To Appear in Proceedings of ICVS'99, January 99, Gran Canaria, Spain
In this paper we describe a real-time computer vision and machine learning system for modeling and recognizing human behaviors in a visual surveillance task. The system is particularly concerned with detecting when interactions between people occur, and classifying the type of interaction. Examples of interesting interaction behaviors include following another person, altering one's path to meet another, and so forth. Our system combines top-down with bottom-up information in a closed feedback loop, with both components employing a statistical Bayesian approach. We propose and compare two different state-based learning architectures, namely HMMs and CHMMs, for modeling behaviors and interactions. The CHMM model is shown to work much more efficiently and accurately. Finally, a synthetic agent training system is used to develop a priori models for recognizing human behaviors and interactions. We demonstrate the ability to use these a priori models to accurately classify real human behaviors and interactions with no additional tuning or training.