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Abstract

The average person with a computer will soon
have access to the world’s collections of dig-
ital video and images. However, unlike text
which can be alphabetized or numbers which
can be ordered, image and video has no general
language to aid in its organization. Although
tools which can “see” and “understand” the
content of imagery are still in their infancy,
they are now at the point where they can pro-
vide substantial assistance to users in navigat-
ing through visual media. This paper describes
new tools based on “vision texture” for model-
ing image and video. The focus of this research
is the use of a society of low-level models for
performing relatively high-level tasks, such as
retrieval and annotation of image and video
libraries. This paper surveys our recent and
present research in this fast-growing area.

1 Introduction: Vision Texture

Suppose you have a set of vacation photos of Paris and
the surrounding countryside, and you accidentally drop
them on the floor. They get out of order, and you pick
them up, sorting them back into two stacks — city and
country. With only a quick glance at each photo, you
are able to re-sort them to the right categories with high
accuracy. How do you do this so quickly, without taking
time to look at the precise content of each photo?

In this scenario, and many other picture recognition
and sorting tasks, people appear to use relatively low-
level information for making “quick glance” high-level
decisions. Studies have shown that even pigeons with
their pea-sized brains can discriminate images of water
and trees [1] as well as impressionist and cubist paint-
ings [2]. Inspired by these kinds of successful behavior,
we have been exploring the use of collective low-level
features, such as texture and color, for making relatively
high-level decisions about images. Such features tend
to produce faster results than the traditional computer
vision algorithms aimed at constructing detailed repre-
sentations of everything in a picture. In this paper I’ll
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describe several of the models we have explored, and the
important additional step of combining them into sys-
tems that interact with humans.

Before proceeding, consider a computer solution to the
scenario above. A simple measure of local orientation
over scale, a low-level operation designed to mimic part
of what scientists believe occurs in the human visual sys-
tem ([3], [4], [5]) was used with some simple decision rules
for classifying a set of 98 vacation photos. Based on only
a quick decision with the low-level orientation informa-
tion, 91 out of 98 of the photos were correctly classified
into the categories “city/suburb” or “other” [6]. Two of
these photos are shown in Figure 1. (These images, and
those which appear in Figures 12 and 13 are part of the
BT image database, available by ftp to teleos.com, in
VISION-LIST-ARCHIVE/IMAGERY /BT scenes.) The
careful use of low-level collective properties of image data
for relatively high-level visual tasks is referred to as “vi-
sion texture.”

Low-level features such as color and texture are not
just for “low-level” tasks. Although vision texture is not
sufficient for completing high-level relational tasks such
as “find an image with an oak tree on the left and a lake
on the right,” there are numerous demonstrations of the
success of vision texture for achieving or helping achieve
relatively high-level tasks. Swain and Ballard [7] illus-
trated the use of simple color histograms for retrieving
images from a diverse database, and Syeda-Mahmood
has shown how a combination of color and texture fea-
tures can speed up selection of items of interest in pho-
tos[8]. Texture has also been shown to be powerful for
recognition of motions [9].

1.1 Texture: beyond the traditional
definition

There is much more texture in the world than most peo-
ple realize. Texture is ubiquitous; it is felt on the tiny
surface of a shriveled pea, can be heard in the interwoven
melodies of a fugue, can be seen in the rocking motion of
a boat, and even shows up in human affect and behavior
patterns. Eluding precise definition, texture is usually
distinguished by being tactile, patterned, rhythmic, or
noisy.

It is generally an ill-posed problem to say “find the
texture in this picture.” Texture eludes precise defini-
tion. Some researchers define it like pornography, “you
know it when you see it.” I find it helpful to list prop-
erties usually associated with texture, such as the three



Figure 1: Quick glance recognition: city or country?

HiccupHiccupHiiccup
sh ysSTehtignaSio m
This Says Something

Figure 2: Defining texture: The first two strings are pe-
riodic and random 1-D textures, respectively; the third
depends too much on a specific ordering to be a texture.

which follow. These three properties are not mutually
exclusive, but are separated for easier discussion of how
they influence applications.

1.1.1

The first property is illustrated by considering three
categories of patterns, illustrated by the 1-D strings of
letters in Figure 2. (These strings were inspired by the
discussion of different kinds of entropy in [10].)

The first string is a 1-D periodic texture. It has a ba-
sic primitive, a specific set of rules for replication of the
primitive, and allowance for minor perturbations. The
primitive may be complex, but its complexity is lever-
aged over the whole pattern, resulting in low overall com-
plexity as the string becomes longer. Periodic textures
like this show up in physical materials such as nylon and
crystals, and in audio such as the sound of a copy ma-
chine repeatedly sounding “ker-chunk ker-chunk slurp,
....” Periodic textures also occur in 2-D imagery of tile
floors, and in repetitive space-time patterns such as two
feet of a person riding a bicycle.

The second string is a sample of a 1-D stochastic tex-
ture, perhaps generated with a random number genera-
tor or filtered noise. A random sequence may look com-
plex, but it has no specific order; it is characterized by a

Property 1: lack of specific complexity

probability distribution. Random polymers, the sound of
applause, and nucleic acids are other 1-D examples; tur-
bulent water and kids footsteps while playing tag make
higher-dimensional stochastic textures.

The third string, like the structure of DNA and pro-
teins, is distinguished by having both specific order and
complexity. Although it is an anagram of the second, and
may be extracted from the same probability distribution,
its specificity makes it qualitatively different.’ This third
string and its higher-dimensional analogues are not tex-
tures. For example, an analogous image would be a hu-
man face; without its underlying specific arrangement of
eyes, nose, and mouth it would cease to be recognized as
a face. A single face is not a texture.

Note that my use of “texture” here includes most tex-
tures used in computer graphics, but is not as broad as
that literature’s use of the term “texture” in “texture-
mapping.” The latter refers to arbitrary pixel maps
placed over a 3-D structure to add realism to the scene.
In computer graphics, an image of a face might be “tex-
ture mapped” onto polygons or a finite-element mesh to
render a more realistic 3-D face. The face is not a tex-
ture by the properties outlined here, but is being treated
like a texture with respect to the surface onto which it is
being mapped. Similarly, a texture image such as sand
might be texture-mapped onto a 3-D polygon shaped like
a mound to render the effect of a 3-D pile of sand.

The three strings may also be combined in higher di-
mensions. For example, an image of a plowed field com-
bines randomness along one direction with periodicity
along the other. The Wold model, which will be high-
lighted further below, is based on such a separation of
random and deterministic components.

There is no hard boundary between the three cases.

!Note that Shannon deliberately left “meaning” out
of his probability-based information theory.[11].



Figure 3: A society of models. Although some of these can model any signal, each has different strengths and

weaknesses.

Consider the following two examples:

Example 1: String 3 can be replicated, resulting in a
periodic texture like the case of String 1. The bound-
ary between non-texture and texture is analogous to the
boundary between count nouns and mass nouns: Asking
how many replications of a non-texture it takes to make
a texture is like asking how many grains of sand it takes
to make a pile.

Example 2: String 3 can be gradually permuted un-
til the order is no longer recognizable as a meaningful
sentence, and it becomes like the case of String 2. An
analogy in the image domain would be to overlay mul-
tiple views of a face, so that it suddenly had multiple
eyes, noses, and mouths, no longer in the expected spe-
cific arrangement. The result is an effect like Picasso
achieved with cubism, and may explain why people (and
pigeons, perhaps) sometimes think such paintings look
like textures.

1.1.2 Property 2: high frequencies

Although both texture and non-texture can contain
high-frequency changes, they tend to occur more with
texture. This property is perhaps most important, and
annoying, to researchers in image coding where stan-
dardized coding methods utilize basis-functions such as
the discrete cosine transform. These methods attain the
best compression in smooth (low-frequency content) ar-
eas, so that pictures with lots of texture tend to be hard
to compress efficiently.

Note that extreme smoothness can still be considered
to be a texture, especially in the tactile domain (feel the
“silky smooth” texture of this garment) but in digital
imagery, smooth regions generally are considered as non-
textured.

1.1.3 Property 3: restricted range of scale

Textures, unless they are truly fractal [12], tend to
exist over a finite range of scales. Tree bark may look
smooth from a distance, grooved as you move in closer,
and pitted when you press your nose to the trunk. A
brick wall looks periodic from a distance, but loses its
periodicity when you are so close that you can see only a
few bricks. This lack of persistence of texture over scale
complicates the association of objects with texture; a
range of scale and “typical views” must be a part of the
association.

Scaling similarity also shows up in a less obvious way
— across very different phenomena at different scales. In
his delightful book on patterns in nature, Stevens [13]
shows pictures of gas clouds and of milk poured into a
black slate sink — two different materials at scales rang-
ing from a centimeter to over ten quintillion kilometers,
both which can be generated as “turbulence” textures.
Stevens examines many of the common behaviors of nat-
ural patterns, including close packing, spirals, branching,
shrinking surfaces, and turbulence — revealing a small
number of underlying mechanisms responsible for an as-
tronomical variety of patterns. This variety of mech-
anisms for forming patterns in nature suggests that we
might find more than one model useful in forming digital
patterns.

The three properties just described — lack of specific
complexity, presence of high frequencies, and restricted
scale — hint at the difficulty of characterizing textures,
but more importantly, illustrate an expanse of possible
forms. Texture occurs in audio, chemical structures, mo-
tion, imagery, and even human behavior patterns. A
significant research challenge is to develop a family of
models useful for representing, manipulating, compar-



ing, and recognizing textures in digital libraries.

1.2 Paper organization

In the rest of this paper, the focus will be on texture
models for image and video (Section 2), and on the sys-
tems we have developed using vision texture for appli-
cations such as browsing, retrieval and annotation (Sec-
tion 3).

2 A society of models

A ski jumper shoots out of the gate, speeds down the
snowy slope, forms an airfoil — flying — steady — then
lands. To predict the jumper’s motion, one might pic-
ture a straight trajectory lifting at the top of the hill,
lowering at the bottom, and followed by a switch into
two possibilities at the instant of landing. At that in-
stant, the predictor may switch from a “straight-ahead”
model, to a “tumbling-out-of-control” model. Two mod-
els — straight, or random — are useful for efficiently de-
scribing the motion. Similarly in football, whether we
watch the motion of the ball being passed, carried, or
fumbled, we switch naturally between different mental
models of prediction. The right repertoire of models, and
their proper combination, is more effective than trying
to use one model for all tasks.

Figure 3 contains several models that have been used
in computer vision, image processing, and computer
graphics. Some of these are general enough to represent
arbitrary signals and may be used for synthesizing data
— perhaps for simultaneous compression and recognition
in digital libraries. Other models only capture some fea-
tures of a given signal which are useful for recognition or
query. “Analysis” usually refers to the estimation of fea-
tures or parameters of the model. Sometimes model fea-
tures might be used (say, within an optimization frame-
work) to approximate a reconstruction to the data, but
in general they need not be sufficient for reconstructing
the data. Such features might be useful, however, for dis-
criminating among several categories of data. Both kinds
of models — those which can re-synthesize the data, and
those which can’t, have applications in digital libraries.

One of the realities of research is that each model
tends to have a trendy period of use, and then it is aban-
doned in pursuit of a presumably newer better model.
Instead of searching for one “best” model, the approach
here is that it is important to study a variety of models,
to learn what they do best, and to learn how they may
be effectively combined. This approach shares the spirit
of Minsky’s Society of Mind [14], whereby specialized
agents, or models in this case, interact to make sense of
what they see. Just because a model is capable of repre-
senting everything does not mean that it is best to use
for everything.

In the rest of this section I will survey six models
which have been the focus of our recent research. These
six models are chosen to represent a variety of forms,
including deterministic, stochastic, mixed, linear, and
nonlinear forms. Some have parameters which are phys-
ically motivated, some which are perceptual, and some
which are semantic. Most can be applied to arbitrary
digital signals, although the emphasis here is on model-
ing imagery in space and time. Information on the other

Figure 4: Painting by Lenore Ramm. Biological patterns
like these can be mimicked by digital texture models.
In particular, reaction-diffusion models may be used for
efficient description of most natural patterns involving
spots and stripes.

models in Figure 3 can be found in the references, es-
pecially overviews such as [15] and [16]. There is not
space here for equations and details, but these are refer-
enced for each model. The focus in the descriptions be-
low is to familiarize the reader with each model, highlight
some apparent strengths and weaknesses of each model,
and point to important relations between the models.
Section 3 will then discuss two systems we have built
that rely on a society of models for more effective per-
formance.

2.1 Reaction-diffusion models: beyond
zebra stripes and leopard spots

Nature appears to use simple nonlinear mechanisms for
pattern formation, or morphogenesis. For example, but-
terfly wings exhibit a great variety of patterns, all of
which must be produced within a simple, light-weight,
insect structure. The spots and stripes on lepidoptera
are also found on brightly-colored tropical fish, zebras,
leopards, tigers, cheetahs, birds, and more. In a digital
library of such imagery, one might expect a reaction-
diffusion model to be powerful for both representation
and retrieval. Figure 4 illustrates some of the variety
of animal patterns which are well modeled by reaction-
diffusion.

Turing proposed in 1952 [17] that dappled patterns
could be synthesized by a set of coupled nonlinear par-
tial differential equations known as a “reaction-diffusion”
system. Under certain conditions, reaction-diffusion
models also can be used for analysis [18]. Inspired by
Turing’s work, we have developed a new nonlinear “M-
Lattice” model which solves the biggest practical prob-
lem of the original Turing model (boundedness), and is
still great at making spots and stripes.

Figure 5 demonstrates an application to halftoning,
the representation of gray-level images by black spots on
a white background [19]. The new M-Lattice solves a
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Figure 5: Reaction-diffusion model (stripes and spots) used to make (a) “faithful” halftone, (b) “special effects”
halftone, and (d) a binary enhanced fingerprint image from (c) an original noisy fingerprint image.



variety of nonlinear optimization problems, such as the
creation of the “Wall Street Journal Style” halftone, that
grows patterns along visually dominant directions, much
like the hand-drawn versions made by artists [20]. The
basic idea here is that the error introduced by halfton-
ing gets pushed into perceptually-favorable directions,
along lines that already exist in the image. We have also
demonstrated the creation of color halftones with these
effects using the M-Lattice [21].

Stripes, such as on zebras and fish, are well-modeled
by the nonlinear Turing and corresponding M-Lattice
models. However, digital libraries of zebras and fish are
not presently as abundant as those of fingerprints. Hu-
man fingerprints, which resemble bifurcating stripes on
zebras, have recently been successfully modeled with the
new M-Lattice for the purposes of enhancement and bi-
narization. Instead of merely removing noise, the M-
Lattice boosts the underlying fingerprint pattern, effec-
tively suppressing unwanted noise and intensity varia-
tions [19].

The reaction-diffusion model has found applications
in image processing [22], [19], computer vision, [23], and
computer graphics [24] [25]. In the latter, the emphasis
has been on synthesis, although the synthesizing param-
eters could certainly be stored in a database of synthetic
imagery and used for data manipulation, annotation,
and retrieval. The effectiveness of reaction-diffusion as a
biological model, not just for animal coat pattern forma-
tion, but also for emergence of structure of all kinds, is
an ongoing research topic in mathematical biology [26].
In the digital arena, the model has been most success-
ful in the synthesis of textures or images comprised of
spots and stripes. However, the model is still new and
largely unexplored. As a nonlinear model with a huge
space of possible behaviors, it will be some time before
its strengths and weaknesses are fully characterized.

2.2 Markov random field models: from
grass and sand to monkey fur

The reaction-diffusion model is deterministic. However,
there is another class of models that bears a resemblance
to reaction-diffusion but which is stochastic — the class of
Markov random field (MRF) models. Unlike most tex-
ture models, an MRF is capable of generating random,
regular, and even highly structured patterns. In theory,
it can produce any pattern. It does not just describe
some characteristics for distinguishing textures, but it
can be used for both texture analysis and synthesis.

The MRF has simultaneous roots in the Gibbs distri-
bution of statistical mechanics and the Markov models of
probability. The Gibbs distribution has a rich history of
applications in physics including the modeling of lattice
gases, molecular interactions in magnets, and ordering
processes in condensed matter. In computer vision and
image processing, the MRF is touted for its ability to
relate the Markov conditional probabilities to the Gibbs
joint probability. It can be easily incorporated into a
Bayesian framework, making it flexible for a variety of
applications.

Hassner and Sklansky [28] appear to have been the
first to suggest the use of Markov/Gibbs models for im-
age texture. Cross and Jain [29] conducted the first ex-
plorations of the MRF for gray-level texture modeling

and showed that it generated natural appearing micro-
textures such as grass or sand. A Gaussian MRF has
been applied to texture classification and modeling by
Chellappa and Chatterjee [30], [31] and Cohen et al. [32].

Given successful use in these small sets of data, the
MRF should also be useful in large digital library prob-
lems, when the library data is well-described by the
model. For example, the aura framework derived from an
MRF model has been shown to be useful for characteriz-
ing spatial yields of semiconductor wafers [33]. Searches
through a database of wafer-yield imagery might there-
fore favor this model for finding similar patterns.

The interplay between microscopic dynamics and
macroscopic force, such as that associated with a phase
transition [34] triggered by temperature is an impor-
tant factor in natural pattern formation. The effects
of a temperature parameter on pattern formation with
MRF’s have been studied [35] revealing relationships be-
tween structuring models within mathematical morphol-
ogy and the useful statistical features of co-occurrence
[36]. However, these relationships also indicate limita-
tions on the patterns that can occur at low-temperature
[37]. Although in theory the MRF can model anything,
these low-temperature relationships point to weaknesses
of the MRF model.

In particular, although the MRF can make structures
such as the stripes and spots favored by the reaction-
diffusion model, it does not typically make such pat-
terns unless coupled with an external structuring force,
or forced into a low-temperature state [38]. For example,
running at low-temperature on low-frequency structural
cloud images was successful at simultaneously captur-
ing cloud texture while preserving cloud shape [39]. In
general, the expertise of the MRF does not seem to lie
in large-scale structured patterns, except in a few special
cases, and when careful temperature control is exercised.

The strength of the MRF appears to lie with homoge-
neous microtextures and simple attractive-repulsive in-
teractions. Figure 6 shows the use of an MRF model for
synthesizing the microtexture of fur in two patches of a
mandril image. Details how this was done, as well as its
potential for model-based semantic image compression,
are discussed in [40]. Although the model is successful
for fur in this example, the reader should keep in mind
that the model is not typically successful on nonhomo-
geneous or non-micro-textures, and was not found to be
successful when trained on other parts of the mandril im-
age. To summarize: in theory the MRF can represent all
patterns; however, in practice, its strengths make it suit-
able to only certain kinds of imagery that might occur
in a digital library. Like all the models we’ve examined,
its utility depends greatly on the contents of the digital
library.

2.3 Cluster-based probability
modeling: audiovisual patterns

As mentioned above, the MRF can theoretically repre-
sent any pattern, but is typically only good at capturing
low-order interactions due to the complexity of its pa-
rameter estimation. The mandril fur above is a typical
example of what it is good at synthesizing. The MRF
fails at capturing patterns like those shown in the top
row of Figure 7. To capture more complicated structures



Figure 6: Tllustration of a strength of the MRF model. The top image is the 256 x 512 original; the bottom image is
the same except for two 64 x 64 patches of synthetic fur. Can you see them?



. SRS, e e -
o A AU N N o

Y

o

-
- -

- .-

P

=
-
.

-1

)

TR aF & o O o
5o
< e Qe

(X

.

85

e

23

et

33

3

i

o

-w

Figure 7: Top row: 256 x 256 patches from the Brodatz [27] album, used to train cluster-based probability models.
Bottom row: deterministic multiresolution synthesis. The textures are, from left to right, D1 (aluminum wire mesh),
D15 (straw), D20 (magnified French canvas), D22 (reptile skin), and D103 (loose burlap).

than in microtextures, we now consider a higher-order
probabilistic model.

The key problem with increasing the order of a proba-
bilistic model is that it exponentially increases the space
of possibilities. For example, to consider joint interac-
tions among a set of 14 pixels in a 256 gray-level image
results in 2''? possibilities. This number dwarfs even
the total number of images all of humankind could have
ever seen, a mere 2'° possibilities. (The latter assumes
10 billion humans with their eyes open 24 hours/day,
watching 30 frames/sec, living 100 years each.) Clearly,
a model dealing with this many possibilities will run into
practical problems.

The approach taken to make this model practical is de-
scribed in [41]. To illustrate its power at capturing both
microtexture features and higher-structured features, its
parameters have been trained on six patterns shown in
Figure 7, using 14th order joint probability statistics. To
jointly model fourteen variables is a significant increase
over the MRF; the latter is computationally tractable
usually only for up to 3rd-order joint statistics. A multi-
resolution maximum-likelihood method was used to syn-
thesize textures from the model parameters; these results
are shown in the bottom row of Figure 7. Notice that
the probability distributions did not involve enough vari-
ables to enforce globally regular structures; nonetheless,
much of the character of the original is present in the full-
resolution result. For example, the probabilistic model
trained on the wire mesh in the first column captures
relatively high-level features such as shading, bending,
and even occlusion of the wire strands.

The cluster-based probability model implemented
here is related to several other models, such as Gaussian
mixture models; these relations, along with the applica-
tion of this model to image restoration and compression,
are discussed further in [42]. Ome of the drawbacks of
the model is that it presently requires a lot of parameters
compared to other texture models. Research is under-
way to determine how the parameters can be leveraged

across large classes of patterns, to make the model more
efficient for use in digital libraries.

The cluster-based probability model has recently been
shown to be capable of realistic sound texture synthesis
[43], and to perform well on certain perceptual similarity
comparisons of sounds [44]. Indeed, a truly effective so-
ciety of models will include models that work not just for
visual features, but also for arbitrary perceptual and se-
mantic information features. Digital libraries often con-
tain mixed media such as audio and image; models which
can handle multiple media offer savings in design time,
development time, and overall system cost.

2.4 A new Wold model for perceptual
pattern matching

What features are important to people when measuring
similarity in pictures? A perceptual study by Rao and
Lohse [45] has shown that the top three features may
be described by 1) periodicity, 2) directionality, and 3)
randomness. A model that explicitly gives control over
these features would potentially provide more perceptual
control over pattern formation and visual queries.

In statistics, there is a theorem by Wold which pro-
vides for the decomposition of regular 1-D stochastic
processes into mutually orthogonal deterministic and
stochastic components. For images, this results in a
decomposition into three components, which approxi-
mately correspond to periodicity, directionality, and ran-
domness. As such, the Wold model is one of the few
models that has intuitive parameters, or semantic “con-
trol knobs.” An implementation of this model for analy-
sis and synthesis of homogeneous textures can be found
in [46].

For the purposes of image retrieval, we have devel-
oped a new implementation of the Wold model. This
implementation facilitates the finding of perceptually-
similar patterns in a database containing both homoge-
neous and non-homogeneous textured images [47]. When
the user selects a given image, similar-looking images are
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retrieved. Examples are shown in Figure 8. The upper
left image in each of the two figures is the one selected by
the user. The images which follow represent the closest
images in raster-scan order from the selected image. Al-
though the images here are from the Brodatz database,
they could just as well be from a large database of fab-
rics, tiles, wallcoverings, and other textiles, facilitating
searches by consumers and designers.

Although the Wold model was found to be the most
successful of five texture models [47] for retrieval in the
Brodatz database, it is not necessarily the best for an
arbitrary set of imagery. To summarize, its strengths ap-
pear to lie in natural pattern similarity, especially when
periodicity, directionality, and randomness are distin-
guishing features. Ome of the weaknesses can be seen
in the second row of Figure 8, in the right-most image,
where round stones were retrieved, due largely to the
presence of high contrast horizontal edges near the cen-
ter of this image.

2.5 Stochastic model for temporal

textures

Video is full of motion, providing a new challenge for
texture models. Some motions are rigid, like a car
moving across a scene, and can be captured by simple
non-textural models. However, motions such as blowing
leaves and wavy water are non-rigid, and require mod-
els which exploit local collective properties — temporal
texture models.

Temporal texture is a relatively new research area;
only in the last few years have researchers been able
to deal with the growth in computational complexity
and storage caused by an extra dimension of raw data.
Our work in this area has focused on treating video as a
spatio-temporal image volume. Patterns in the volume
show up as a result of periodic or random motions — for
example, a person walking across a scene results in a
periodic braided pattern at leg-level [48]. The types of
queries we hope to address with this research are queries
such as “find scenes with moving water,” or “are there
other scenes where a person is walking?” Like spatial
texture, temporal texture will need to be augmented
with other information before it can address relational
queries such as “find dogs chasing cars.”

In an effort to first formulate a general temporal tex-
ture model, a linear auto-regressive model (of the auto-
regressive moving average (ARMA) family in Figure 3)
[49] was extended for stochastic temporal textures. The
standard 2-D model was augmented to form a linear
spatio-temporal auto-regressive (STAR) model, which
predicts new image values based on a volume of values
lagged in space and time [50]. Using the STAR model,
parameters for stochastic temporal textures were esti-
mated, and the motions were resynthesized from the pa-
rameters. Resynthesis of motion textures such as steam,
river water, and boiling water were found to look nat-
ural. These patterns might be thought of as temporal
microtextures in that their perceptual characteristics are
well-captured by pair-wise (2nd order) statistics over a
small volume of the data.

An “x-y-t” volume of an original river sequence and
a synthetic river sequence are shown in Figure 9, show-
ing how perceptually similar they appear even though

10

the one at the right was synthesized from model pa-
rameters. Although the STAR model was found to
be strong at characterizing such homogeneous tempo-
ral textures, it was not found to be able to capture the
structure in less homogeneous temporal patterns, such
as swirling water going down a drain. Such patterns,
like their spatial counter-parts, seem to require either a
larger joint inter-pixel characterization, or coupling with
some global structure, as provided by the MRF external
field. Nonetheless, a digital library might contain data
for which the STAR model is the best choice. Alterna-
tively, a model that directly incorporates mechanisms of
swirling and other fluid motions might be better for some
types of queries. The sixth model, described next, is an
example of a model with explicit physically-motivated
mechanisms to control motion behavior.

2.6 Synthetic flames via polygonal
particle systems

One of the most challenging temporal textures to model
is fire. Fire is one of Nature’s greatest actors, able to
evoke a wide range of feelings through its emotional and
destructive power. For filmmaking, fire is extremely diffi-
cult to control, and results in the expensive construction
and subsequent destruction of objects on the set. Valu-
able resources are spent trying to exploit the power of
fire through pyrotechnic techniques, and ultimately the
range of available effects is limited by the laws of physics.

We have developed a model for synthesizing fires that
look real, respond properly to wind and gravity, light
their environment, spread over and char 3D objects, and
compute in interactive time [51]. The flames are ren-
dered using a technique based on modified particle sys-
tems — each particle is a shaded translucent polygon,
which combines with others to build the flickering flames.
The flames are coupled with a physically-based spread-
ing mechanisms to achieve realistic movement around
polygonal 3-D objects. The model parameters were de-
signed to give graphic engineers semantic control knobs
to change factors such as flammability of the underlying
material or velocity of the wind, and have the fire re-
spond in the expected natural way. The resulting model
makes it easier for realistic-looking synthetic fires to be
placed into both artificial and natural scenes. Hence,
the model avoids the costs and dangers associated with
real fires, while giving a greater possible variety of ef-
fects. Additionally, the parameters can be set to control
flame density, shape, blending, and noisyness, allowing
non-physical special effects. A few flames are shown in
Figure 10.

Models with semantic parameters such as this flame
model have a variety of uses beyond synthesis. As de-
signers construct digital libraries of synthetic video and
graphics, it becomes useful to use synthesis parameters
for retrieval: “what was the name of that file that con-
tained flames blowing in the wind but not spreading?”
It is also possible that some of the parameters of the syn-
thetic models might be estimated from natural footage,
given that the parameters are physically-motivated; this
is an unexplored research area. Currently, the model pa-
rameters also allow fast and easy manipulation, so that
a user may craft a variety of fires (candle flame, roof fire,
etc.) either for modifying a particular retrieved scene to



Figure 9: Left: original river video sequence. Right: synthetic sequence made from STAR model, illustrating similarity

to the original.

be closer to what the user wants, or for creating a pro-
totype to search on. An example is “find fires spreading
up vertical structures.”

3 Systems for browsing, retrieval,
and annotation

The six models highlighted above do not solve all the
problems in texture modeling, much less all the prob-
lems in digital libraries. However, they illustrate a va-
riety of areas of expertise, which can work individually
or collectively to assist in representing, manipulating,
comparing, recognizing, and annotating data in digital
libraries. Which one or ones should be used? Unless a
digital library contains a highly restricted set of data,
which is known in advance, we cannot expect a single
model to be best at all the tasks demanded of the dig-
ital library. A model that is good for finding flames
that move in a particular way is probably not going to
be good for finding particular human motions. In this
section I will briefly survey two systems we have built
which incorporate vision texture and a society of models
for assisting in browsing, retrieval, and annotation of im-
age and video. Both systems are flexible in their abilities
to incorporate a variety of models. The first depends on
the user to select the models; the second learns to select
or combine models automatically.

3.1

Both academic and industrial scientists have begun re-
searching and developing systems to assist users in navi-
gating through digital imagery. Some of the earliest and
largest research efforts have been at IBM Almaden [52],
1SS [53], and MIT [54]. Early results have already been
made into products, and can be explored interactively
on the world-wide web [55], [56].

The first system developed at the MIT Media Lab was
Photobook. Photobook is an interface that displays still
images and video keyframes, and offers access to a vari-
ety of tools for browsing and retrieval. Photobook cur-
rently interfaces to databases including faces, animals,

Photobook: browsing and retrieval
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artwork, tools, fabric samples, brain-ventricles, and va-
cation photos. Depending on the category of images, dif-
ferent algorithms are available for assisting in retrieval.
Each image has pre-computed (offline) features associ-
ated with it, so that when a user selects an image of in-
terest, the system instantly updates the screen showing
other images in the database most similar to the selected
image.

The problems of what models to use for image repre-
sentation, and how to measure image similarity are chal-
lenging research problems for the image processing com-
munity [57]. Photobook, like the systems of [55] and [56],
allows the user to select manually from a variety of mod-
els and associated feature combinations. As a research
tool, Photobook assists in rapid benchmarking of new
pattern recognition and computer vision algorithms. An
example interaction with Photobook, looking at video
keyframes, is shown in Figure 11.

Experience interacting with the Photobook system
has taught us that although it saves time in browsing
and retrieval tasks, the job of selecting which model to
use, or which combination of features for searching is
generally non-intuitive. Although an expert who works
with the models can learn which tend to work best on
which data, this kind of expertise only holds across uni-
form databases, such as fingerprint images or face im-
ages. For general consumer photos, stock photos, or
clip-art services, there may not be one winning model
or fixed combination of models, but these may need to
vary within the database, or vary with each new search.
Even the expert with good intuitive understanding of the
features rapidly becomes frustrated at how often the set-
tings to combine features need to be changed for optimal
performance.

The model combination in Photobook and similar in-
dustrial systems is feature-based, and tends to be limited
to linear combinations of features — e.g., “Use 60% of
texture model A, 20% of texture model D, 10% of color
model B, and 10% of shape model A.” Unfortunately,
users don’t naturally sort images by similarity using this
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Figure 10: Synthetic flames.

kind of language. In particular, as the dimensionality
(based on total number of model features) increases, in-
tuition about how to pick relative weightings among fea-
tures is lost. The need to determine all the weightings
for multiple features, and hence for the society of models,
is a problem that plagues all existing retrieval systems
to date. A solution to this harder problem was a key
motivation for the system described next.

3.2 Foureyes: learning from user
interaction

People have different goals when they interact with a
digital library retrieval system. FEven if they are nomi-
nally interested only in annotation, or only in retrieval,
they are likely to have different criteria for the la-
bels they would give images and the associations they
would like retrieved. These criteria tend to be data-
dependent, goal-dependent, culture-dependent, and even
mood-dependent. On top of this unpredictability, the av-
erage user has no idea how to set all the system knobs
to provide the right balance of color, texture, shape, and
other model features to retrieve the desired data.

A society of models is most powerful when the models
are well-matched to the problems, where the problems
may depend significantly not just on the data, but on
the present user’s notion of similarity. The request “find
more examples like this” has many right answers, and dif-
ferent models or model combinations may perform best
for different answers. We have found that combinations
of low-level models well-chosen to suit a particular task
can outperform single more sophisticated models that do
not suit the task well. We have also found cases where a
single sophisticated model can outperform combinations
of low-level models. What is needed is a system that
can learn how to best exploit multiple models and their
combinations, freeing the user from this concern.

Our goal has been two-fold: to develop a system that
(1) can select the best model when one is best, and figure
out how to combine models when that is best, and (2)
can learn to recognize, remember, and refine best model
choices and combinations, by looking both at the data
features and at the user interaction, and thereby increase
its speed and knowledge with continuous use. The sys-
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tem FourEyes was developed for this two-part goal.

FourEyes not only looks at pre-computed features
of the data (as does Photobook), but additionally,
FourEyes looks at the user’s interaction with the data.
The user can give the system examples of data he or she
is interested in, e.g. by clicking on some buildings and
then on the “positive” example button. The user can
also give negative examples, providing corrective feed-
back to the system. FourEye’s use of user examples is
a kind of relevance feedback, a well-known and powerful
technique used in the latest text-based retrieval systems.
However, FourEyes goes beyond relevance feedback in its
abilities to combine models and to learn.

Given a set of positive and negative examples,
FourEyes looks at all the models and determines which
model or combination of models best describes the pos-
itive examples chosen by the user, while satisfying the
constraints of the negative examples. FourEyes is able to
choose or combine models in interactive-time with each
set of positive and negative examples, allowing the fea-
tures used by the system to change with each query.

FourEyes achieves model combination by multiple
stages of processing. Instead of combining features in
a numerical feature space (say, by concatenating all the
model features into one vector and conducting some kind
of subsequent feature selection or linear feature combi-
nation), FourEyes abandons numerical feature spaces af-
ter they have been used for an initial (first-stage) offline
formation of groupings. This is a key step which distin-
guishes FourEyes from other existing systems that work
with multiple models. The groupings in FourEyes act as
a new language through which models can interact; all
the models can group all the data, either individually or
cooperatively. The problem at this point becomes which
models best group the data of interest to the user?

The final stage of the model combination involves an
online learning method. FourEyes can currently use one
of several possible methods (e.g. set cover, decision list,
or decision tree) to choose which groupings best cover
the user’s positive examples, cover none of their negative
examples, and satisfy some additional criteria. (See [58]
and [59] for details on the learning, as well as on other
stages of processing in FourEyes.) The learner can select
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Figure 11: Photobook vision-based content query: Are there any images similar to the image of the violin player
shown at the top left? After searching a database of several hundred video keyframes, the result is the series of images
shown here, ranked by similarity to the query image in terms of their visual content. The system does surprisingly
well...although there are cases where it is difficult to understand the computer’s similarity judgement.
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Figure 12: Screen shot of FourEyes during the labeling of examples of building, cars, and street.
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groupings all from one model, or groupings from any
combination of the models available to it. It might, for
example, use a mixture of groupings from motion, color,
and texture models.

It is important to emphasize that FourEyes is a learn-
ing system; it learns which methods of combination best
solve a particular problem, and remembers these com-
binations. In this sense it is quite different from tradi-
tional relevance feedback systems. When presented with
a new problem similar to one FourEyes has solved be-
fore, then FourEyes can solve it more quickly than it
could the first time. If the new problem is dissimilar,
then FourEyes learns a new combination of models for
solving it. FourEyes gets faster as it sees problems sim-
ilar to those it has seen before. (“Faster” is defined by
an ability to retrieve or label the desired concepts given
a smaller number of examples of what the user wants.)
FourEyes has also demonstrated faster learning across
new related (but different) problems [59]. Current re-
search on FourEyes aims to improve its abilities as a
“continuous learner,” using knowledge from problems it
has been trained on to improve its performance across
new problems for which it has not been trained. This is
important in digital libraries, enabling users to change
their minds and queries frequently as they see more of
the available data.

3.2.1 Power-assisted annotation

Much of image retrieval depends on text descriptions,
or annotations, which have been tediously typed in by
humans. Ideally, semantic annotations and perceptual
image features work together, with annotations describ-
ing visual relations, and visual features helping propa-
gate annotations to “visual synonyms” [60]. The first
version of FourEyes was designed to use vision texture
and a society of models to assist the user in annotation.

In annotation, the user labels prototypes in a hand-
ful of images, and FourEyes then labels the rest of the
database based on the examples of the user. Figure 12
shows an example annotation — the user selected two
patches and labeled them “building” (red boundaries
indicate patches selected by the user), two patches of
“cars” and two patches of “street.” The system then
responded by finding the 31 additional labels shown in
Figure 12. At the same time, the system went through
all the other images in the database, and labeled other
places it found to “look like” building, cars, and street.
In small-scale tests on a set of vacation photos, this
power-assisted annotation process cut the cost of anno-
tating by more than 80% [61].

Once images are partially annotated, retrieval systems
can use semantic search criteria as well as the present
visual-feature based criteria. For example, after using
FourEyes to annotate less than 20% of the BT image
database, queries for “semantically similar” scenes could
be made, as illustrated by Figure 13, where an image was
retrieved as similar if it contained a similar percentage of
regions with labels of building and street. The location
of the labeled regions was not considered, but only their
relative area within the image. FEffectively the model
is a histogram of labels, equipped with a distance on
the histogram. At this semantic stage there are many
existing tools available which can be used, e.g. an online
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text thesaurus.

It is worth mentioning that no one model available
to FourEyes was able to represent the variety of build-
ings and street shown in Figure 13. Instead, FourEyes
constructed a concept of “building” and a concept of
“street” by combining groupings found by several differ-
ent models. The exact combinations are transparent to
the user, but are learned by the system for speeding up
future similar requests.

In general, the performance of power-assisted anno-
tation depends on the data, the nature of the annota-
tions, and the learning algorithm. A benefit of building
a learning algorithm into an annotation system is that
the FourEyes system saves the most useful label-visual
feature associations, essentially constructing a represen-
tation that acts as a “visual thesaurus” [60]. A clus-
ter labeled “building” that looks like white buildings
viewed from a sharp perspective can therefore get as-
sociated with a cluster labeled “building” that looks
like white trimmed-red brick from a different perspec-
tive. Different prototypes of visual building get linked
to the same semantic label. Not only does the system
accumulate knowledge and improve its performance, but
it ultimately helps vision researchers study the connec-
tions between high-level visual descriptions and low-level
vision texture.

FourEye’s learning ability allows retrieval algorithms
to be customized for each user’s goals, while freeing the
user from having to figure out how to hand-set the mod-
els’ non-intuitive weights and combinations every time
his or her query goals change.

FourEye’s reliance on the society of models means that
it can simultaneously provide for many notions of simi-
larity — including color, texture, shape, motion, position,
and even user-defined subjective associations. The lat-
ter are particularly important as many queries (indeed,
the most common ones for stock photos in advertising
[62]) are for images with a certain “mood.” Giving com-
puters the ability to learn about affect will make huge
new demands on tools for learning and pattern model-
ing, but is essential for improving their performance in
tasks involving human interaction [63].

4 Summary

This paper surveys recent research in the Vision Tex-
ture group of the MIT Media Laboratory. This research
broadens the definition of texture to include all signals
best described by collective properties of low-level fea-
tures — for images, the visual equivalent of “mass nouns.”
Several texture models have been investigated, including
reaction-diffusion, Markov random fields, cluster-based
probability distributions, Wold features, STAR models,
and modified particle systems, for describing combina-
tions of visual features that occur in image, video, and
graphics. This paper briefly describes each of these,
highlighting its strengths, relations to other models, and
potential uses in digital libraries.

Understanding multiple models and their interactions
is an essential part of a greater goal, the construction of
an effective “society of models.” The society of models
approach allows a system to flexibly choose the best so-
lution, whether it is a combination of low-level models or
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Figure 13: Results after labeling data in FourEyes. “Computer, go find scenes like this one (upper left), with buildings
and/or street.”
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a single sophisticated model. This approach is especially
important in interactive systems for image browsing and
retrieval, where a variety of models tailored to different
goals are necessary for best performance.

This paper describes two such systems for interactive
browsing, retrieval, and annotation of image and video
data. One of these systems, FourEyes, looks not only at
pre-computed features of the data (like the other system,
Photobook), but also looks at the user’s interaction with
the data. Using a learning algorithm, FourEyes deter-
mines which models or combinations of models perform
best for the user’s task. It accumulates knowledge from
the user, becoming more effective with increased use. To-
gether, the vision texture models and learning algorithm
contribute to new systems that save users time organiz-
ing, manipulating, browsing, querying, and annotating
large sets of visual information.
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