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Brief Statement of the Problem:

User interfaces make measurements of the user and use those measurements to give the user control over
some abstract domain. The sophistication of these measurements range from the trivial keyclick to the most
advanced perceptual interface system. Once the measurements are acquired the system usually attempts to
extract some set of features as the first step in a pattern recognition system that will convert those mea-
surements into whatever domain of control the application provides. Those features are usually chosen for
mathematical convenience or to satisfy anad hocnotion of invariance. The expressivity of any such in-
terface is limited by the user’s ability to overcome the reality of their bodies and perform in this arbitrary
feature space.

The fact that people are embodied places powerful constraints on their motion. An appropriate model of
this embodiment allows a perceptual system to separate the necessary aspects of motion from the purposeful
aspects of motion. The necessary aspects are a result of physics, and are predictable. The purposeful
aspects are the direct result of a person attempting to express themselves through the motion of their bodies.
By taking this one thoughtful step closer to the original intentions of the user, we open the door to better
interfaces. Understanding embodiment is the key to perceiving expressive motion.





Chapter 1

Introduction

User interfaces make measurements of the user and use those measurements to give the user control over
some abstract domain. The sophistication of these measurements range from the trivial keyclick to the most
advanced perceptual interface system. Once the measurements are acquired the system usually attempts to
extract some set of features as the first step in a pattern recognition system that will convert those mea-
surements into whatever domain of control the application provides. Those features are usually chosen for
mathematical convenience or to satisfy anad hocnotion of invariance. The expressivity of any such in-
terface is limited by the user’s ability to overcome the reality of their bodies and perform in this arbitrary
feature space.

The fact that people are embodied places powerful constraints on their motion. An appropriate model of
this embodiment allows a perceptual system to separate the necessary aspects of motion from the purposeful
aspects of motion. The necessary aspects are a result of physics, are predictable. The purposeful aspects are
the direct result of a person attempting to express themselves through the motion of their bodies. By taking
this one thoughtful step closer to the original intentions of the user, we open the door to better interfaces.
Understanding embodiment is the key to perceiving expressive motion.

Expressive power of an interface is hard to measure. Boredom can limit and color data collection. Subjective
measures of efficacy are unsatisfying. Trivial contexts can hide the power of advanced interfaces. We are
building a system for interface study around the the game Netrek. As a game it provides a built in metric for
success: to win. It specifies a closed world that is simple enough to be tractable, not so trivial that context
in meaningless. The need to communicate abstract concepts like strategy and coordination also provides
opportunities to push the limits of what we expect from interfaces. We intend to use this test-bed to explore
the above claims.

Context and coordination are very important in Netrek. There are programs, called robots, that know the
basics of playing Netrek, but they do not, have a very good strategic engine or any ability to cooperate
with other members of their team. Marcus Huber explored the idea of augmenting these robots to include
cooperation with each other and found a significant advantage over uncoordinated robots[10]. We take
a different approach. With a sufficiently sophisticated interface a human should be able to add strategy,
coordination and structure to the robots’ activities. This symbiosis between user and robots is called the
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Netrek Collective.

Chapter 2 explores some perceptual technology that we will use to build this interface. Specifically it
explores the link between a perceptual system and the embodiment of the user being perceived. Chapter 3
provides more details about Netrek, a first implementation of the Netrek Collective. Finally, Section 3.3
details some directions for the Collective to grow.



Chapter 2

Dynamic Model

This chapter describes a real-time, fully-dynamic, 3-D person tracking system that is able to tolerate full
(temporary) occlusions and whose performance is substantially unaffected by the presence of multiple peo-
ple. The system is driven by 2-Dblob featuresobserved in two or more cameras [1, 26]. These features
are then probabilistically integrated into a fully-dynamic 3-D skeletal model, which in turn drives the 2-D
feature tracking process by setting appropriate prior probabilities.

The feedback between 3-D model and 2-D image features is an extended Kalman filter. One unusual aspect
of our approach is that the filter directly couples raw pixel measurements with an articulated dynamic model
of the human skeleton. Previous attempts at person tracking have utilized a generic set of image features
(e.g., edges, optical flow) that were computed as a preprocessing step, without consideration of the task to
be accomplished. In this aspect our system is similar to that of Dickmanns in automobile control [6], and
our previous research shows that we obtain similar advantages in efficiency and stability though this direct
coupling.

We will show how this framework can go beyond passive physics of the body by incorporating various
patterns of control (which we call ‘behaviors’) that arelearnedfrom observing humans while they perform
various tasks. Behaviors are defined as those aspects of the motion that cannot be explained by passive
physics alone. In the untrained tracker these manifest as significant structure in the innovations process (the
sequence of prediction errors). Learned models of this structure can be used to recognize and predict this
purposeful aspect of human motion.

This chapter will briefly discuss the formulation of our 3-D skeletal model in Section 2.2.1, followed by
an explanation of how to drive that model from 2-D probabilistic measurements, and how 2-D observations
and feedback relate to that model in Section 2.2.2. Section 2.2.3 explains the behavior system and its
intimate relationship with the physical model. Finally, we will report on experiments showing an increase
in 3-D tracking accuracy, insensitivity to temporary occlusion, and the ability to handle multiple people in
Section 2.3.

5



2.1 Related Work

In recent years there has been much interest in tracking the human body using 3-D models with kinematic
and dynamic constraints. Perhaps the first efforts at body tracking were by Badler and O’Rourke 1980,
followed by Hogg 1988 [15, 14]. These early efforts used edge information to drive a kinematic model of
the human body. These systems require fairly precise hand initialization, and can not handle the full range
of common body motion.

Following this early work using kinematic models, some researchers began using dynamic constraints to
track the human body. Pentland and Horowitz 1991 employed non-rigid finite element models driven by
optical flow [16], and Metaxas and Terzopolous’s 1993 system employing deformable superquadrics [12, 13]
driven by 3-D point and 2-D edge measurements. Again, these systems required precise initialization and
could handle a limited range of body motion.

More recently, several authors have applied variations on the basic kinematic analysis-synthesis approach
method to the body tracking problem [19, 2, 9]. Gavrila and Davis [8] and Rehg and Kanade [18], have
demonstrated that this approach has the potential to deal with limited occlusions, and thus to handle a
greater range of body motions.

The work described in this chapter attempts to combine the the dynamic modeling work with the advantages
of a recursive approach, by use of an extended Kalman filter formulation that couples a fully dynamic
skeletal model with observations of raw pixel values, as modeled by probabilistic ‘blob’ models.

This system also attempts to explicitly incorporate learned patterns of control into the body model. The
approach we take is based on the behavior modeling framework introduced in Pentland and Liu 1995 [17];
it is also related to the behavior modeling work of Blake 1996 [11] and Bregler 1997 [5]. However, this
controller operates on a 3-D non-linear model of human motion that is closer to true body dynamics than
the 2-D linear models previously employed.

2.2 Mathematical Framework

The human body is a complex dynamic system, whose visual features are time-varying, noisy signals. Ac-
curately tracking the state of such a system requires use of a recursive estimation framework, as illustrated
in figure 2.1. The elements of the framework are the observation model relating noisy pixel-level features to
the higher-level skeletal model andvice versa, the dynamic skeletal model, and a model of typical behaviors.
We will first describe the dynamic and observation models, and then the behavior model.

2.2.1 Dynamics

There are a wide variety of ways to model physical systems. The model needs to include parameters that
describe thelinks that compose the system, as well as information about the hardconstraintsthat connect
these links to one another. A model that only includes this information is called akinematicmodel, and can
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Figure 2.1: The flow of information though the system. Predictive feedback from the 3-D dynamic model
becomes prior knowledge for the 2-D observations process. Predicted control allows for more sensible
predictive feedback.

only describe the static states of a system. The state vector of a kinematic model consists of the model state,
q, and the model parameters,p.

A system in motion is more completely modeled when thedynamicsof the system are modeled as well. A
dynamic model describes the state evolution of the system over time. In a dynamic model the state vector
includes velocity as well as position:q, q̇; p). And state evolves according to Newton’s First Law:

q̈ = W ·Q (2.1)

WhereQ is the vector of external forces applied to the system, andW is the inverse of the system mass
matrix. The mass matrix describes the distribution of mass in the system.

Hard Constraints

Hard constraints represent absolute limitations imposed on the system. One example of a kinematic con-
straint is a skeletal joint. Our model follows thevirtual work formulation [23]. In a virtual work formulation,
all the links in a model have full range of unconstrained motion. Hard kinematic constraints on the system
are enforced by a special set of forcesc:

q̈ = W · (Q + c(q, t)) (2.2)

The formulas governing these constraints can be modified at run-time.



Figure 2.2:Left: video and 2-D blobs from one camera in the stereo pair.Right: corresponding configura-
tions of the dynamic model.

It is essential that the constraint forces do not add energy to the system. It can be shown that this requirement
is satisfied if they are constructed so they lie in the null space complement of the constraint Jacobian:

c(q, t) = λ
∂ċ
∂q

(2.3)

Combining that equation with the definition of the constraints results in a linear system of equations with
only the one unknown,λ:

−
[
∂c
∂q

T

W
∂c
∂q

]
λ =

∂c
∂q

T

WQ +
∂ċ
∂q

q̇ +
∂2c
∂t2

(2.4)

This equation can be rewritten to emphasize its linear nature.J is the constraint Jacobian,ρ is a known
constant vector, andλ is the vector of unknown Lagrange multipliers:

−JTWJλ = ρ (2.5)

Many fast, stable methods exist for solving equations of this form.

Soft Constraints

Some constraints are probabilistic in nature. Noisy image measurements are a constraint of this sort, they
influence the dynamic model but do not impose hard constraints on its behavior.

Soft constraints such as these can be expressed as a potential field acting on the dynamic system. The
incorporation of a potential field function that models a probability density pushes the dynamic evolution of
the model toward the most likely value, starting from the current model state.

Note that functions that take the model state as input, such as a the controller from Section 2.2.3, can
be represented as a time-varying potential field. One relevant example is incorporation of a probability
distribution over link position and velocity:

Qf = f(X,q, q̇) (2.6)



2.2.2 The Observation Model

The low-level features extracted from video comprise the final element of our system. Our system tracks
regions that are visually similar, and spatially coherent: blobs. We can represent these 2-D regions by their
low-order statistics. Clusters of 2-D points have 2-D spatial means and covariance matrices, which we shall
denoteµ andΣ. The blob spatial statistics are described in terms of their second-order properties; for
computational convenience we will interpret this as a Gaussian model:

Pr(O|µk,Σk) =
exp(−1

2(O− µk)TΣ−1
k (O− µk))

(2π)
m
2 |Σk|

1
2

(2.7)

The Gaussian interpretation is not terribly significant, because we also keep a pixel-by-pixelsupport map
showing the actual occupancy [24].

These 2-D features are the input to the 3-D blob estimation equation used by Azarbayejani and Pentland [1].
This observation equation relates the 2-D distribution of pixel values to a tracked object’s 3-D position and
orientation.

These observations supply constraints on the underlying 3-D human model. Due to their statistical nature,
observations are easily modeled as soft constraints. Observations are integrated into the dynamic evolution
of the system by modeling them as descriptions of potential fields, as discussed in Section 2.2.1.

The Inverse Observation Model

In the open-loop system, the vision system uses a Maximum Likelihood (ML) framework to label individual
pixels in the scene:

Γij = arg max
k

[Pr(Oij |µk,Σk)] (2.8)

whereΓij is the labeling of pixel(i, j), and(µk,Σk) are the second-order statistics of modelk.

To close the loop, we need to incorporate information from the 3-D model. Given the current state of the
modelq, it is possible to compute the state of an individual link that matches a specific tracked feature
(say the hand), and call itv. Then, given a model of the camera, it is possible to calculate the perspective
projection of that state into 2-D and call itv∗.

Since the vision system uses a stochastic framework, it is necessary to represent this link projection as
a statistical model:Pr(Oij |v∗k). Integrating this information into the 2-D statistical decision framework
results in a MaximumA Posterioridecision rule:

Γij = arg max
k

[αPr(Oij |µk,Σk) · (α− 1) Pr(Oij |v∗k)] (2.9)

2.2.3 Models of Purposeful Motion

Observations of the human body reveal an interplay between the passive evolution of a physical system
(the human body) and the influences of a an active, complex controller (the nervous system). Section 2.2.1
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Figure 2.3: Modeling tracking data of circular hand motion. Passive physics alone leaves significant struc-
ture in the innovations process.Top Left: Smoothing the innovations reveals unexplained structure.Top
Right: Plotting the Innovations along the path makes the purposeful aspect of the action clear.Bottom: In
this example, using a learned control model to improve predictions leaves only white process noise in the
innovations process. The smoothed innovations stay near zero.

explains how, with a bit of work, it is possible to model the physical aspects of the system. However, it
is very difficult to explicitly model the human nervous and muscular systems, so the approach of using
observed data to estimate probability distributions over control space is very appealing.

A Model for Control

Kalman filtering includes the concept of aninnovations process. This is the difference between the actual
observation and the predicted observation transformed by the Kalman gain:

νt = Kt(yt −HtΦtx̂t−1) (2.10)

The innovations processν is the sequence of information in the observations that was not adequately pre-
dicted by the model. If we have a sufficient model of the observed dynamic process, and white, zero-mean
Gaussian noise is added to the system, either in observation or in the real dynamic system itself, then the
innovations process will be white. Inadequate models will cause correlations in the innovations process.

Since purposeful human motion is not well modeled by passive physics, we should expect significant struc-
ture in the innovations process.

A simple example is helpful for illustrating this idea. If we track the hand moving in a circular motion, then
we have a sequence of observations of hand position. This sequence is the result of a physical thing being



measured by a noisy observation process. Assuming that the hand moves according to a linear, constant
velocity dynamic model, it is possible to estimate the true state of the hand, and predict future states and
observations. If this model is sufficient, then the errors in the predictions should be solely due to the noise
in the system.

The upper plots in Figure 2.3 show that model is not sufficient. Smoothingν reveals this significant struc-
ture (top left). Plotting the innovations along the path of observations make the relationship between the
observations and the innovations clear: there is some un-modeled process acting to keep the hand moving
in a circular motion (top right). This un-modeled process is the purposeful control signal that being applied
to the hand by the muscles.

In this example, there is one active, cyclo-stationary control behavior, and it’s relationship to the state of the
physical system is straightforward. There is a one-to-one mapping between the state and the phase offset
into the cyclic control, and a one-to-one mapping between the offset and the control to be applied. If we
use the smoothed innovations as our model and assume a linear control model of identity, then the linear
prediction becomes:

x̂t = Φtx̂t−1 + Iut−1 (2.11)

whereut−1 is the control signal applied to the system. The lower plots in Figure 2.3 show the result of
modeling the hand motion with a model of passive physics and a model of the active control. The smoothed
innovations are basically zero: there is no part of the signal that deviates from our model except for the
observation noise.

In this simple, linear example the system state, and thus the innovations, are represented the same coordinate
system as the observations. With more complex dynamic and observations models, such as described in
Section 2.2.1, they could be represented in any arbitrary system, including spaces related to observation
space in non-linear ways, for example as joint angles.

The next section examines a more powerful form of model for control.

Multiple Behavior Models

Human behavior, in all but the simplest tasks, is not as simple as a single dynamic model. The next most
complex model of human behavior is to haveseveralalternative models of the person’s dynamics, one for
each class of response. Then at each instant we can make observations of the person’s state, decide which
model applies, and then use that model for estimation. This is known as themultiple modelor generalized
likelihood approach, and produces a generalized maximum likelihood estimate of the current and future
values of the state variables [22]. Moreover, the cost of the Kalman filter calculations is sufficiently small to
make the approach quite practical.

Intuitively, this solution breaks the person’s overall behavior down into several “prototypical” behaviors. For
instance, we might have dynamic models corresponding to a relaxed state, a very stiff state, and so forth.
We then classify the behavior by determining which model best fits the observations. This Is similar to the
multiple model approach of Friedmann 1993, and Isard 1996[7, 11].

Since the innovations process is the part of the observation data that is unexplained by the dynamic model,



the behavior model that explains the largest portion of the observations is, of course, the model most likely to
be correct. Thus, at each time step, we calculate the probabilityPr(i) of them-dimensional observationsYk

given theith model and choose the model with the largest probability. This model is then used to estimate the
current value of the state variables, to predict their future values, and to choose among alternative responses.

Hidden Markov Models of Control

Since human motion evolves over time, in a complex way, it is advantageous to explicitly model temporal
dependence and internal states in the control process. A Hidden Markov Model (HMM) is one way to do
this, and has been shown to perform quite well recognizing human motion[21].

The probability that the model is in a certain state,Sj given a sequence of observations,O1,O2, . . . ,ON ,
is defined recursively. For two observations, the density is:

Pr(O1,O2,q2 = Sj) =

[
N∑
i=1

πibi(O1)aij

]
bj(O2) (2.12)

Whereπi is the prior probability of being in a statei, andbi(O) is the probability of making the observation
O while in statei. This is the Forward algorithm for HMM models.

Estimation of the control signal proceeds by identifying the most likely state given the current observation
and the last state, and then using the observation density of that state as described above. We restrict
the observation densities to be either a Gaussian or a mixture of Gaussians. There are well understood
techniques for estimating the parameters of the HMM from data.

2.3 Results

The dynamic skeleton model currently includes the upper body and arms. Figure 2.2 shows the real-time
response to various target postures. The model interpolates those portions of the body state that are not
measured directly, such as the upper body and elbow orientation, by use of the model’s intrinsic dynamics
and the behavior (control) model. The model also rejects noise that is inconsistent with the dynamic model.
Table 2.4 compares noise in the physics+behavior tracker with the physics-only tracker noise. It can be seen
that there is a significant increase in performance.

Figure 2.5 illustrates another advantage of feedback from higher-level models to the low-level vision system.
Without feedback, the 2-D tracker fails if there is even partial self-occlusion, or occlusion of an object with
similar appearance (such as another person), from a single camera’s perspective. With feedback, information
from the dynamic model can be used to resolve ambiguity during 2-D tracking. With models of behavior,
longer occlusions can be tolerated.
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Figure 2.5: Tracking performance on a sequence with significant occlusion.Top: A diagram of the sequence
and a single camera’s view of the motionLeft: A graph of tracking results without feedback.Right: Correct
tracking when feedback is enabled.

2.4 Conclusion

This chapter presents a framework for human motion understanding, defined as estimation of the physical
state of the body combined with interpretation of that part of the motion that cannot be predicted by passive
physics alone. The behavior system operates in conjunction with a real-time, fully-dynamic, 3-D person
tracking system that provides a mathematically concise formulation for incorporating a wide variety of
physical constraints and probabilistic influences. The framework takes the form of a non-linear recursive
filter that enables even pixel-level processes to take advantage of the contextual knowledge encoded in the
higher-level models. Some of the demonstrated benefits of this approach include: increase in 3-D tracking
accuracy, insensitivity to temporary occlusion, and the ability to handle multiple people.

The intimate integration of the behavior system and the dynamic model also provides the opportunity for a
richer sort of motion understanding. The innovations are one step closer to the original intent, our statistical



models don’t have to disentangle the message from the means of expression.

The next chapter will describe a game interface built around this technology. This domain will provide
opportunities to apply these techniques to a richer domain of movement.



Chapter 3

Netrek

In this chapter the game Netrek is proposed as a test-bed for perceptual user interfaces. The game Netrek
provides a rich context for interfaces while retaining the closed world that makes a game environment
tractable as a research platform. The next section will give an introduction to Netrek with an emphasis
on the elements that make it particularly well suited to perceptual user interface work. Section 3.2 will
detail the current state of the test-bed as embodied inOgg That TherėThe last section will outline proposed
additions that are intended to push perceptual user interface research and pave the way toward a truly novel
human-computer interface.

3.1 The Netrek Domain

Netrek is a game of conquest with a Star Trek motif. The game is normally played by up to 16 players
organized into two teams. A team wins by transporting friendly armies to each of the opposing team’s
planets. Figure 3.1 illustrates some of the basic elements of the game: planets, ships, and armies. The first
benefit of Netrek as a test-bed for user interfaces is that it is a game: so it provides built in metrics for the
success of a new interface design. If the interface allows a player to play the game more effectively (to win
more), then the interface can be said to be successful with little room for argument.

Netrek is very much a team-oriented game. Winning requires a team that works together as a unit. This
fact , in particular, provides a rich set of interface opportunities ranging from low-level tactics to high-
level strategy. There has been some work on new tactical interfaces, but these interfaces were blocked
by the Netrek community with an authentication system to keep games fair. We will concentrate on the
opportunities for building interfaces for high-level communication regarding strategy since these provide
the most room for novel interface design.

Netrek is usually played by groups of players on wide area networks spread over large geographic areas.
The standard interface requires the user to directly control their ship. Communication with teammates is
accomplished by type-written messages: this means that in order to send messages the user must temporarily
give up control of their ship. So players must communicate about strategy and complex maneuvers in an
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Figure 3.1: Netrek Screenshot: Federation shipsF0 andF2 defend federation space near Earth and Alpha
Centauri. Indi Romulus and and Aldeberan are unexplored by the Federation. Romulan shipsR3 andR5
hold near Romulus.R4 andF1 have just destroyed each other near Indy.

efficient manner. This necessity led to the creation of a set of staccato jargon and an associated set of
what we’ll call programs. The programs are essentially little plays with a few roles that can be filled by
appropriate players.

The existence of these programs is good for research in several ways. First there is pre-existing code,
called a robot, that is capable of running a small set of these programs as well as game basics like tactics and
navigation. These robots provide a solid base on which to build a research system. The jargon also represents
a strict codification (enforced by the difficulty of communication) of human play that might indicate that
recognition of plays and machine learning of plays through observation of human players would be tractable.
This codification also means that there may be opportunities for novel, expressive interfaces to encourage
the formation of new strategies.

One last aspect of netrek is the virtual embodiment of the robots in the game. The ships obey a simple
dynamic model and they have limited control. This is particularly interesting given the proposal to represent
behaviors as control signals to dynamic systems. This creates a satisfying duality between the mode of
expression and the target of that expression.



Figure 3.2: Netrek Collective Interface: the user uses a deictic gesture to selectF0. Cameras on top of the
display track the user’s movements and a head-mounted microphone is used for speech recognition.

3.2 Initial Integration: Ogg That There

The first version of the Netrek Collective, entitledOgg That There, is intended to perform in a manner
similar to the classic interface demo “Put That There”[4]. Imperative commands with a subject-verb-object
grammar can be issued to individual units. These commands override the robots internal action-selection
algorithm, causing the specified action to execute immediately. Objects can either be named explicitly, or
referred to with deictic gestures combined with spoken demonstrative pronouns. Figure 3.2 depicts a user
selecting a game object with a deictic gesture.

Figure 3.3 illustrates the system architecture ofOgg That There. Thin, solid lines indicate standard socket-
based Netrek communications. Thick, dashed lines indicate RPC based communication between our mod-
ules. The modules can be distributed across a cluster of machines to allow for future expansion of resource
requirements. The following sections give details on thePerception, Interpretation, Display and Robot
modules.

3.2.1 Perception: Deictic Gestures

Deictics are the only form of gesture supported byOgg That There. They are labeled by speech events,
not actually recognized. Interpretation of deictics relies on interpolation over a set of calibration examples
obtained off-line by asking the user to point at the four corners of the screen with both hands in turn. This
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results in four sets of measurements for each hand. Separate calibrations are maintained for each hand.

In general these four points will not form parallelograms in feature space, so linear strategies introduce
unacceptable warping of the output space.Ogg That Thereemploys a perspective warping to translate input
features ((x, y) hand position in 3D space) to screen position: XW

YW
W

 =

 a b c
d e f
g h 1


 x
y
1

 (3.1)

whereX andY are screen position andx andy are hand position. The parametersa, b, c, d, e, f, g, h are
estimated from data. With some manipulation[25] the above equation can be rewritten as a linear system of



equations: 

x1 y1 1 0 0 0 −X1x1 −X1y1

0 0 0 x1 y1 1 −Y1x1 −Y1y1

x2 y2 1 0 0 0 −X2x2 −X2y2

0 0 0 x2 y2 1 −Y2x2 −Y2y2
...

...
...

...
...

...
...

...
xn yn 1 0 0 0 −Xnxn −Xnyn
0 0 0 xn yn 1 −Ynxn −Ynyn





a
b
c
d
e
f
g
h


=



X1

Y1

X2

Y2
...
Xn

Yn


(3.2)

Interpolation of a novel deictic simply involves plugging the new(x, y) into Equation 3.1. The resulting
screen coordinates,(X,Y ), are then passed to theDisplaywhich does a pick action to convert those coordi-
nates into a game object.

3.2.2 Interpretation

The Interpretationmodule reads features from the vision system described above as well as an adaptive
speech system developed by Deb Roy [20]. These feature streams must then be converted to game actions:
commands to the robots or configuration of the display. TheInterpretationmodule can query game state via
the database engine built into theDisplaymodule, and can query individual robots regarding their internal
state.

Currently this module is implemented as a finite state machine implementing the subject-verb-object gram-
mar used inOgg That There. The adaptive speech system is pre-loaded with a set of verbs, literal nouns and
demonstrative pronouns. During the game speech events advance the state of the interpreter. If a demonstra-
tive pronoun is encountered the interpreter resolves the gesture features in screen coordinates as described
above. Those screen coordinates are then combined with grammatical constraints on valid referents from
the current state of the FSM to generate a query on theDisplaydatabase. Once a full sentence is parsed and
all referents are instantiated, a command is issued to the appropriate robot.

3.2.3 Display

The state of the game is displayed on a rear-projection screen. TheDisplaymodule generates the graphics
for this screen. It is a standard Netrek client with several enhancements. An RPC interface allows remote
access to standard display parameters such as viewport zoom and pan, plus addition features for theOgg
That Theresuch as remote cursor display, highlighting of game objects, and textual feedback to the user.
Some of these features can be seen in Figure 3.2.

The Display also provides a high-level interface for game information. ForOgg That Therethis is used
by the interpretor to retrieve game objects that appear near a given screen location and satisfy a list of
grammatical constraints.



3.2.4 Robot

TheRobotis instantiated several times inOgg That There. There is oneRobotfor each player on the game.
Not shown in Figure 3.3 are the eight players on the enemy team: the same code runs players on both teams.

TheRobotcontains a large about of Netrek domain knowledge in the form of heuristic functions and imple-
mentation of several of the programs discussed above. There is also a collection of motor skills that generate
commends to theGame Engineand allow the robot to perform all the primitive Netrek functions.

The heuristic functions are used by a primitive action-selection algorithm that selects targets and dispatches
one of the tactical programs each tick. An RPC interface allows theInterpretor to override this system and
fires a tactical program with supplied targets.

3.3 Future Work

Ogg That Thereis very fragile. The FSM inside theInterpretor limits the robustness of the system as does
the rigid grammar. Limiting the user to deictic gestures denies the potential expressiveness of a gestural
interface. The reliance on imperative commands issued to specific robots doesn’t keep up with the pace of
the game, and leads to frustration as the situation changes faster than commands can be issued.Ogg That
Theresucceeded in solving many integration issues involved in coupling research systems to existing game
code, but it’s now time to redesign the interface to more accurately match the flexibility of the perceptual
technologies, the pace of play, and the need for a game interface to be fluid and fun.

Work is already underway to replace the FSM framework with a production system that can propagate time-
varying constraints against recent perceptual events to generate parses. This should alleviate much of the
brittleness of theOgg That Thereimplementation. Unfortunately the state-of-the-art for production systems
fall short of what we would like to have for this project. However, even if we aren’t able to break out of the
need for grammars, it should be straightforward to support a wider array of possible grammars as well as to
recover from simple speech recognition failures. Utterances and gestures that fall outside the scope of the
implemented grammars will have to be handled outside the system. Some ideas for this special handling are
explored below.

Ogg That Theredoesn’t make use of the machinery in Chapter 2 except as a means to increase tracking
performance. An interpretor that made more elaborate use of gesture could provide a much richer interface.
Building a gestural language system is a popular interface technique, but it requires users to be trained and
distances the user from the control task by interposing a symbolic layer.

The innovations-based representations for behavior described in Section 2.2.3 combined with the embodied,
physics-based, nature of the Netrek robots presents a possibility for non-symbolic communication with the
robots. Innovation steams, or parametric models of the innovations, could be provided to the robots as a
control strategy to be layered on top of the current task. These controls can be thought of as non-verbal
adverbs that would be difficult or impossible to convey verbally. Figure 3.4 illustrates a possible situation
where the user may want a carrier,F0, to execute a feint toward Capella before hitting the real target, Indi.
Human teammates might type toF0, “Take Ind, feint at Cap”. If the robot isn’t explicitly coded to execute
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Figure 3.4: A situation where this feint path might be provided by the user gesturally even though the robot
is not explicitly programmed to execute feints.

feints (or if the human player doesn’t know the word feint), then this symbolic strategy will fail.

Similar strategies, with appropriate intermediate representations, may also be possible for the audio modal-
ity. A command “F1, get in there!” said in a staccato, high-energy way might biasF1 toward higher speeds
and maximal accelerations even if the system was only able to recognize the word “F1” (or maybe not even
this if the viewport is onF1 or the user is gesturing towardF1). It seems that this may end up being some-
what more symbolic since the feature space of speech is so different from the control space of the robots.
An analysis system might recognize agitated speech and generate a symbol representing agitation that the
Interpretorcould choose to pass on to one or more robots.

While the preceding discussion is hypothetical, one modification to theRobotmotor skill code has already
affected qualitative changes in the robots behavior without the need to modify the existing programs that use
that skill. This functionality is not used inOgg That There. It allows theInterpreterto specify a warping
of space that affects how the low-level navigation skill expresses itself. Figure 3.5 illustrates an example of
how a ship might avoid an area indicated as dangerous in its way to a target. This communication channel is
probably more useful for global influences, as opposed to the more local, control-level example of the feint
described above.

An even more indirect, global, non-symbolic influence involves the possibility of modifying the way that
the robot decides what action to take.Ogg That Thereover-rides the action-selection algorithm completely.
So, either the robot is making it’s own decisions or it is following the imperative commands from the user.
There is no possibility to simply bias the decisions of the robot in a certain direction. Figure 3.6 shows a
possible scenario where a robot chooses a different target depending on the presence of a bias indicating a
difference in the value of the targets as perceived by the user.



Figure 3.5: Modification of the navigation motor skill can affect a warping of space for any code that uses
the low-level skill.

The current action-selection implementation is the original code that came with the robots from the Netrek
community. It is a rather brittle (not to mention obfuscated) collection of heuristics. The first step toward
this sort of interaction with the robots will be the adoption of a more sophisticated action-selection imple-
mentation. An obvious choice is to use the current implementation of Bruce Blumberg’s reactive behavior
architecture, since it has proven itself flexible and is readily available [3].

While this mode provides the least direct control over individual robots, it is important to note that this is
also a mechanism for specifying high-level strategic goals and hazards that can affect many robots at once.
Moving away from the imperative command structure toward a method for specifying abstract goals will
increase the ability of the interface to keep pace with the game. Deictics Will Undoubtedly be important
for specifying these goals, but natural specification of the polarity and severity to be associated with the
demonstrated region will probably rely on stylistic attributes of the deictic and accompanying voice events.
That makes this class of communication another interesting challenge.

All of these possibilities have a theme in common: they are attempting to extract content from parts of the
user input that are normally ignored by classic user interface techniques like those illustrated inOgg That
There. An extreme example is useful to illustrate: imagine that the user foresees imminent disaster. The
user does not have time to communicate in a lucid fashion, but given the desperation of the situation, they
are likely to try anyway. Classical interfaces would experience speech and gesture recognition failures, and
would either give up or, in the most advanced case, would ask the user a leading question. This is exactly the
wrong response. There are probably only a few bits of information present in the user’s desperate squeaking,
but they arevery important bits: “look out!” The only kind of process that is going to recover these bits
is one that is attending to the nature of the signals: the energy and pitch of the voice, and the style (in an
innovations-based, statistical sense) of the gesticulations.



Figure 3.6: Modification of the action-selection algorithm to include user supplied weights. In this example
the ship may choose to attack a different target because the most desirable target exists in an area deemed
undesirable by the user.



Chapter 4

Conclusion

Understanding embodiment is the key to perceiving expressive motion. An appropriate model of this embod-
iment allows a perceptual system to separate the necessary aspects of motion from the purposeful aspects of
motion. By getting closer to the original intentions of the user, we should have an easier time implementing
the interface since our statistical tools will not have to explain parts of the signal that are easily explainable
with other techniques.

Several levels of novel interface enhancements to theOgg That Thereapplication are proposed. These
enhancements will illustrate the power of choosing a feature set that matches the embodiment of the user.
The added sophistication should increase the efficacy of the interface through increased expressiveness that
would be difficult to add with classical techniques.
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