximum likelihood method to sparsify spectral coefficients,

which is useful for narrow-band signals.

The rest of the paper is organized as follows. Section II presents the new spectrum estimation

method, and discusses its properties, followed by section III, describing a Kalman-based approach

for updating probabilities. Section IV introduces the sparsification algorithm for the narrow-

band case. Section V compares the new method with classical spectrum estimation methods,

demonstrates its accuracy, manifests that it can correctly estimate frequencies beyond the range

of half of the average sampling frequency, and discusses how it can be applied to resolving

ambiguity in time-varying spectrum estimation. Finally, section VI summarizes the new method

and describes future research directions.

II. A Bayesian Framework for Nonstationary Spectrum Estimation

In this section, we present a Bayesian framework for estimating the nonstationary spectrum

of a given signal. This framework does not assume any short time stationarity to the signals, in

contrast with classical spectrum estimation approaches. The method works both for evenly and

unevenly sampled data.

For the spectrum estimation problem, we observe the data x: x = [x1, x2, . . . , xn, . . . , xN ]T ,

where xn is sampled at time tn. When the data is unevenly sampled, t = [t1, . . . , tN ]T contains

useful information for spectrum estimation. We model the data as

xn = an0 +
M∑

k=1

ank sin(2πfktn) + bnk cos(2πfktn) + vn (1)

for n = 1, . . . , N.

where vn is a noise variable. The number and value of frequency bases, M and fk, can be chosen

based on prior knowledge. These frequency bases can be made to be evenly or unevenly spaced

in the frequency domain; however, later in this paper we simply choose all the frequency bases

to be equally spaced so that equation (1) is a truncated Fourier expansion. The signal energy

will project on these sinusoid and cosine bases.

Both ank and bnk have real values. Note that for a nonstationary signal, ank, bnk, and vn

depend on the sampling time tn. The use of ank and bnk allows the signal to have a time-varying

amplitude
√

a2
nk + b2

nk and a changing phase arctan( bnk
ank

) for the kth frequency band at time tn .
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For equation (1), we define

sn = [an0, an1, an2, . . . , anM , bn1, bn2, . . . , bnM ]T (2)

cn = [1, sin(2πf1tn), . . . , sin(2πfM tn),

cos(2πf1tn), . . . , cos(2πfM tn)] (3)

For nonstationary spectrum estimation, our goal is to estimate the state vector sn instanta-

neously at the sampling time tn. To this end, we assume that the hidden states s1 . . . sN form a

Markov chain that emits a time series of observations x1 . . . xN :

sn = sn−1 + wn (4)

xn = cnsn + vn (5)

where wn is the process noise at the sampling time tn, and vn is the observation noise at tn.

We can model the process observation noises by Gaussian distributions or by heavy-tailed non-

Gaussian distributions. However, using non-Gaussian distributions invokes the use of numerical

approximation techniques in the inference procedure.

According to this model, the joint distribution of hidden states and observations can be com-

puted as

p(s1:N , x1:N ) = p(x1|s1)p(s1)
N∏

n=2

p(xn|sn)p(sn|sn−1) (6)

where s1:N = [s1, . . . , sN ]T and x1:N = [x1, . . . , xN ]T denotes collections of states and observations

from time t1 to tN .

The filtering distribution p(sn|x1:n) can be sequentially estimated as follows

p(sn|x1:n−1) =
∫
sn−1

p(sn|sn−1)p(sn−1|x1:n−1) (7)

p(sn|x1:n) =
p(xn|sn)p(sn|x1:n−1)

p(xn|x1:n−1)
(8)

Then the spectrum at time tn can be summarized by the mean of p(sn|x1:n).

III. Spectrum Estimation by Kalman Filtering

October 9, 2002 DRAFT



105

A. Algorithm

If we use linear Gaussian models in equations (4) and (5):

wn ∼ N (0,Γn) (9)

vn ∼ N (0, σ2
n), (10)

then p(sn|x1:n−1) is also Gaussian, and we can use Kalman filtering to efficiently update these

probabilities. To deal with uneven sampling, we set the variance of the process noise proportional

to the time interval between two consecutive samples,i.e.,

Γn = Z(tn − tn−1); (11)

where Z is a pre-defined constant matrix, which we say more about below. The intuition behind

this equation is that the longer the sampling interval between time tn and tn+1, the larger the

uncertainty about the spectral coefficients at time tn+1 conditional on those at time tn.

Denote mn and Vn as the mean and covariance matrix of p(sn|x1:n). We have the following

Kalman filtering update [14], [15] equations:

mn = mn−1 + Kn(xn − cnmn−1) (12)

Vn = (I−Kncn)Pn−1 (13)

where

Pn−1 = Vn−1 + Γn−1 (14)

Kn = Pn−1cT
n (cnPn−1cT

n + σ2
n)−1 (15)

and I is an identity matrix. Note that we have a nonstationary Kalman filtering algorithm; both

cn and Γn−1 vary with time.

The recursions start off with

m1 = m0 + K1(x1 − c1m0) (16)

V1 = (I−K1c1)V0 (17)

K1 = V0cT
1 (c1V0cT

1 + σ2
1)

−1 (18)

where m0 and V0 are pre-defined hyper-parameters for the prior distribution p(s0), which we

say more about below.
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If we want to utilize not only the past information, but also the future information in the data

set to estimate the spectrum, we may want to compute p(si|x1:N ) where x1:N is the whole data

set. As a well-known technique, Kalman smoothing can be employed to compute this posterior

distribution [14].

B. Model Parameters and Hyperparameters

Given the algorithm in the last section, it is natural to ask how to assign the values of the

Gaussian variances, Γn and σ2, and the hyperparameters m0 and V0. As a Bayesian method,

the algorithm allows you to easily incorporate prior knowledge into the estimation, which on the

other hand is relatively hard for a Maximum likelihood approach.

First, if we have no information about the frequency characteristics of the data, we may set

Γn or more exactly Z in equation (11) to be a scaled identity matrix

Z = zI (19)

where z controls the variablity of the amplitude of the estimated frequencies. Also, we may use a

so-called noninformative prior distribution p(s0) by assigning V0 to be a scaled identity matrix,

and m0 to be a zero vector.

Second, if we think the data might contain only some known frequencies, a simply way of

representing this belief is to only use those frequency bases in the data model (1). But if we

are not certain if there are other frequency components in the data, this approach will be too

aggressive. A better approach will be assigning V0 to be a diagonal matrix with small variances

for the 0 elements in m0. In this way, we are more likely to obtain the nonzero estimate of the

preferred frequencies. But at the same time, we can still obtain nonzero estimates of the other

frequencies if the data suggest that such exist.

Third, since for natural signals the amplitudes of low frequency components may tend to change

slower than those of the high frequency components, we might want to assign smaller process

noise for low frequency components, and larger process noise for high frequency components.

By doing so, more data points are needed to change the estimates of low frequency coefficients

and fewer data points to change the estimates at high frequencies. As a popular time-frequency

analysis tool, wavelets share the similar property.

In summary, there is room in this new algorithm to represent prior knowledge and use it to

guide the estimation while employing information from the data at the same time.
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C. No Fixed Window

It appears a little surprising that this new method can estimate the frequencies of a periodic

signal without imposing any window on the signal. A closer look at the formula will help

illuminate what is going on.

Let us rewrite equation (12) in another form:

mn = (I−Kncn)mn−1 + Knxn (20)

= (I−Kncn)(I−Kn−1cn−1)mn−2+

(I−Kncn)Kn−1xn−1 + Knxn (21)

= · · ·

=
n∏

d=1

(I−Kdcd)m0 +
n−1∑
k=1

n∏
d=k+1

(I−Kdcd)Kkxk

+ Knxn (22)

Define K0 = 1 and gk = Kk
∏n

d=k+1(I−Kdcd) for k = 0, 1, . . . , (n−1). From equation (22), we

can see that mn is a weighted average of xk and m0, where gk serves as the weighting coefficient

for the kth term.

Thus, the new method can be considered to construct an adaptive weighted window, which

decays fast over the past history. Both observation and process noise variances play important

roles in the weighting coefficient gk. The sampling time tk also affects gk through its influence

on Γk.

For example, consider Knxn in equation (22). If σ2
n is large, then due to equation (15) Kn is

small. In other words, the influence of the current noisy obervation xn on the spectral estimate

mn is damped. Similarly when the data points before the kth data point are clean or the kth

data point is noisy, the influence of xk on mn is reduced by a small gk.

Finally, we want to emphasize that this adaptive windowing mechanism works for the new

estimation method automatically given the model and the data. In contrast with other sliding

window methods, there is no need to manually tune explicit parameters for a window shape and

size, or for a set of such windows.
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D. Conquer Aliasing by Unevenly Sampling

Recently [16], Bretthorst showed that a generalization of the discrete Fourier transformation

(DFT) can handle the case when data is unevenly sampled, resulting in a much larger effective

bandwidth than when the DFT is used on evenly sampled data. For the new Bayesian spectrum

estimation method, the similar effect of uneven sampling holds: the critical frequency beyond

which aliasing occurs may be almost infinite for unevenly sampled data.

Let us first review the reason why aliasing exists for evenly sampled data. When the data are

evenly sampled, we have

t = n∆t, for n = 1, . . . , N. (23)

fs =
1

∆t
(24)

fNy =
fs

2
=

1
2∆t

(25)

where ∆t is the time interval between any two consecutive samples, fs is the sampling frequency,

and fNy is the Nyquist frequency. In this case, it is well known that aliases occur at multiples

of the sampling frequency: evenly spaced samples of both x(t) = A cos(2πf0t + φ) and y(t) =

A cos(2π(f0 +kfs)t+φ), replacing t = n∆t, will be identical for all integer k . When components

of (3) include such aliases, then these repeated components will receive similar probabilities.

In contrast, if the data are unevenly sampled, so that the time intervals between two samples

may differ, then we can denote the largest common factor of all tn’s as ∆t′. Then it follows

tn = kn∆t′, for n = 1, . . . , N. (26)

where kn is an integer. For evenly sampled data, kn = 0, 1, . . . , N − 1. For unevenly sampled

data, kn may start from a large number.

Then we define the new cut-off frequency f ′
Ny for irregular sampled data as

f ′
Ny =

1
2∆t′

(27)

Note that ∆t′ is less than or equal to the smallest time interval between data points. When the

sampling is random, ∆t′ may be as small as the numerical resolution of the system. For example,

if tn is stored by a 32 bit number, ∆t′ will be around 2−32 and f ′
Ny will be around 231 Hz.

In other words, when the data are randomly sampled, or unevenly sampled in a well-designed

way, the new spectrum estimate will have an almost infinite cut-off frequency f ′
Ny, thus providing

an effectively infinite bandwidth. This effect is illustrated in Fig. 1.
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Fig. 1. The effect of uneven sampling on spectra estimated by the new method. (a) Spectrum of signal

evenly sampled at 8KHz. The bandwidth of the signal is less than 8K/2 = 4K Hz. With the Nyquist

frequency at 4K Hz, the first alias will appear around 8K Hz. (b) Spectrum of signal randomly sampled

at 232 Hz. With the new cut-off frequency at 231 Hz, the first alias will appear around 232 Hz.

Finally, notice that this “essentially no aliasing” property does not imply preservation of

estimation accuracy when the average sampling rate declines dramatically, even if the samples

are unevenly spaced. Dramatically reducing aliasing is not the same as preserving estimation

accuracy. As the number of samples decreases, the estimation accuracy will decrease smoothly.

E. Advantages of Joint Estimation

As shown by Bretthorst [16], the power spectrum of the (generalized) DFT actually utilizes a

single frequency model. In order to obtain the estimation for different frequencies, the (general-

ized) DFT basically applies the same model to every frequency basis and repeats the estimation

procedure again and again. Similarly, the Lomb-Scargle periodogram has a single frequency

model.

However, for the new method, all the frequencies in the spectrum (1) are used together to

explain the data and jointly estimated, which gives the new method several estimation advantages

over the methods based upon a single frequency model. These advantages are discussed in the

remainder of this section.
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E.1 Amplitude Conservation and Aliasing Detection

For the DFT and the Lomb-Scargle periodogram, when aliases appear, the amplitude estimates

of the aliases will be the same regardless of how many aliases are present over the frequency

range being considered; that is, the amplitude estimation of one frequency is independent of the

estimation of the others. This behavior is a consequence of both the DFT and the Lomb-Scargle

periodogram using a single frequency model that treats each frequency separately.

But for the new method,when aliasing occurs, the signal energy will be equally distributed

on all the repeated elements in the basis cn due to the symmetry of the projection on these

identical elements. Then it is easy to see from equation (1) that the sum of the absolute values

of the projection coefficients on two identical frequency elements in cn will be the same as the

absolute value of the projection coefficient on one of them if we remove the other one from the

basis cn. In other words, the sum of the spectral coefficients is the same no matter if we use a

larger or smaller frequency basis cn. We call this behavior the amplitude conservation property,

and emphasize that it arises because of the joint estimation of all the frequencies. The DFT and

the Lomb-Scargle periodogram do not have this property.

The amplitude conservation property of the new method can be used for aliasing detection.

Specifically, we can reduce the frequency range of the sinusoid and cosine basis to see if amplitude

estimates change or not, in order to see if there are aliases in the estimation. In contrast, for the

DFT and the Lomb-Scargle periodogram, this property does not hold.

E.2 Super-resolution

Now consider the case when a signal contains multiple frequency components. If the frequency

components are well-separated in the frequency domain, using a method based on a single fre-

quency model may achieve a good approximation since there is not much estimation interference

between those frequency components. But if the frequency components are very close to each

other, the single-frequency methods suffer from interference between the closely-spaced frequency

components, which in turn reduces the estimation accuracy.

On the other hand, by jointly estimating all the frequency components and conditioning on

the estimation results of past data points, the new method can separate very close frequency

components. This will be demonstrated in Sec. V.
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IV. Sparse Estimation

If a signal contains only a few frequency components, and we know this a priori, then we

can sparsify the Kalman filtering result in order to reduce the number of estimated frequency

components and remove the estimation ambiguity as discussed later in Sec. V-D.

In this section, we propose an efficient sparsification algorithm. This algorithm can be viewed

as a generalization of the Optimal Brain Surgeon algorithm [17] that has been proposed in the

machine learning community for pruning irrelevant features.

A. Sparsification by Lagrangian Optimization

To sparsify the mean estimation m of the spectrum, we maximize the probability of the

estimation at that time tn while setting some values in the mean vector m to be zeros. For the

simplicity of the notation, we drop the subscript n in mn, Vn, and sn in this section. Let m?

be the new mean vector after pruning some elements to be zeros and modifying the rest of the

nonzero elements, and let the vector q indicate which elements of m are pruned to obtain m?.

Formally speaking, we have the following problem:

max
q

min
m?

log p(s|m?,V) (28)

i.e. max
q

min
m?

− 1
2
(s−m?)TV−1(s−m?) (29)

Now, let h be the length of m, and let ei be a vector with all elements being zero except its

ith element being one. Then, Eq is the matrix obtained by extracting columns specified in q

from the h by h identity matrix. For example, if q = [1, 65], then Eq consists of the first and

sixty-fifth column of the h by h identity matrix.

The above optimization problem can then be shown to be equivalent to the following one:

min
q

min
δm

δmTV−1δm (30)

Subject to

ET
qδm−mq = 0 (31)

where δm = m−m?.

We form a Lagrangian from equations (30) and (31):

l = δmTV−1δm + λT (ET
qδm−mq) (32)
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where λ is a Lagrange multiplier.

By taking derivatives of l and using the constraint (31), we obtain

δm = V1:M ;q(Vq;q)−1mq (33)

lq = mT
q (Vq;q)−1mq (34)

where V1:M ;q consists of the q columns of the matrix V, Vq;q the intersection of q columns and

q rows of V, and mq the q elements of m.

If we want to prune l elements of m to be zeros, we compute lq for all possible vectors q that

indicate the positions of those l elements. Then we set the optimal q∗ as

q∗ = arg min
q

lq,

and compute δm based on q∗.

B. Using Schur Complements

The above sparsification algorithm involves a matrix inverse (Vq;q)−1, which becomes expen-

sive when we want to prune many elements in m. Using Schur Complements, we can efficiently

obtain δm and lq without computing (Vq;q)−1 explicitly.

Denote by H the inverse of the covariance matrix V. and partition H into four sub-matrices:

H =

 Hp;p Hp;q

Hq;p Hq;q

 (35)

where p is the complementary vector of q. For example, if H is a 3 by 3 matrix and q = [1, 3],

then p = [2] and

Hp;p = H2;2 Hp;q = [H2;1H2;3]. (36)

As shown in the appendix, we have

δm = V1:M ;q(Hq;q −Hq;pH−1
p;pHp;q)mq (37)

lq = mTHm−mT
pHp;pmp − 2mT

pHp;qmq−

mT
qHT

p;qH
−1
p;pHp;qmq

= mTHm−mT
pHp;pmp − 2mT

pG−GTH−1
p;pG (38)

where G = Hp;qmq.
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When p reduces to a scalar, only one non-zero element in the new mean m? is kept, and

no matrix inversion is needed for computing lq since H−1
p;p becomes a scalar division. By pre-

computing mTHm, we can update lq efficiently through equation (38) for every q.

We embed this sparsification algorithm in the Kalman filtering procedure. After obtaining V

and m for the current data point, we sparsify the mean m and continue the Kalman filtering. In

practice, we apply the sparsification algorithm every few steps of the Kalman filtering instead of

every single step, in order to enhance the smoothness of m in time and reduce the computation.

C. Greedy Approximation

When the length of p is comparable to that of q, then using the Schur Complement in equation

(47) is no longer efficient. In this case, we may use a greedy approach to prune two elements of

m, corresponding to the same frequency, at each step.

If a signal has known frequency phases, we can reduce the model size by using only those

sinusoid basis functions with an additional known phase parameter in the vector cn.

For such a reduced model, the greedy approximation prunes one element each time and becomes

the so-called Optimal Brain Surgeon algorithm [17].

V. Experiments and Discussions

A. Comparison with Classical Spectrum Estimation Algorithms

First, we compare several classical methods with the new method on evenly sampled data to

illustrate the new method’s ability to resolve closely spaced signal frequency components. In

Fig. 2 the signal is the sum of three sinusoids and noise. For Welch’s algorithm, we use a window

size of 100 data points, with 50 points of overlap. For Burg’s algorithm, we chose a 6th order

AR model. For the MUSIC algorithm, we set the the signal subspace dimension to be 6. For the

multitaper method, we used the standard Matlab implementation, and set the time-bandwidth

product for the discrete prolate spheroidal sequences to be 2. These parameters were chosen by

trial and error, trying to get the best performance out of each method. (For example, Matlab

for multitaper recommends a time-bandwidth parameter of 4, but we found 2 to work better for

this data set.) For the new method, we set the process noise variance to be a scaled identity

matrix (Z = I) in equation (11), and used a stationary observation noise (σ2
n = 0.1 for all n).

Also, we set M = 127 so that the length of the frequency basis vector c is 255, and utilized a

noninformative prior on p(s0) (V0 = 1× 103).
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Note that the Y axis in Fig. 2 is on a log scale. The new method, because of its joint frequency

estimation capability, successfully resolves the closely-spaced peaks without problems arising

from their interference.

In addition, we carried out a sensitivity analysis. We scaled the noninformative prior and the

noninformative model parameters 100 times larger and smaller to see if the changes affect the

estimation results significantly. In these experiments, the results based on the new parameters

were basically the same as those using the original parameters. This indicates that the probability

model used is a good fit of the data and robust to the variation of the parameters.
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(a) Welch’s algorithm (b) Burg’s algorithm (c) MUSIC algorithm (d) Multitaper (e) New

Fig. 2. Comparison with classical spectral estimation algorithms on evenly sampled stationary data. The

signal is the sum of 19, 20, and 21 Hz real sinusoid waves with amplitudes 0.5, 1, and 1 respectively. The

variance of the additive white noise is 0.1. The signal is evenly sampled 128 times at 50 Hz.

B. Estimation accuracy: fast decaying amplitude sinusoid

We synthesize an unevenly sampled signal that contains one 125 Hz sinusoid wave modulated

with an exponentially fast decaying amplitude. In the case of unevenly sampled data, the Lomb-

Scargle method is widely used in many applications.

We compare the Lomb-Scargle periodogram, the new method, and the new method with

smoothing. For the Lomb-Scargle periodogram, we use a short window size of 60 data points,

with 59 points of overlap; less overlap yields visible “blocking” effects, and this value appeared

to optimize its performance.

For the new method and its smoothing version, we set z = 1000 and σn = 1, and assigned a

noninformative prior on p(s0) (V0 = 1× 1010).

The estimated spectra by these three methods are shown in Fig. 3. The true amplitude and

the estimated amplitudes of 125 Hz components are plotted in Fig. 4. For the Lomb-Scargle

periodogram, the mean square error is 0.0384. Except for the initialization (0.2 seconds) for the
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new method, the mean square error of the estimated amplitudes along the time axis is 0.0016;

for the new method with smoothing, the mean square error drops to 0.0000080. Note that the

Lomb-Scargle periodogram also has an initialization period due to its sliding window; its error,

given above, omits this initialization period as well.

The new method, in both the original and smoothing versions, yields accurate estimates of the

frequency and fast decaying amplitude, while the Lomb-Scargle periodogram fails to track the

changing amplitude. Also, the Lomb-Scargle periodogram contains more sidelobe energy than do

the spectrograms obtained from the new method. This is partly because the new method jointly

estimates all the frequency bands and thus has the so-called “explaining-away’ effect: if the signal

is well explained by one or some of the frequency bands, the influence of other frequency bands

will be reduced.

Sec. Sec. Sec.

(a) Lomb-Scargle (b) New (c) New with Smoothing
Fig. 3. Estimated spectrograms for an unevenly sampled signal that contains one 125 Hz sinusoid

modulated with an exponentially fast decaying amplitude. Note that the Y axes in this figure are log

scale.
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Fig. 4. True and estimated amplitudes for the signal shown in Fig. 3.
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C. Sparsification for Resolving Changing Frequencies

In this section, we demonstrate the sparsification technique described in section IV-B on a

signal where the frequency jumps abruptly over time. The signal is unevenly sampled from a

uniform distribution with a 30 dB SNR. The frequency of the signal jumps from 20 Hz to 40 Hz

at time -0.833 second, and then jumps from 40 Hz to 60 Hz at time 0.833 second. The results,

comparing the new method to Lomb-Scargle, are shown in figure 5.

As shown in the figure, by reducing the sliding window size from 200 data points to 100 data

points, the Lomb-Scargle periodogram increases its frequency resolution, but at the same time,

the stronger blocking effect results in a much larger detection delay of the signal’s frequency

switching. Here two consective windows overlap half of the window size. Actually, when dealing

with fast changing frequencies, this problem is almost unavoidable for all sliding-window based

methods, such as the short-time FFT, regardless whether the signals are evenly or unevenly

sampled. For those methods, there is always a tradeoff between the capability of tracking fast

changing frequencies and the frequency resolution.

For such abrupt changes in frequency, although the new method can still do a decent esti-

mation, it cannot detect the frequency change very quickly as shown in Fig. 5 (c). Coupled

with sparsification, the new method achieves the result shown in Fig. 5 (d), which not only has

high frequency accuracy, but also quickly detects the frequency change. In this example, the

sparsification algorithm is applied every 40 filtering steps, and the length of q is chosen a priori

to be h− 2.

D. Adjusting Model Parameters for Resolving Estimation Ambiguity

There is often more than one possible way to interpret a given signal. For example, given a

signal x

xn = sin(2πf1tn) cos(2πf2tn) (39)

=
1
2
(
sin(2πtn(f1 + f2)) + sin(2πtn(f1 − f2))

)
, (40)

the traditional way to interpret this is via the second equation, so that its spectrogram has two

sinsoids, one at f1 + f2 and one at f1 − f2. On the other hand, it might be desirable, in accord

with the alternate interpretation of equation (39), to produce a “non-stationary spectrogram”,

that contains one single sinusoid at f1, with a time-varying amplitude of value cos(2πf2tn).
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(a) (b)

(c) (d)
Fig. 5. Spectral analysis for an unevenly sampled signal where the frequency jumps from 20 Hz to 40

Hz at the sampling time -0.833 second, and then jumps from 40 Hz to 60 Hz at 0.833 second. (a) Lomb-

Scargle periodogram with a window size of 100 points (b) Lomb-Scargle periodogram with a window size

of 200 points (b) Spectrogram by the new method (d) Spectrogram by the new method coupled with

sparsification

As discussed in the previous section III-E.2, the new method prefers the smoothness of the

estimation along the time axis. Thus if we use a noninformative prior and model parameters

that represent ignorance about the frequency property of the data (here Z = I and σ2 = 10), the

estimator will tend to interpret the signal as what equation (40) says – there are two sinusoids

in the signal x. This is verified in the simulation shown in Fig. 6 (d), where the new method

recovers the two sinusoids in the spectrogram that are very close to each other.

However, if we use so-called informative model parameters, which incorporate a priori knowl-

edge about the data, we can bias the estimation to have only one frequency component (i.e., we

set a very large process variance, 109, corresponding to both the sine and cosine components at
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40Hz in Z and a small process noise variance, 10, for the rest frequency components). In this

case, we obtain an estimation result showing that this signal is a single sinusoid at 40 Hz with a

cosine modulated amplitude, as seen in Fig. 6 (e).

(a) (b) (c)

(d) (e) (f)
Fig. 6. Spectral analysis for an unevenly sampeled signal that contains 39 and 41 Hz sinusoids (a-c)

Lomb-Scargle periodograms with sliding windows of 100, 200, and 300 data points respectively, which

illustrate the interference of neighboring frequencies in Lomb-Scargle periodograms. (d) Spectrogram

by the new method with noninformative model parameters: There is no interference between neighbor

frequencies, again demonstrating the super-resolution property of this new method. (e) Spectrogram by

the new method with informative model parameters. (f) Dotted curve: estimated amplitudes of 39 and

41 Hz by the new method with a noninformative model; solid curve: the estimated amplitude of the 40

Hz component by the new method with an informative model.

E. Sparsification or Informative Model Parameters?

We can either apply the sparsification algorithm or use informative model parameters to ob-

tain a sparse spectrogram. We have performed a number of experiments to compare the two

approaches on the data set used in the previous section, and the results are visibly indistinct from

those we show above. In general, the sparsification method costs more in terms of computation,

but requires less prior information than using informative model parameters.

October 9, 2002 DRAFT



119

F. Sampling Rate and Aliasing

Finally, we illustrate in Fig. 7 the use of the new method in preserving the property that

uneven sampling diminishes aliasing. When this signal containing 39 and 41 Hz sinusoids is

evenly sampled, it requires fs > 82Hz in order to avoid aliasing. Here we show both even and

uneven sampling at a rate of 100 times over 2 seconds. In the evenly sampled case, the aliased

components show up as expected at 9 and 11 Hz. However, in the unevenly sampled case, there

is no such aliasing for this signal. Thus, when aliasing is a concern, a method such as this new

technique, that works well on unevenly sampled data, may provide a bandwidth advantage.

Comparing Fig. 7 (c) and (d), we see that the new method has an amplitude conservation

property, i.e., the estimated amplitudes are equally distributed in the true and aliasing frequencies

in (c). This illustrates the use of the amplitude conservation property to detect if aliasing occurs

or not.
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(a) Lomb-Scargle, even (c) New, even (b) Lomb-Scargle, uneven (d) New, uneven

Fig. 7. Lomb-Scargle periodogram and the spectra estimated by the new method for a signal

x = sin(2π39t) + sin(2π41t) sampled 100 times over 2 seconds, with samples either evenly or randomly

(unevenly) spaced.

VI. Conclusion and Future Work

This paper has proposed a Bayesian method for spectrum estimation for unevenly-sampled

noisy non-stationary data. By utilizing a non-stationary Kalman filter, the new method jointly

estimates all the amplitudes and phases of frequency bands of interest instantaneously without

the use of a fixed window or a fixed set of windows. Additionally, we showed how the Bayesian

method is able to accommodate prior information about noise and signal structure. The new

method appears to provide outstanding frequency resolution, even on small data sets. When
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coupled with the sparsification algorithm, it can accurately estimate switching frequencies. When

data are unevenly sampled, it can estimate frequency components beyond half of the average

sampling rate.

One direction of future work is using non-Gaussian process and observation noises to estimate

quick frequency changes. To this end, we are applying a deterministic Bayesian approximation

technique to the probabilistic inference of spectrum. Some initial work has been done.

In addition, we are interested in employing different signal bases besides sinusoid and cosine

functions. An example is wavelets, which, combined with Bayesian inference, will result in a fast

stochastic time-frequency analysis algorithm. It is also possible to utilize multiple discrete or

generalized prolate spheroidal sequences [11] as our signal basis, in order to reduce the estimation

variance.

VII. Appendix

The pruning procedure in section (IV-A) is pretty expensive. At each iteration over the possible

q, it involves the computation of the inverse of the matrix Vq;q. In case we want to prune most

elements of m, we can use Schur complements to efficiently compute the inverse of partitioned

matrices [18]. If we partition a matrix P into four sub-matrices

 P11 P12

P21 P22

 then the Schur

complement of P11 in P is

(P|P11) = P22 −P21P−1
11 P12 (41)

Then if we similarly partition the inverse matrix P−1 into four sub-matrices

 (P−1)11 (P−1)12

(P−1)21 (P−1)22


then

(P−1)22 = (P|P11)−1. (42)

Then, from equations (35), (42) and (41) we have

(Vq;q)−1 = (H|Hp;p) (43)

= Hq;q −Hq;pH−1
p;pHp;q (44)
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So we have

δm = V1:M ;q(Hq;q −Hq;pH−1
p;pHp;q)mq (45)

lq = mT
q (Hq;q −Hq;pH−1

p;pHp;q)mq (46)

= mTHm−mT
pHp;pmp − 2mT

p(Hp;qmq)−

(Hp;qmq)TH−1
p;p(Hp;qmq) (47)
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