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Abstract

An algorithm for simultaneous detection, seg-
mentation, and characterization of spatiotempo-
ral periodicity is presented. The use of period-
icity templates is proposed to localize and char-
acterize temporal activities. The templates not
only indicate the presence and location of a peri-
odic event, but also give an accurate quantitative
periodicity measure. Hence, they can be used as
a new means of periodicity representation. The
proposed algorithm can also be considered as a
“periodicity filter,” a low-level model of period-
tcity perception. The algorithm is computation-
ally simple, and shown to be more robust than
optical flow based techniques in the presence of
noise. A variety of real-world examples are used
to demonstrate the performance of the algorithm.

1 Introduction

Periodicity is common in the natural world. It is also a
salient cue in human perception. Information regarding
the nature of a periodic phenomenon, such as its location,
strength, and frequency, is important for our understand-
ing of the environment. Techniques for periodicity detec-
tion and characterization can assist in many applications
requiring object and activity recognition and representa-
tion.

Although surface patterns may come to mind first, pe-
riodicity often involves both space and time, such as cyclic
motion. The main body of work on periodic motion is
model-based (e.g., [1][2]). More recently there is work on
motion recognition directly using low-level features of mo-
tion information (e.g., [3][4][5]). However, to date, there
has not been a method which uses low-level features to
detect and systematically characterize periodicity in space
and time. In this work, we attempt to tackle this prob-
lem by using periodicity templates to incorporate the lo-
cation, strength, and other characteristic information of a
periodic phenomenon. The templates are useful in appli-
cations such as periodic motion representation and action
recognition. The template generating procedure provides
a tool for detecting and segmenting regions of periodicity.
The proposed method is spectral based, and is computa-
tionally efficient.

*This work was supported in part by IBM and NEC.

1.1 Our Approach

The approach presented here is motivated by theory for
textured image modeling that assumes an underlying ran-
dom field representation of the data [6]. In particular,
1-D signals along the temporal dimension are considered
as stochastic processes. When assuming stationarity, a
stochastic signal can be decomposed into deterministic (pe-
riodic) and indeterministic (random) components. This
is known as Wold decomposition [7]. In the frequency
domain, the deterministic and the indeterministic com-
ponents correspond respectively to the singular and the
continuous part of the signal’s Fourier spectrum. In prac-
tical applications, this is to say that the repetitive struc-
ture in the signal contributes only to the spectral harmonic
peaks and the random behavior to the smooth part of the
spectrum. Therefore, the energy contained in the spectral
harmonic peaks is a good measure of signal periodicity.

Applying the above analysis to the temporal dimension
of an image sequence, the ratio between the harmonic en-
ergy and the total energy of the temporal signal is used
here as a measure of the strength of signal periodicity. As
a component of the periodicity template of the image se-
quence, this measure plays an important role in detecting
and characterizing periodicity in space and time.

The approach described above assumes that signal pe-
riodicity is observable along lines parallel to the temporal
(T) axis. In other words, the moving objects need to be
tracked just like we fixate on a walking person. Typically,
optical flow based techniques are used for object tracking.
We present here a non-flow-based frame alignment proce-
dure for tracking, and show that it is more robust to noise
than flow based methods.

In this paper, examples of walking people are used to
illustrate the technique. However, it should be stressed
that the purpose of this work is not to detect and seg-
ment a moving object, but to detect and characterize in
three-dimensional (3-D) data those regions that exhibit pe-
riodicity. We do not expect the algorithm to segment out
the walking person. Instead, regions of legs and arms and
the outline of the bouncing head and shoulder should be
identified.

1.2 Related Work

The work of Polana and Nelson on periodic motion de-
tection [4] is perhaps the most relevant to the approach
presented in this paper. In their work, reference curves,
which are lines parallel to the trajectory of the motion flow
centroid, are extracted and their power spectra computed.
The periodicity measure py of each reference curve is de-
fined as the normalized difference between the sum of the



spectral energy at the highest amplitude frequency and its
multiples and the sum of the energy at the frequencies half
way between. Besides the value of the periodicity measure
itself, there is no checking on the signal harmonicity along
the curve, which is a weakness of the method. The peri-
odicity measure for an entire sequence is the maximum of
ps averaged among pixels whose highest power spectrum
values appear on the same frequency. The final periodicity
measure is used to distinguish periodic and non-periodic
motion by thresholding.

In [3], flow based algorithms are used to transform the
image sequence so that the object in consideration is sta-
bilized at the center of the image frame. Then flow mag-
nitudes in tessellated frame areas of periodic motion were
used as feature vectors for motion classification. In this
paper, we show that flow based methods are very sensitive
to noise.

This work differ from the above in the following ways:
1) the harmonic relationship among spectral peaks is ex-
plicitly verified; 2) a more accurate measure of periodic-
ity in the form of harmonic energy ratios is proposed; 3)
multiple fundamentals can be extracted along a temporal
line; 4) the values of fundamental frequencies are used in
processing to help distinguish periodicity of different ac-
tivities; 5) regions of periodicity are actually segmented;
and 6) the proposed algorithm does not use optical flow,
and is robust to noise.

2 Method

The algorithm for periodicity detection and segmentation
consists of two stages: (1) object tracking by frame align-
ment; (2) simultaneous detection and segmentation of re-
gions of periodicity. Object tracking is by itself a research
area. Decoupling object tracking and periodicity detection
conceptually modularizes the analysis and allows the use
of other tracking algorithms.

Throughout this section, an image sequence Walker will
be used to illustrate the technical points. More challenging
examples are given in Section 3.

2.1 Frame Alignment

In this work, two types of image sequences are considered
for frame alignment. In practice, a large number of image
sequences can be categorized into one of these two types:
(I) area of interest, typically a moving object, is as a whole
stationary to the camera, but the background can be mov-
ing; (II) little ego-motion is involved and each moving ob-
ject as a whole is moving approximately frontoparallel to
the camera along a straight line and at a constant speed.

Four frames of a sequence with a person walking across
the image plane is shown in Figure 1. This is a typical type
I sequence. Although there are no re-occurring scenes, we
experience the notion of repetitiveness when viewing the
sequence. This is due to our ability to fixate on the moving
person, so that the person appears to be walking in place.
The effect of fixating can be accomplished computationally
by realign the image frames. Obviously, frame alignment is
not necessary for type I sequences, but in fact is a process
of transforming type II sequences into type I.

In the following, the term data cube is used to refer to
the 3-D (X: horizontal; Y: vertical; and T: temporal) data
volume formed by stacking all the frames in a sequence, one
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Figure 1: Frames 20, 40, 60, and 80 of the 97 frame Walker
sequence, with frame size 320 x 240.
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Figure 2: Head and ankle level XT slices of Walker se-
quence. (a) Head level. (b) Ankle level. As it is, the
periodicity in (b) is difficult to characterize.

in front of the other. The XT and YT slices of the data
cube reveal the temporal behavior usually hidden from the
viewer. Figure 2 shows the head and ankle level XT slices
of the Walker sequence. In (a), the head leaves a non-
periodic straight track while the walking ankles in (b) make
a crisscross periodic pattern. As it is, the periodicity in
(b) is difficult to characterize. It will be shown that frame
alignment transforms data into a form in which periodicity
can be easily detected and measured.

To align a sequence to a particular moving object, the
trajectory of the object is first detected. A filtering method
similar to the one in [8] is used here to avoid the noise sen-
sitivity of the optical flow based methods (demonstrated in
Section 3). Applying 1-D median filtering along the tem-
poral dimension of the sequence (filter length 11 was used
for Walker), the resulting sequence has mostly the back-
ground. The difference sequence between the original and
the background contains mainly the moving objects. Since
the object trajectories in consideration are approximately
linear, the projections of the trajectories onto the XT and
YT planes (averaged XT and YT images of the difference
sequence) are straight lines. These lines can be detected
via a Hough transform to give the X or Y positions of the
moving objects in each frame. We call these position values
alignment indices. The averaged X'T image of the Walker
difference sequence and the line found by the Hough trans-
form method are shown in Figure 3. FEach horizontal line
represents a frame, and the diagonal white line marks the
object X location in each frame. Note that multiple ob-
ject trajectories can be detected simultaneously using this
procedure, as will be shown in Section 3.1.

Using the alignment indices, image frames in a sequence



(b)
Figure 3: (a) Averaged XT image of the Walker sequence

after background removal. (b) Line found in (a) by using
a Hough transform method.

(a) (b)
Figure 4: (a) Averaged XY image of aligned Walker differ-
ence sequence. The area of interest is clearly shown. (b)
Aligned and cropped Walker sequence with splits near the
center of the frames to show the inside of the data cube.

can be repositioned to center a moving object to any spec-
ified position in the XY plane. After alignment, the ob-
ject should appear to be moving in place. This in effect
is equivalent to fixating on an object when viewing a se-
quence in which the object’s position changes frame by
frame. The aligned sequences are passed to the second
stage of the algorithm.

2.2 Finding Regions of Periodicity

In the second stage, 1-D Fourier transforms are performed
along the temporal dimension of an aligned sequence. The
spectral harmonic peaks are detected and used to com-
pute the temporal signal harmonic energy. A periodicity
template is generated by using the extracted fundamental
frequencies and the ratios between the harmonic energy
and the total energy at each frame pixel location. The
original sequence is then masked for regions of periodicity.

To save computation and storage, an aligned sequence
can be cropped to limit processing to the area of inter-
est. The cropping does not affect the periodicity detec-
tion. The location and size of the cropping window can
be estimated from the average XY image of the aligned
difference sequence. Figure 4 shows such XY image of the
Walker sequence and the aligned and cropped original se-
quence with splits near the center of the frames to show
the inside of the data cube.

Now consider an aligned and cropped data cube. Frame
pixels with the same X and Y locations form straight lines
in the cube. Call these lines the temporal lines. If the
cropped frame size is N; by N, then there are N; x N,
temporal lines in the data cube. In the aligned sequence,
the object of interest moves in place. If the object is mov-
ing cyclically in any manner, the periodicity will be re-
flected in some of the temporal lines. Figure 5 (al) and
(b1) show the head and the ankle level XT slices of 64
frames (Frame 17 to 80) of the data cube in Figure 4 (b).
Each column in the images is a temporal line. These im-
ages are the aligned and cropped version of the two XT
slices in Figure 2. Columns in Figure 5 (a2) and (b2) are
the 1-D power spectra of the corresponding columns in (al)
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Figure 5: Signals and their power spectra along temporal
lines (columns in images). (al) and (bl): head and ankle
level XT slices of aligned and cropped Walker sequence.
(a2) and (b2): each column is the 1-D power spectra of
the corresponding column in (al) and (b1). (c1) and (c2):
details along the white vertical lines in (b1) and (b2). Pe-
riodicity in (b1) is reflected by the spectral harmonic peaks
in (b2).

and (b1), normalized among all temporal lines in the data
cube. Figure 5 (c1) and (c2) show details along the white
vertical lines in (b1) and (b2). While the head level slice in
(al) shows no harmonicity, the periodicity of the moving
ankles in (b1) is reflected by the spectral harmonic peaks
in (c2). We refer to the spectral energy corresponding to
the harmonic peaks as the temporal harmonic energy and
propose using the temporal harmonic energy ratio, which
is the ratio between the harmonic energy and the total
energy along a temporal line, as a measure of temporal
periodicity at the corresponding frame pixel location.

For spectral harmonic peak detection, we adapt the 2-D
peak detection algorithm in [6] for 1-D signals. The sig-
nal along a temporal line is first zero-meaned and Gaus-
sian tapered, and then its power spectrum computed via
a fast Fourier transform. To locate the harmonic peaks,
local maxima of the power spectrum are found using size
7 neighborhood and excluding values below 10% of the en-
tire spectral range. A local maximum marks the location
of a spectral harmonic peak when its frequency is either
a fundamental or a harmonic. A fundamental is defined
as a frequency that can be used to linearly express the
frequencies of some other local maxima. A harmonic is a
frequency that can be expressed as a linear combination
of some fundamentals. Starting from the lowest frequency
to the highest, each local maxima is checked first for its
harmonicity — if its frequency can be expressed as a linear
combination of the existing fundamentals, and then for its
fundamentality — if the multiples of its frequency, com-



bined with the multiples of existing fundamentals, coincide
with the frequency of another local maximum. A toler-
ance of one sample point is used in the frequency match-
ing. Note that multiple fundamental frequencies can exist
along a temporal line.

Due to the nature of the temporal signal and the effect
of the Gaussian taper, a spectral harmonic peak usually
does not appear as a single impulse. In this work, a peak
support region is determined by growing from the detected
peak location outward along the frequency axis until the
spectral value is below 5% of the spectrum range. After
the spectral peaks and their supports are identified, it is
straightforward to compute the harmonic energy ratio as-
sociated with a fundamental frequency and its harmonics.

The peak detection technique discussed above fails
when a temporal line contains only one sinusoidal signal,
which produces a single spectral peak. However, this situ-
ation arises only when the edge of a moving object has a si-
nusoidal profile. An example is a vertical sine grating pat-
tern horizontally translating frontoparallel to the camera
at a constant speed. Natural edges, patterns, and surfaces
hardly ever have such a profile. Therefore, higher harmon-
ics usually accompany the fundamentals of the temporal
signals.

Applying the peak detection procedure to all temporal
lines in a data cube, the periodicity template of the aligned
sequence is built by registering the fundamental frequen-
cies and the corresponding values of temporal harmonic
energy ratio at each pixel location in a data structure ar-
ray of frame size. At places where no periodicity is found,
the template data structure has value zero. Under circum-
stances such as a noisy background, some speckles may
appear in the template. Simple morphological closing and
opening operations can be applied to remove the speckles.

Figure 6 (a) shows the temporal harmonic energy ratio
values of the Walker sequence after one closing and one
opening operation with a circular structuring element of
diameter 3. The larger the energy ratio value, the more
periodic energy is at the location. As expected, the bright-
est region is the wedge shape created by the walking legs.
The head, the shoulder, and the outline of the backpack
are detected because the walker bounces. The hands ap-
pear at the front of the body since in most parts of the
sequence the walker was fixing his gloves and moving his
hands in a rather periodic manner. Note that the mov-
ing background and parts of the walker do not appear in
the template since there is no periodicity present in those
areas.

Using the alignment indices generated at the first stage,
the periodicity template of a sequence can be used to mask
the original sequence for the regions of periodicity in each
frame. Figure 6 (b) shows the four frames in Figure 1 after
they are masked and then stacked together.

Since the non-periodic activities of the background do
not light up in the templates, it is clear that the sequence
cropping for efficient computation does not affect the pro-
cessing results.

3 Examples

In addition to the Walker sequence, four examples are
used here to demonstrate the effectiveness of the pro-
posed algorithm: Trio, Dog, Wheels, and Jumping Jack.

Figure 6: (a) Temporal harmonic energy ratio values of
the aligned Walker sequence. High value indicates more
periodic energy at the location. (b) Using the alignment
indices, the four frames in Figure 1 are masked by the
template shown in (a) and then stacked together.
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Figure 7: Left column: frames 40, 61, and 88 of the Trio
sequence. Right column: frames in the left column masked
by the periodicity templates.

The Walker and Trio sequences were recorded by a hand-
held consumer-grade camcorder. The Dog and Wheels se-
quences were taken by the same camera set on a tripod.
The Jumping Jack sequence was recorded by a fixed Beta-
cam camera in an indoor setting. FExcept for the Jumping
Jack, none of the subjects in the sequences was aware of the
filming; hence the activities are natural and exhibit nat-
ural irregularities. All original sequences have 320 x 240
frame size.

These examples are used to demonstrate 1) the effec-
tiveness of the new algorithm in finding and characterizing
periodicity in various settings; 2) the robustness of the al-
gorithm under noisy conditions; and 3) the noise sensitivity
of optical flow based estimation methods, which have been
used for trajectory detection in many existing works, but
are avoided by the method proposed here.
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Figure 8: (a) Averaged XT image of the Trio sequence

after background removal. (b) Lines found in (a) by using
the Hough transform method.

3.1 Trio

Trio is a 156 frame sequence of three people walking and
passing each other. Frames 40, 61, and 88 of the sequence
are shown in the left column of Figure 7. Asin the Walker
example, the averaged XT image is computed after the
background removal. The lines in the XT image are de-
tected via Hough transform. Figure 8 shows the averaged
XT image and the detected lines. These lines provide the
alignment indices of each objects. Note that the alignment
indices of three objects are estimated simultaneously.

To generate the periodicity templates, the original se-
quence 1is aligned and cropped for each moving person. All
aligned sequences contain 64 frames. Figure 9 shows ex-
ample frames of each aligned sequences and the harmonic
energy ratio values of the periodicity templates. Again, the
goal here is not to segment out the people, but to detect
and characterize regions of periodicity, such as legs, arms,
the outline of bouncing head and shoulder, and even the
dangling straps of the backpack. Finally, the templates are
used to mask the original sequence. Examples are shown
in the right column of Figure 7.

Notice that, besides the center person, there is a sec-
ond or even a third person passing through in all three
aligned sequences. However, these passersby have no ef-
fect on the results of periodicity detection since they are
one-time events on a temporal line, and therefore do not
contribute to the temporal harmonic energy. The Trio ex-
ample demonstrates that the proposed algorithm is well
suited for the detection of multiple periodicities, even un-
der the circumstances of temporary object occlusion.

3.2 Dog

Dog is a 104 frame sequence where a person walks two
dogs in front of a picket fence. Figure 10 (a) shows frame
46 of the original sequence, and (b) shows frame 13 of the
64-frame aligned sequence. Images (c1) and (c2) show the
first and second fundamental frequencies in the periodic-
ity template, while (el) and (e2) are the corresponding
harmonic energy ratios. Note that there are double funda-
mentals at many pixel locations.

The complication here is the picket fence. In the orig-
inal sequence, the fence is part of the fixed background,
exhibiting pure spatial periodicity. However, when the se-
quence 1s aligned to the person and the dogs, the fence
starts to move in the background, leaving a periodic sig-
nature on many temporal lines. As shown in (c1) and (el),
the fence area lights up in the periodicity template.

Figure 10 (d) shows the fundamentals with value
0.8757, which is the temporal frequency of the fence in
the aligned sequence. The fundamental frequency values
are used to extract the fence. Figure 10 (f) shows the
harmonic energy ratios in the template after the fence fre-

Figure 9: Example frames of aligned sequences and the
harmonic energy ratio values of the periodicity templates
for each individuals of the Trio sequence. First two
columns: example frames. Right column: harmonic en-
ergy ratio values.

quency is removed. The fence region of the frame in (a) is
shown in (g) while other regions of periodicity are shown

in (h).

3.3 Wheels

The examples shown so far all involve walking. However,
the algorithm is not limited to periodicity caused by hu-
man activities, but works in general for any periodic space-
time phenomenon.

Wheels is a 64 frame sequence of a car passing by a
building. Near the top of the building, two spinning wheels
are connected by a figure 8 belt. One side of the belt is
patterned and appears periodic. Every region with peri-
odicity should be captured: the hub caps, the wheels, and
one side of the belt. As shown in Figure 11, the algorithm
accomplishes just that.

3.4 Jumping Jack

There is no translatory motion in the Jumping Jack se-
quence, and the background is smooth. This sequence and
its noisy versions (corrupted by additive Gaussian white
noise (AGWN) of variance 100 and 400) are used to demon-
strate the robustness of the new algorithm in the presence
of noise, and also to show the noise sensitivity of the optical
flow based motion estimation. The length of the sequences
used here is 128 due to the cycle of the jumping motion.



(8) (h)

Figure 10: Dog sequence. (a) Frame 46 of original se-
quence. (b) Frame 13 of aligned sequence. (c1) and (c2):
first and second fundamental frequencies in periodicity
template. (el) and (e2): harmonic energy ratios corre-
sponding to the frequencies in (c1) and (c2). (d) Funda-
mentals with the fence frequency. (f) Harmonic energy
ratios after the fence frequency is removed. (g) Frame 46
masked to show fence region. (h) Frame 46 masked to
show other regions of periodicity.

Most of the related work uses flow based methods to
locate moving objects in a sequence. However, the noise
sensitivity of the flow based method can be a drawback.
The optical flow magnitudes shown here were obtained by
using the hierarchical least-squares algorithm [9], which is
based on a gradient approach described by [10] [11]. Two
pyramids are built, one for each of the two consecutive
frames, and motion parameters are progressively refined
by residual motion estimation from coarse images to the
higher resolution images. This algorithm is representative
of the existing optical flow estimation techniques. The
optical flow magnitudes of the Jumping Jack frame 61 are
shown in the second row of Figure 12. Given a clean input,
the flow magnitudes can be used to segment the moving
object. However, the algorithm is mostly ineffective under
the noisy conditions.

Figure 11: Wheel sequence. Shown in the first three rows,
the algorithm captures all regions with periodicity: the
hub caps, the wheels, and one side of the belt. Bottom
row: details of spinning wheels and car.

The third row of Figure 12 shows the 57th TY (not
YT!) image of each sequence, revealing the tracks left by
the right hand and leg. The rows in these images are tem-
poral lines, and the corresponding power spectra are shown
in the fourth row of the figure. The periodicity templates
can be found in the bottom row. Although the noise causes
some degradation in the arm regions, the templates are
well preserved overall. The reason why the proposed al-
gorithm is not affected by large amounts of white noise in
the input is that white noise only contributes to the rela-
tively smooth part of the power spectrum. As long as the
noise energy is not so high that it overwhelms the spectral
harmonic peaks, the algorithm works.

3.5 Walker

The detection results of the Walker sequence were shown
in Section 2. Here we show the results from noisy inputs
(original sequence corrupted by AGWN of variance 100
and 400), using 64 frames. The resulting periodicity tem-
plates in Figure 13 show that, unlike optical flow based
methods, the proposed algorithm is robust in the presence
of noise.

4 Discussion

Compared to the method used in [4], the periodicity mea-
sure proposed here in the form of the temporal harmonic
energy ratio is a more accurate and more reliable measure
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Figure 12: Jumping Jack sequence (frame size 155 x 170).
Left column: original sequence. Middle and right columns:
corrupted sequences. Row 1: frame 61. Row 2: frame 61
optical flow magnitudes. Row 3: TY slice 57, showing the
tracks left by right hand and leg; each row of these images
is a temporal line. Row 4: temporal power spectra of TY
slice 57. Row 5: harmonic energy ratios of periodicity
templates.

of signal periodicity.

The periodicity templates also provide the fundamen-
tal frequencies of the temporal signals. Using this infor-
mation, areas involved in periodic activities with different
cycles can be distinguished easily.

The proposed algorithm can be considered as a “peri-
odicity filter”. Given a sequence of a street with cars and
pedestrians, the algorithm will find the moving legs of the
pedestrians and filter out the cars and other non-periodic

=100 AGWN Var=400
. S

(b) (c)

Figure 13: Periodicity templates of the Walker sequence.
(a) from original sequence; (b) and (c): with AGWN of
variance 100 and 400 respectively. The proposed algorithm
is robust in the presence of noise.

activities. Periodicity is a salient feature to human visual
perception. The proposed algorithm provides a model of
low-level periodicity perception, even though it may not
work exactly like the human visual system.

The method presented here is computationally efficient.
The most machine intensive part of the algorithm is the
1-D fast Fourier transform used in power spectrum compu-
tation. When the activity cycle is reasonably short, such
as walking in normal speed, a sequence length of 64 frames
suffices. Cropping of aligned sequences provides additional
speed-up.

In the current work, assumptions were made on the
data. The steady background condition for data type II
is mainly for the background subtraction. The algorithm
in fact tolerates small camera movement quite well. When
an object is not translating with respect to the camera,
its trajectory will not be linear in the data cube and a
scheme more sophisticated than the Hough line detection
will have to be used for the frame alignment. If the object
is not moving frontoparallel to the camera, the perspective
effect will change the size of the object in the sequence.
However, this change should not be significant during the
period of 64 frames when the distance between the camera
and the object is sufficiently large. In practical situations,
this is often the case.

4.1 Applications

The proposed algorithm can be applied to motion classi-
fication and recognition. In [5], the shape of the active
region in a sequence was used for activity recognition. In
[3], the sum of the flow magnitudes in tessellated frame ar-
eas of periodic motion was used for motion classification.
The periodicity templates produced by the proposed algo-
rithm can provide not only distinct shapes of regions of
periodic motion, such as the wedge for the walking motion
and the snow angle for the jumping jack, but also accurate
pixel-level description of a periodic action in the form of
temporal harmonic energy ratios and motion fundamental
frequencies.

The characterization of periodicity is also important to
video database related applications. The presence, posi-
tion, strength, and frequency information of periodic ac-
tivities can be used for video representation and retrieval.

In general, periodicity is a salient attention-getting fea-
ture. The proposed algorithm can be used in numerous
surveillance applications for detecting ambulatory activity
without having to do full-person recognition.



5 Summary

A new algorithm for finding periodicity in space and time
is presented. The algorithm consists of two main parts:
1) object tracking by frame alignment, which transforms
data into a form in which periodicity can be easily detected
and measured; 2) Fourier spectral harmonic peak detection
and energy computation to identify regions of periodicity
and measure its strength. This method allows simultane-
ous detection, segmentation, and characterization of spa-
tiotemporal periodicity, and is computationally efficient.
The effectiveness of the technique and its robustness to
noise over optical flow based methods are demonstrated
using a variety of real-world video examples.

Periodicity templates are proposed as a new way of
characterizing spatiotemporal periodicity. The templates
contain information such as the fundamental frequencies
and the temporal harmonic energy ratios at each frame
pixel location. The periodicity templates and the template
generating algorithm are useful tools for applications such
as action recognition, video databases, and video surveil-
lance.
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