Next: About this document ...
Up: Real-Time American Sign Language
Previous: Acknowledgements
- 1
-
L. Baum.
An inequality and associated maximization technique in statistical
estimation of probabilistic functions of Markov processes.
Inequalities, 3:1-8, 1972.
- 2
-
L. Campbell, D. Becker, A. Azarbayejani, A. Bobick, and A. Pentland.
Invariant features for 3-d gesture recognition.
In Second Intl. Conf. on Face and Gesture Recogn., pages
157-162, 1996.
- 3
-
B. Dorner.
Hand shape identification and tracking for sign language
interpretation.
In IJCAI Workshop on Looking at People, 1993.
- 4
-
I. Essa, T. Darrell, and A. Pentland.
Tracking facial motion.
In Proc. of the Workshop on Motion of Non-Rigid and Articulated
Objects, Austin, Texas, Nov. 1994.
- 5
-
B. Horn.
Robot Vision.
MIT Press, Cambridge, MA, 1986.
- 6
-
X.D. Huang, Y. Ariki, and M. A. Jack.
Hidden Markov Models for Speech Recognition.
Edinburgh University Press, 1990.
- 7
-
T. Humphries, C. Padden, and T. O'Rourke.
A Basic Course in American Sign Language.
T. J. Publ., Inc., Silver Spring, MD, 1990.
- 8
-
R. Liang and M. Ouhyoung.
A real-time continuous gesture interface for Taiwanese Sign
Language.
In Submitted to UIST, 1997.
- 9
-
R. Picard.
Toward agents that recognize emotion.
In Imagina98, 1998.
- 10
-
H. Poizner, U. Bellugi, and V. Lutes-Driscoll.
Perception of American Sign Language in dynamic point-light
displays.
J. Exp. Pyschol.: Human Perform., 7:430-440, 1981.
- 11
-
L. R. Rabiner and B. H. Juang.
An introduction to hidden Markov models.
IEEE ASSP Magazine, pages 4-16, January 1986.
- 12
-
J. M. Rehg and T. Kanade.
DigitEyes: vision-based human hand tracking.
School of Computer Science Technical Report
CMU-CS-93-220, Carnegie Mellon University, December 1993.
- 13
-
J. Schlenzig, E. Hunter, and R. Jain.
Recursive identification of gesture inputs using hidden Markov
models.
Proc. Second Annual Conference on Applications of Computer
Vision, pages 187-194, December 1994.
- 14
-
G. Sperling, M. Landy, Y. Cohen, and M. Pavel.
Intelligible encoding of ASL image sequences at extremely low
information rates.
Comp. Vis., Graph., and Img. Proc., 31:335-391, 1985.
- 15
-
T. Starner.
Visual recognition of American Sign Language using hidden
Markov models.
Master's thesis, MIT, Media Laboratory, February 1995.
- 16
-
T. Starner, J. Makhoul, R. Schwartz, and G. Chou.
On-line cursive handwriting recognition using speech recognition
methods.
In ICASSP, pages 125-128, 1994.
- 17
-
T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey, D. Kirsch, R. Picard, and
A. Pentland.
Augmented reality through wearable computing.
Presence, 6(4):386-398, Winter 1997.
- 18
-
T. Starner and A. Pentland.
Real-time American Sign Language recognition from video using
hidden Markov models.
Technical Report 375, MIT Media Lab, Perceptual Computing Group,
1995.
Earlier version appeared ISCV'95.
- 19
-
T. Starner, J. Weaver, and A. Pentland.
Real-time american sign language recognition using desktop and
wearable computer based video.
Technical Report 466, Perceptual Computing, MIT Media Laboratory,
July 1998.
- 20
-
C. Vogler and D. Metaxas.
ASL recognition based on a coupling between HMMs and 3D
motion analysis.
In ICCV, Bombay, 1998.
- 21
-
A. D. Wilson and A. F. Bobick.
Learning visual behavior for gesture analysis.
In Proc. IEEE Int'l. Symp. on Comp. Vis., Coral Gables,
Florida, November 1995.
- 22
-
J. Yamato, J. Ohya, and K. Ishii.
Recognizing human action in time-sequential images using hidden
Markov models.
Proc. Comp. Vis. and Pattern Rec., pages 379-385, 1992.
- 23
-
S. Young.
HTK: Hidden Markov Model Toolkit V1.5.
Cambridge Univ. Eng. Dept. Speech Group and Entropic Research Lab.
Inc., Washington DC, 1993.
Thad Starner
1998-09-17