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Abstract

We develop, analyze, and apply a specific form of
mixture modeling for density estimation, within the
context of image and texture processing. The tech-
nique captures much of the higher-order, nonlinear
statistical relationships present among vector ele-
ments by combining aspects of kernel estimation and
cluster analysis. Experimental results are presented
in the following applications: image restoration, im-
age and texture compression, and texture classifica-
tion.

1 Introduction

In many signal processing tasks, uncertainty plays a funda-
mental role. Examples of such tasks are compression, detec-
tion, estimation, classification, and restoration — in all of
these, the future inputs are not known perfectly at the time
of system design, but instead must be characterized only in
terms of their “typical,” or “likely” behavior, by means of
some probabilistic model. Every such system has a proba-
bilistic model, be it explicit or implicit. Often, the level of
performance achieved by such a system depends strongly on
the accuracy of the probabilistic model it employs.

This paper presents a method for finding an explicit proba-
bility distribution estimate, and demonstrates its application
to a variety of image processing problems. In particular, the
focus is on obtaining accurate estimates of conditional distri-
butions, where the number of conditioning variables is rela-
tively large (on the order of ten). If conditional distributions
are estimated directly, then care must be taken to ensure con-
sistency [1]. In this work, we begin by estimating the joint dis-
tribution — in this way, we avoid consistency problems. Once
the joint distribution has been estimated, the conditional can
be computed by a simple normalization.

As mentioned, the goal here is obtaining a high-dimensional
joint probability distribution, i.e., on the order of d = 10 joint
variables. Traditional attempts usually stop at d = 3 vari-
ables or less. Major obstacles exist when estimating high-d
distributions [2, 3]. Foremost is the exponential growth of the
amount of data required to obtain an estimate of prescribed
quality as d is increased. Large regions in the d-dimensional
space are likely to be devoid of observations. In the discrete
case, the size of the vector alphabet is usually astronomical —
for example, a 3 x 3 neighborhood of 8-bit pixels can assume
272 distinct values. Consequently, processing in the vector
alphabet must be bypassed altogether. The situation is no
better when the conditional distribution formulation is used.
Although the variable is then one-dimensional, the number
of conditioning states replaces the vector alphabet size as the
astronomical quantity, and the same situation follows. These
obstacles are consequences of what is commonly referred to
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as “the curse of dimensionality.”! A term that is more spe-

cific to the density estimation problem, coined by Scott and
Thompson [3], is the empty space phenomenon.

The estimation technique described in this paper combines
two weapons in combating the empty space phenomenon: ker-
nel estimation and cluster analysis. Kernel estimation (re-
viewed in Section 1.2) provides a means of interpolating prob-
ability to fill in empty regions. It is a means of generalizing the
observed data. However, kernel estimation is poor at model-
ing rare events (tail regions), and in high dimensions, almost
all events are rare. On the other hand, cluster analysis iden-
tifies critical regions of space that need to be covered by ker-
nels, and is a means of summarizing the observed data. The
combination of these two techniques results in an economized,
heterogeneous kernel estimate that works well in both mode
and tail regions.

The cluster-based probability model is a type of mixture
model, and mixture models are not new. Their estimation and
use dates back at least to the 1894 work of Karl Pearson; see [5]
or [6] for a survey. Mixture models have customarily been used
in situations calling for unsupervised learning. Specifically,
a mixture model naturally arises when an observation x is
believed to obey probability law pc(x|w.) with probability
P(w.), where w, is one of several “states of nature,” or classes
[7]. Alternatively, a mixture model may be viewed as a means
of estimating an arbitrary probability law, even in situations
where there is no reason to believe that the true probability
law is a mixture [5, p. 118ff]. The cluster-based probability
model is viewed in this way.

Mixture models have received considerable attention from
the speech processing community over the past two decades
[8]. They are also a topic of current interest among researchers
in the field of artificial neural networks (ANN’s) [9], where the
emphasis has been on estimating the system output values
themselves, rather than on estimating predictive probability
distributions for those values (see Section 6.2). However, the
use of mixture models, and more generally, the application of
high-dimensional probabilistic modeling, are subjects which
are rarely dealt with in the image processing literature. The
current paper develops, analyzes, and applies a particular type
of mixture for high-dimensional probabilistic modeling, within
the context of image and texture processing.

1.1 Terms and notation

Let x = [z1,...,24] be a random vector, and let X and X;
denote particular values of x and x; respectively. It is assumed
that the d elements of x share the same range of values X C R.
In the continuous case, X" is assumed to be a bounded interval
of the real line. In the discrete case, X is assumed to be a set
of K real numbers on a bounded interval. The set of possible
values of x is denoted X¢ C RY; it is the d-fold cartesian

'D.W. Scott [4] has attributed the first use of this term
to R.E. Bellman in describing the exponential growth with
dimension of the complexity of combinatorial optimization.



product of X’ with itself. Note that, in the discrete case, the
number of possible values for X¢ is K¢.

It is assumed that successive realizations of x are indepen-
dent and that they obey one and the same probability law.?
In the continuous case, x is governed by a probability density
function (PDF) f(x), which satisfies

/ F(X)dX = Prob{x € V'} (1.1)
\%

for all measurable V' C X%. In addition to the usual require-
ments of nonnegativity and integrating to one, it is assumed
throughout that f(x) is continuous and bounded. In the dis-
crete case, x is governed by a probability mass function (PMF)
p(x) defined as

p(X) = Prob{x =X}, XeXx® (1.2)
The notation f(z1,...,24) will be used interchangeably with
f(x); likewise for p(z1,...,zq) and p(x). The main use for f
and p in the applications will be in providing the conditional,
one-dimensional probability laws

f(Xl,XQ SN ,:Ed)

f(l‘d|X1,. .. ,Xd_1) =

f(Xla"'adel)
and (1.3)
p(Xl,Xg ...,l'd)
X1,..., X4g1) = —F—"FC.
p($d| 1, y<d 1) p(Xl,---,Xd—l)

The probability law is to be estimated from a learning sam-
ple L of size N (also called the training data), where

L={X,}_;.

The i*" element of the n™® sample vector is denoted X, ;, and
an estimate of f or p based on L is denoted f or p.

The quality of an estimate can be measured in a variety of
ways. The most commonly used criteria are the L; and Lo
norms [2, 10]. A criterion which is relevant in compression
and classification applications is the relative entropy, defined

” - 1X)
= ln .,—d
DU = | 1K) ZosdX
and (1.4)
_ (X)
D(pllp) = X§€dep(X> log: =)

in the continuous and discrete case, respectively. The relative
entropy is directly related to efficiency in compression and to
error rate in classification [11].

A partition U of X% is a collection of M cells U = {Uy, C
XM such that

M
U Un=X% and UnNUy =0for m#£m'.
m=1

Given a set of vectors Y1,..., Y in X%, a nearest-neighbor
partition U(Y1,...,Y ) is obtained by including in cell U,,
those X in X? which are closer to Y,, than to every other
cell. The Euclidean norm is assumed.

In practice, vectors of image features are generally not
independent, so the assumption of independence is usually
violated to some degree. However, if the vectors are formed in
such a way that the intravector dependence is much stronger
than the intervector dependence, then a system that fails to
exploit the latter may still perform well.

A pizel neighborhood N is a collection of (row, column)
index pairs which specify the locations of conditioning pixels
relative to a given current pixel location. A neighborhood
is causal if it includes only pixel locations that precede the
current location in raster scan order. In this paper, the vector
x is formed by taking the conditioning pixels as the first d — 1
elements, and appending the current pixel as the d*™" element.
The neighborhoods used in this paper are shown in Figure 1.

1.2 Histograms and kernel estimates

This section lays the groundwork for the cluster-based estima-
tion technique by briefly reviewing the two most commonly
used nonparametric PDF/PMF estimators: histograms and
kernel estimates.

For discrete x, the normalized histogram pm(x) of L is de-
fined as

pu(X) = N(X)/N, (1.5)

where N(X), termed a bin, is the number of times that X
appears in £. The histogram is the maximum-likelihood es-
timator of p, which implies that it is asymptotically unbiased
(as N — 00) and consistent [12]. However, in practice usually
N « K4, so that asymptotic behavior is not reached. In fact,
typically pz (X) = 0 for all but a small fraction of X¢, even in
regions of relatively high probability. Thus, the empty space
phenomenon becomes an empty bin problem.

The learning sample is not only well represented by the his-
togram, but it is too well represented. The histogram overfits
the learning sample. Yet in overfitting the learning sample,
the histogram serves as a relatively compact summary of it.
What the histogram in the discrete case lacks is not the abil-
ity to summarize the learning data, but to generalize it. Both
properties are indispensable when working in higher dimen-
sions.

Generalizing means inferring probabilities of previously un-
seen vectors from those in the learning sample. This requires
that an assumption be made about how the vectors relate. A
smoothness assumption about the probability law is often rea-
sonable: small changes in a vector imply small changes in its
probability. (Smoothness of the probability law should not be
confused with smoothness of image neighborhoods; the latter
is not required for the former.) The smoothness assumption
is implicitly used in continuous-valued histograms when adja-
cent values are grouped into the same bin. As the bin size is
increased, the histogram both summarizes and generalizes the
data better, but at the cost of decreased resolution.

An alternative means of generalizing the learning sample
is kernel estimation. A kernel estimate fK is typically of the
form

Fie(X) = 3 KX - Xa), (1.6)

where the kernel function k(X) is itself a PDF that is usually
chosen to be spherically symmetric and local to the origin
[4]. A Gaussian kernel is often used. The effect of kernel
estimation is to “radiate” probability from each vector in the
learning sample to the space immediately around it, which
is justified by the smoothness assumption. In this way, the
learning sample is generalized.

Kernel estimation is a powerful technique in nonparametric
statistics with many practical successes reported and a rich
supporting theory [13]. However, it is not without its short-
comings. Foremost is its inability to summarize the learning
sample. In kernel estimation, a kernel is placed at each sample,
requiring each training vector to be retained and used when-
ever the estimate is evaluated. In high dimensional spaces,
where large learning samples are necessary, this makes the
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Figure 1: Conditioning neighborhoods used in this paper. In each case, solid circles correspond to z1,...

circle to xq4.

kernel method prohibitively expensive in terms of both com-
putation and storage. Attempting to economize by subsam-
pling the training data is tantamount to using a smaller sam-
ple, which leads to inaccuracy, most notably in the tails. In
higher dimensions, this type of economized kernel estimation
becomes problematic, as the tails usually contain most of the
total probability (for a nice illustration of this point, see [2],
pp. 91-93). Adaptive kernel estimates have been proposed to
mitigate this problem [2, pp. 100-110], but they too rely on
distribution sampling for the kernel locations, and therefore
are prone to poor performance in tail regions.

In the next section, a modification of the kernel method is
proposed wherein important regions of X¢ are identified via
cluster analysis, then region-specific kernels are fit to these
locations. The result is a model that represents both mode and
tail regions well, while combining the summarizing strength of
histograms with the generalizing strength of kernel estimates.

2 Cluster-based probability estimation

Scott and Thompson [3] have observed, ... the problem of
density estimation in higher dimensions involves first of all
finding where the action is.” Cluster-based kernel probability
estimation begins by identifying the locations of important
regions of X% by means of cluster analysis. The details of
the cluster analysis are taken up in Section 2.1. Here, we
assume that a partition U consisting of M cells has already
been obtained.

To each cell U, C U, fit a single product kernel
H‘ii:l km,i(X;), where each kn,; is a one-dimensional PDF.
Define wy, = N(Un)/N, where N(Uy,) denotes the number of
training points that lie in U,,. For continuous x, the cluster-

based estimate of the PDF is defined as
M d
Fo(X) =" wan [ Fma(X0). (2.1)
m=1 i=1

A natural choice for the kernels is the Gaussian form,
1 —(Xi=fim, )%/ (24%62, )
o= (Xi=fim,i ™. (2.2)
TV 27"&31,1‘

The parameters fi,,; and &%,i are taken to be the one-

km,i(X5) =

dimensional sample mean X,,; and sample variance an,i of
the training points that lie in U,,.

In the discrete case, the cluster-based probability estimate
is of identical form:

M
Fo(X) = wm [ [ Fmi(X0), (2:3)
m=1 i=1
where the one-dimensional product kernels k., ; are obtained
by sampling the corresponding continuous kernels at the dis-
crete values in X (e.g., integer grayscale values between 0 and
255), then normalizing to obtain a PMF. All of the exper-
imental results presented in this paper were obtained using

Gaussian kernels discretized in this way.

N N N
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The necessity of the parameter 7 in (2.2) is discussed in
Appendix B. An appropriate value is determined empirically.
In this study, the best values for v were found to be between
1.0 and 1.5.

2.1 Obtaining the partition: clustering

Though we use the term “clustering,” our goal is different from
that of traditional cluster analysis. Essentially, what we are
after from cluster analysis is much the same as what vector
quantization is after: representational efficiency, as opposed
to efficiency of discrimination.

A clustering technique that is widely used in vector quan-
tization is the k-means procedure [7], whose origin is often
attributed to Forgy [14, 15]. Stagewise application of the k-
means procedure, in which the initial guesses for the cluster
centroids at each stage are obtained by splitting the centroids
resulting from a previous stage, is known as the LBG algo-
rithm [14, 16]. We have adopted the LBG algorithm for all of
the experiments here. .
__The clustering algorithm is now described. Define X, =
[Xm 1,y Xm,a], for m=1,..., M. The following basic pro-
cedure is repeated for successively larger values of M, the
number of kernels. The parameters 61, 02, and 03 are dis-
cussed after the algorithm.

1. Initialization: set M = 1, set X; to be the centroid of
all training points, and set D to be the total squared
distortion incurred by substituting X; for each training
point. Initialize a partition of £ to consist of a single cell
that includes all training points.

2. If the desired M has been reached, or if all cells have
population less than f3, then stop. Otherwise, increase
M by splitting every X,,, into two points, one staying in
place and the other shifting by a random offset in each
dimension, where the offset is uniformly distributed be-
tween zero and 6» times the magnitude of X,,. However,
never split X,,,’s whose cells have populations of less than
0s.

3. Using {X,,,}, compute a nearest neighbor partition of L.
4. Recompute {X,,} using this partition.

5. Recompute D, the total squared distortion incurred by
substituting the nearest X for each training vector. If
the {X;,} resulting from Step 4 reduces D by a factor
of more than 0, relative to its previous value, return to
Step 3. Otherwise, return to Step 2.

Suitable values in all applications described here were deter-
mined empirically to be ; = 0.01, §2 = 0.01, and 63 = 10. In
the case of discrete x, a random dither uniformly distributed
on (—A/2,A/2) is added to every element of every train-
ing point prior to clustering, where A is the average spac-
ing between values in the discrete alphabet X (e.g., A =1
for integer-valued pixel data). Adding this dither allows cell
boundaries to migrate more smoothly by preventing multiple
points from lying on top of one another.



The number of kernels M can be chosen in one of the follow-
ing ways. First, if it is determined empirically that choosing
M larger than a certain value results in no improvement in
performance, then this value can be taken as M. If no such
limiting value is found, then M can be chosen on the basis
of the available computation resources, or alternatively, it can
be chosen to minimize the overall description length of the
model and data, i.e., application of the minimum-description
length principle[17]. Finally, M can be determined indirectly
by the size of the learning sample — eventually, the LBG al-
gorithm will stop creating new clusters on account of low cell
populations.

2.2 Optimizing the model parameters via
the EM algorithm

An alternative to the method of estimating the weights and
kernel parameters described above is to use the expectation-
maximization (EM) algorithm [18, 6]. This algorithm results
in a local maximum of the model likelihood, which for large
training samples approximates a local minimum of the relative
entropy D(pl[7).

The EM algorithm is closely related to the k-means algo-
rithm; in fact it is a “soft” version of it, as will be clear from its
description below. However, it is much more computationally
expensive than k-means, and is highly sensitive to the initial
guess for the parameters being estimated. For these reasons,
it is suggested that the EM algorithm be used only to refine
the parameter values obtained by the method described pre-
viously, rather than to obtain them from scratch.

Preliminary experiments have shown that the performance
advantage of optimizing via the EM algorithm can be substan-
tial (about 0.3 bits per pixel improvement in lossless compres-
sion of several natural images, using M = 64 and d = 3).
Moreover, use of the EM algorithm obviates the parameter
in (2.2).

The EM algorithm consists of two steps, the “expectation”
step (E-step) and the “maximization” step (M-step). These
are iterated until the rate of improvement of the likelihood
falls below a specified convergence threshold.

The E-step involves a soft-assignment of the training points
to clusters, where the strength of assignment of training point
X, to cluster m is given by

Wm H?:l km,i(Xn,i)
EZ’:l Wm! Hf:l Ko i (Xnsi)

The M-step then updates the values of {wn}, {62}, and
{fim,i }, using update rules which can be regarded as weighted

Pn,m =

versions of the wusual maximum-likelihood estimators:
N
: SN o X
Pm,i = —=N
En:l Pn,m
N . 2
o Doy Prm( X — fim,i)
Om,i = N
Zn:l Pn,m

ZL Prm

EZ’:I Zrljzl p"’ml

Note that if pp,, is replaced by a hard, nearest-neighbor
membership assignment, i.e., if we set p, ., = 1 if m is the
closest cluster to X,, and pn,,m» = 0 otherwise, then the EM
algorithm becomes the k-means algorithm.

The main difficulty we have encountered in applying the EM
algorithm is its time-complexity for large models. The high
complexity comes about because in EM, each training point

effectively “belongs” to every cluster, whereas in k-means,
each training point belongs to only one cluster. The time-
complexity of EM, assuming a direct implementation of the
steps given above, is O(dM N), while that of k-means is only
O(dN). Though some computational savings is possible by
eliminating terms that are multiplied by negligible p . ’s, the
cost is still much higher than that of k-means. It may not
be feasible to apply it to the large (e.g., M = 1024) cluster-
based models considered in this paper. More investigation is
required to assess and reduce the computational complexity
of EM optimization for very large cluster-based models.

2.3 Componentwise separability

The restriction to separable kernels might seem to be unnec-
essary and even harmful to accuracy, but the situation is not
as clear as it appears. There are at least three good reasons
for imposing the restriction.

First, what appears to be greater approximation efficiency
in the nonseparable case comes at the price of increased model
complexity, since the entire covariance matrix (d(d +1)/2 de-
grees of freedom) must be stored for each cluster, instead of
just d variances.

Second, the estimation problem is more difficult when non-
separable kernels are used. The entire covariance matrix, in-
stead of just the dimension variances, must be estimated from
the within-cell training data. The quality of the estimates is
likely to be more sensitive to low cell populations (which occur
frequently in practice), since a greater number of parameters
must be computed from the same amount of data. The sensi-
tivity to low populations may be alleviated somewhat by using
the EM algorithm to optimize the parameters obtained by k-
means, but the time-complexity of EM, which in this case
is O(d? M N), makes this impractical for large models (e.g.,
M =1024).

Finally, the use of separable kernels greatly simplifies com-
putation when the estimate is evaluated, as described in the
following section.

2.4 Computation

In a huge variety of image processing applications, including
all of those considered in this paper, what is needed is the
one-dimensional PDF or PMF of a pixel, conditioned on a set
of neighborhood pixels. This can be obtained directly from
the estimated vector probability law using (1.3). The compo-
nentwise separability of the cluster-based estimate simplifies
the computation, by allowing the conditional PDF or PMF to
be written as a weighted sum of the one-dimensional kernels
km,qa. In particular, the conditional PDF is

M
fo ($d|X1, Ceey Xd_1) = Z kam,d(md)a (24)
m=1
where the factors {r,} are given by
Tm X Winkm,1(X1)km,2(X2) -+ km,a—1(Xa—1), (2.5)

normalized such that Em rm = 1. The discrete case is the
same. The normalization of r,, can be distributed over the
d — 1 conditioning dimensions by growing (2.5) as a sequence
of partial products and renormalizing after each dimension is
multiplied into it. Alternatively, the product can be formed
by summing in the logarithm domain, then normalized in two
steps: first by shifting the accumulated logarithm to a range
that avoids underflow, then exponentiating and renormalizing
to sum to one. Both strategies rely on the product structure
of 7, which derives from the componentwise separability of
the kernels.

For a given conditioning set Xi,...,X4-1, not all of the
kernels will contribute significantly to the conditional distri-
bution — i.e., some of the r,,’s will be negligible. This makes



possible savings in computation by omitting the insignificant
kernels. The difficulty lies in knowing which kernels to omit
without actually computing them. One method is to weed out
insignificant kernels as the product (2.5) is grown, by delet-
ing those rp, for which k., ;(X;) is smaller than some suitable
threshold (determined empirically).

In a previous paper [19] it was suggested that the discretized
kernels k,, ; be precomputed to further speed execution time.
This is appropriate when the need to save execution time far
outweighs the need to save memory. However, if the compu-
tation of ry, is carried out in the logarithm domain, then the
execution-time savings achieved by precomputing {In &y, ;} is
negligible, so that the memory advantage of computing-as-
needed may take precedence. This is particularly true in ap-
plications where multiple cluster-based probability models are
to be used.

2.5 Example

We illustrate the cluster-based estimation technique with a
simple two-dimensional example. Real applications are con-
sidered in Sections 3-5.

A learning sample consisting of N = 19,700 vectors was
extracted by sliding neighborhood N7 (see Figure 1) over a
150 x 150 patch of the aluminum wire texture D1 (see Fig-
ure 10). The logarithm of the resulting histogram is shown as
a density plot in Figure 2 (a). Notice the speckling through-
out, even in the relatively dark (high-probability) areas. This
is indicative of the high pointwise variance that arises as a
result of the empty-space phenomenon.

Figure 2 (b) and (c) illustrate the cluster-based modeling
approach, using M = 8. In (b), centroids resulting from the
clustering procedure of Section 2.1 are shown with the induced
nearest-neighbor partition. Equiprobability ellipses for the
corresponding kernels are shown in (c), each marked with its
weight w, .

The structure of the underlying PMF apparent in the his-
togram has several noteworthy characteristics. The marginal
distribution (common to z; and z2) has a strong mode, and
there is a great deal of correlation. But the correlation is
substantially nonlinear, so that much of it would be left unex-
ploited by linear dimensionality reduction techniques. Also,
parametric techniques are unlikely to succeed because of the
highly irregular shape. It is a broad-tailed distribution for
which we expect kernel estimation to perform poorly when
the number of kernels is restricted, as it must always be in
practice. This point is made in Figure 2 (d), where a ker-
nel estimate was economized by random subsampling of the
learning sample to obtain 128 kernel centers. The tail regions
are poorly represented, as expected.

Figures 2 (e)—(h) show the cluster-based estimates for sev-
eral values of M. The tails are well-represented, and the esti-
mate does not suffer from the speckling that plagues the his-
togram. In other words, the cluster-based probability model
both summarizes and generalizes the training data.

2.6 Asymptotic properties

It is clear from Figure 2 that as M increases, the potential
for the cluster-based model to approximate an arbitrary con-
tinuous probability law improves. This improvement comes
at the cost of increased model complexity. Nevertheless, it
would be satisfying to know that the approximation can be
made as close as desired by choosing a sufficiently large M.
In this section we establish that as M gets indefinitely large,
the cluster-based model converges in probability (N — oco) to
the true probability law, in both the discrete and continuous
cases.

Let the diameter of the smallest d-sphere that covers cell U
be denoted Diam(U). For a given partition I, define Diam (U/)

as
Diam () = sup Diam(U). (2.6)
veu
Let {U/;}72; be a sequence of partitions such that, for every
€ > 0, there exists a j' such that Diam(l{;) < e whenever
i>q.
Associated~with each partition U; is a cluster-based proba-
bility model fc,]‘.
Let V C X% be a measurable set, and define the e-skin S.
as
S.={X:||X-Xg||<e VXpE€ B}, (2.7)

where B is the boundary of V. It is assumed that B is smooth
in the sense that

Volume {S.} — 0 as e —+ 0. (2.8)

Let U; B be the union of those cells in I/; that intersect B.
Also, let Uj,1 be the union of the cells in /; that lie completely
within V. Thus, U; g N U1 =0, Vj.

lim Prob {

N— o0

/ [£(X) — fos (X)] dX

Proposition 1. For every § > 0, there exists a j' for which
whenever j > j'.

> 6} =0

A proof is given in Appendix A.

The smoothness restriction (2.8) on the boundary of V is
not burdensome, since the sets that are of interest in most
applications have boundaries that are decided by some sort of
distance-based criterion, and such boundaries are smooth.

A remaining complication is that the LBG algorithm does
not, in general, lead to sequences of partitions with the needed
property of decreasing maximum cell diameter. The problem
is that regions of zero probability are never populated in the
learning sample; hence these regions can never be split. Nev-
ertheless, it is clear that any region of nonzero probability
will always be populated in a sufficiently large learning sam-
ple, and will therefore eventually be split. Hence, when the
LBG algorithm is used to obtain the sequence of partitions,
the asymptotic analysis holds on all regions of X¢ that have
nonzero probability.

We now consider asymptotic behavior in the discrete case.
We argue that as Diam(l{;) — 0, the discrete cluster-based
probability model degenerates into the histogram, and there-
fore inherits all of its asymptotic properties. First note that
as N — oo, every element of X% that has nonzero proba-
bility will be represented. Now suppose that, for a given j,
one or more of the cells in Uf; contains more than a single
point in X%, Then at least one of these must be split in a
finer partition, so that in the limiting case, every cell con-
tains exactly one point X € X<, This implies that each cell
has zero variance, so that, informally, the kernels are “im-
pulses” of height N(X)/N, which is precisely the definition of
the histogram. As mentioned in Section 1.2, the histogram is
the maximum-likelihood estimate, so that it is asymptotically
unbiased and consistent. Hence, the discrete cluster-based
probability model converges to the true probability law as re-
quired.

It is interesting to contrast the manner in which the his-
togram, the kernel estimate, and the cluster-based probability
estimate construct the probability surface in high-probability
regions. The kernel estimate requires that a large number of
learning examples be situated in a small region, so that the
kernel function can effectively blur them into a single mode.
This is wasteful of storage in the sense that many different mi-
croscopic configurations lead to the same blurred macroscopic
mode, yet the specific configuration must be stored exactly. In
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Figure 2: (a) The logarithm of the histogram is shown as a density plot. (b) Centroids and partition, and gc) kernel ellipses,

for the cluster-based probability model with M = 8. (d) Log density plot of a Gaussian kernel estimate (o

= 30) using 128

points randomly selected from the training set as the kernel locations. Note that the kernel approach does not represent the
tail regions well. Log density plots (e)—(h) correspond to cluster-based probability models with increasing M (y = 2.0).

its favor, the kernel estimate has the advantage of data-driven
adaptation to local variations in density of the learning sam-
ple. At the other extreme is the histogram, which represents
the probability surface as a single number for every cell in a
partition. The precise configuration of the learning examples
within each cell is forgotten, giving the technique the poten-
tial for storage efficiency. The disadvantage is that constant
probability is assigned over entire cells, even when the train-
ing vectors happen to lie in some limited (possibly remote)
part of a cell. The cluster-based probability model combines
desirable properties of both approaches: it uses a single kernel
which may be centered anywhere in the cell, and uses cell pop-
ulation instead of the precise configuration of training points
to establish the height of the probability surface.

The remainder of this paper considers some applications
of the cluster-based probability estimate. Since all of these
applications involve working with discrete pixels intensities,
the PMF formulation is used rather than the PDF.

3 Image restoration

Suppose an image has been degraded in an unknown way, or
else in a way that is so difficult to describe mathematically
that direct inversion of the degradation process is infeasible.
We wish to recover an estimate of the original from this de-
graded version — how can this be accomplished?

Regardless of the difficulty in describing the degradation,
the technique illustrated in Figure 3 can be used. First, a
learning sample is formed by extracting a vector for every
pixel location, using a neighborhood which need not be causal.
Only one training pair is shown in the figure, but it should
be understood that a large number of such pairs make up the
training set, and that the test image to be restored is excluded
from that set. After the learning sample has been obtained, a
cluster-based PMF is trained on it. The choice of M can be
made in one of the ways described at the end of Section 2.1; in
our experiments, we obtained acceptable results using values
of M ranging from 128 to 2048.

After the cluster-based estimate has been obtained, it can
be used to restore a previously unseen degraded image, in the
following way. For a given pixel location, let X1,..., Xq_1 de-
note the values of the degraded neighborhood pixels, and let
x4 be the unknown original pixel value. The value of z4 is then
chosen which best explains the occurrence of Xi,...,X -1
with respect to some appropriate criterion. Common criteria
are maximum-likelihood (ML), maximum a posteriori proba-
bility (MAP), and least expected squared error (LSE):

ML: Xy = argmaxpo(Xi,..., Xi-1|z4)
Tq
MAP: Xq = argmaxpco(zalX1,...,Xq-1)
Tq
LSE: Xd = Eﬁc(l‘d|X1,... ,Xd_1)

where the right-hand side in the LSE formula is the conditional
expectation with respect to the model. All of these criteria
can be used with the cluster-based probability model.

3.1 Restoration experiments

Figure 4 shows the result of cluster-based MAP restoration
in an example where a 128 x 128 8-bit image (a) is degraded
by additive white Gaussian noise with a variance of 100 (b).
The result of nonadaptive, separable eleven-tap Wiener filter-
ing is shown in (c).® For the cluster-based probability model,
the square 3 x 3 neighborhood (d = 9+ 1 = 10) of Figure 3
was used, with M = 1024. The training set for this example,
shown in Figure 9, consisted of twenty-five natural images to-
gether with their degraded versions. The restored image (d)
exhibits significant noise reduction while maintaining reason-
able sharpness. The improvement in signal-to-noise ratio is
3.01 dB.

To get an idea of the effect of the cluster-based MAP tech-
nique on objective image quality, the experiment was repeated

3The filter length was chosen to give the best result
perceptually.
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Figure 3: In the training phase (left), training data vectors x are formed by appending an original pixel to the corresponding
degraded neighborhood pixels. In the restoration phase (right), the final component of the vector is unknown; its value is
estimated by maximizing its PMF conditioned on the degraded pixels.

(©)

Figure 4: Image restoration example (see text). (a) original image; (b) degraded; (c) Wiener filtered (d) restored using cluster-

based model.

by alternately using each of the training images as the test
image. For every test image, the cluster-based estimate was
retrained using a training set that excluded that test image.
This prevented overtraining, which would have lead to unreal-
istically optimistic performance estimates. In each case, there
was an improvement in root-mean-square noise level ranging
between 3 and 5 dB. Similar improvement resulted when the
conditional expectation (LSE) was used instead of the MAP
estimate. The ML estimate is usually used when no prior dis-
tribution is available for the quantity being estimated, i.e., x4
is treated as a deterministic but unknown parameter. Since a
prior is available for z4 in the cluster-based probability model,
the ML estimate was not implemented.

Because cluster-based restoration requires only weak as-
sumptions about the statistics of the degradation (station-
arity and locality of spatial dependence), it is flexible and
can accommodate high-order, nonlinear statistical interac-
tions that might be present in the degradations. For this
reason, it is expected to perform well in restoration problems
where the degradation process is spatially local but highly
nonlinear and/or difficult to express mathematically. Exam-
ples of restoration problems that fit this description are de-
halftoning, film grain reduction, and compensating the effects
of quantization in lossy compression schemes.

3.2 Relationship to nonlinear interpolation

Cluster-based restoration is similar in spirit to a VQ-based
nonlinear interpolation technique proposed by Gersho [20].
Both approaches have the potential to learn nonlinear statisti-

cal relationships from training data and to use those relation-
ships to {ill in missing values. However, the techniques differ in
one important respect. In the cluster-based technique, several
kernels interact to determine the restored value, instead of the
value being determined by a single codebook entry. Thus, re-
stored values are not limited to only those appearing explicitly
in a codebook; instead, they are synthesized from the model
and the available conditioning information.

4 Lossless compression

Most of the published research in image compression deals
with lossy compression: the image that is reconstructed from
the compressed representation approximates the original; it is
not required to be identical to it. Such techniques routinely
achieve compression ratios of 10:1 or more, with little or no
noticeable distortion.

On the other hand, lossless (strictly reversible) compres-
sion techniques typically yield compression ratios no better
than 2:1 on natural images [21, 22]. This comparatively poor
performance is a consequence of the requirement that the re-
constructed image be bit-for-bit identical to the original. An
upper bound on the compression ratio that can be achieved
comes from noise that is inevitably introduced in the acqui-
sition process. However, in practice it is not just noise, but
also any noiselike phenomena that contributes inordinately to
bit rate. Often, the regions which appear noiselike are tex-
tured regions. In this section we consider losslessly compress-
ing both natural scenes (which include textured regions) and
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Figure 5: (a) Performance of lossless compression system depends on probabilistic model. (b) Dependence of bit rate on M for

lossless compression of two images: lenna and D1.

pure textures.

Despite their low compression ratios, lossless techniques are
required in certain applications. For example, in image and
video processing research, the original reference images and
video sequences must be intact if the research conclusions are
to be valid. Some image data, such as satellite imagery, may
have been obtained at great expense, and the risk of losing
expensive information which might later be required for some
unforeseen purpose precludes any archiving scheme based on
lossy compression. Another often-cited application for lossless
coding is the archiving of digital radiology and other medical
images, where ethical and legal considerations make the use
of lossy techniques questionable.

But the main reason for considering lossless compression
here is that lossless compression is ultimately a modeling prob-
lem. Shannon established that an optimal lossless compression
system uses — log, p(X) bits to encode the message element X,
where p(X) is the probability of X. (For economy of notation,
the conditioning is not explicitly mentioned, but it should be
understood that p is conditioned on whatever is both relevant
and available at both the encoder and decoder). The optimal
average bit rate is thus

H(z) == p(X)log, p(X),

XeXx

which is the entropy of x. If instead of the true probability,
an estimate p is used to construct a code, then the average bit
rate R is
Ry = — Y p(X)log,p(X)
Xexd
= H(z)+ D(pllp), (4.1)

where D(p||p) is the relative entropy defined by expression
(1.4). It is easy to verify that D(p||p) > 0, with equality if
and only if p(X) = p(X) for all X. Thus, the goal of designing
a lossless compression is exactly the same as that of estimating
p.

The above assumes an optimal code. It is natural to ques-
tion whether codes that are achievable in practice also perform
best when p = p. As will be discussed in the following section,
arithmetic coding is a practical technique for lossless compres-
sion that very nearly achieves Shannon’s optimal code length
assignment [23], so that the above analysis pertains to practice
as well as theory.

4.1 Lossless compression with arithmetic
coding

Arithmetic coding is a form of entropy coding that offers sig-
nificant advantages over other methods in many applications

TABLE I: Estimated Bits per Pixel (M = 2048)

Image No N3 Ny N
cman 5.50 4.81 4.77 4.79
lenna 5.11 4.53 4.38 4.41
D1 4.83 4.40 4.24 4.14
D77 6.08 6.04 5.46 5.30

[23, 24, 25, 26]. It has near-optimal efficiency (relative to

the assumed probability law) for a broad class of sources and
over a wide range of coding rates. It is also inherently adap-
tive, and simplifies the encoding of large-alphabet low-entropy
sources. Most importantly, it allows the probabilistic model to
be specified explicitly and separately from the actual encoder.

The first use of arithmetic coding as an image compression
technique was by Langdon and Rissanen [27]. In their system,
which was for binary images, each pixel was encoded using a
PMF conditioned on a nearby set of previously encoded pixels,
i.e., on a causal neighborhood. Since the input was binary,
the number of conditioning states remained manageable even
for large neighborhoods, so that a histogram PMF estimate
was feasible. For example, ten conditioning pixels means only
1,024 conditioning states.

Extending the Langdon-Rissanen scheme to handle
grayscale images is greatly complicated by the empty space
phenomenon. For example, in the case of eight-bit pixels, a
ten-pixel conditioning neighborhood implies 28° conditioning
states, most of which will never be observed in a reasonably
sized training sample. Moreover, in the grayscale case, we
have good reason to believe that the underlying probability
law is smooth, but the histogram PMF estimate makes no use
of this prior knowledge.

We substitute the cluster-based probability estimate for the
histogram estimate in the Langdon-Rissanen scheme, thereby
extending it to handle grayscale images. The system is shown
in Figure 5 (a). Pixels are arithmetically encoded in raster
order. As in the Langdon-Rissanen scheme, the PMF used
for each pixel is conditioned on a set of previously-encoded
pixels, so that the decoder has access to the same conditioning
information that the encoder had.*

4.2 Compression experiments

Using neighborhoods N>-A5 shown in Figure 1, cluster-based
probability models were trained on the set of 25 natural im-
ages shown in Figure 9. These PMF estimates were then used

“At the top and left boundaries, unavailable conditioning
pixels are arbitrarily set to 128; the resulting local inefficiency
has little effect on the overall bit rate.



in an arithmetic coding system to compress two natural im-
ages not in the training set: cman and lenna. The resulting
estimated bit rates for M = 2048 are shown in the first two
rows of Table 4. The rates are based on the assumption that
16-bit arithmetic is used in the encoder and decoder. Next,
the experiment was repeated using two natural textures: D1
(aluminum wire mesh) and D77 (cotton canvas), but using
a 352 x 352 portion of each texture for training and a dis-
joint 128 x 128 portion for testing. The textures are shown in
Figure 10.

The performance listed in the first two rows of the table
compares favorably with that reported in the literature for
natural scenes [21, 22]. The compression performance for the
two textures is more difficult to interpret, since no previous
results seem to have been published. One could argue that
the textures, having fewer blank regions, are more difficult to
compress than natural scenes. But this difficulty is offset by
their relative homogeneity, which should allow a single model
to work well over the entire texture.

The dependence of bit rate on M (the number of kernels) is
shown graphically for the lenna and DI test images in Figure 5
(b), for each of the neighborhoods N> and N5. For both test
images, the N> curve reaches a limit at about M = 256, while
N5 curve continues to improve as M increases to 2048.

4.3 Comparing PMF estimates

How good is an estimate p in terms of relative entropy? It is
difficult to estimate D(p||p) in (4.1) directly from a sample of
limited size, since the true p remains at all times unknown.
However, if p; and p» are two competing estimates of p, then
their difference in relative entropy

D(pllp1) — D(pl|p2) = Rp, — Ry,

is easily and reliably estimated from a moderate-size sample
by subtracting the sample average of —logp2(z) from that
of —logpi(z). These sample averages are just the average
bit rates produced by arithmetic coders based on pi(z) and
p2(z). The comparison can be carried out for more than two
estimates in a similar way, since the unknown entropy term is
common to all of them. Thus, practical lossless compression
serves as a fair test of the relative accuracy or predictive power
of a model with respect to the relative entropy measure; it is
a level playing field upon which competing models can battle.
Whichever model produces the fewest bits, wins. The test is
decisive even when the sample sizes are small. As will be seen
in the next section, this type of competition can be used as
the basis for classification.

5 Texture classification

Classification is an activity humans carry out constantly, to
make sense of the world we perceive around us. We recognize
similarities and differences among sensory stimuli, and group
objects accordingly. The specific similarity metrics we employ
seem extraordinarily complex, but one thing about them is
certain: they are usually high-dimensional, and involve the
integration of diverse elements of knowledge, some high-level
and some primitive, some conscious and some at the level of
intuition.

Much simpler is the situation in which a machine is to
classify objects on the basis of objectively measured features
and with respect to some clearly stated criterion (possibly
Bayesian). We will see an example shortly involving textures
where the result of such classification matches closely what
seems subjectively reasonable.

For simplicity and concreteness, we consider the case in
which the prior probabilities of the classes are equal, and
where the goal is to minimize the overall probability of classi-
fication error. In this case, the Bayes decision rule reduces to

the familiar ML rule, which is to choose the class which makes
the observed data most likely [7].

ML classification can be applied in many different ways.
For instance, if it were known beforehand that a particular
patch in an image consists of a single texture class, then the
model with the greatest likelihood could be chosen.

More typical is the situation where we are not assured that
the entire patch came from a single class; indeed, the task is
frequently to determine the boundaries between classes in an
image that is assumed to be heterogeneous (e.g., image seg-
mentation). In this case, the classification decision should be
more or less independent for each pixel. This can be accom-
plished by centering a neighborhood (not necessarily causal)
at each pixel location, and choosing for that pixel the class
whose modeled conditional probability is greatest. The re-
sulting classification will of course appear “noisy,” since each
decision is based on only one neighborhood observation. An
alternative is to assume limited spatial homogeneity, and to
choose a class that maximizes “local” likelihood, appropri-
ately defined. This idea will be made more precise shortly.

Another way around the single-observed-neighborhood
problem is to use several different models for each class, each
conditioned on a different neighborhood around the current
pixel. It is natural to choose these neighborhoods to be at
different scales, resulting in a multiresolution system. The
following heuristic can then be invoked: To be assigned to a
certain class, a pizel must have high conditional likelihood si-
multaneously with respect to several different neighborhoods.
This idea has recently been generalized as an independent
method of attack on the curse of dimensionality in density
estimation [28].

Consider now the problem of classifying regions in hetero-
geneous images. Suppose that there are J classes, and that
vectors drawn from class j follow PMF p;(x). Associated with
each class is a cluster-based probability model p;(x), trained
previously. Let & = {X{,Xa>,...,Xn} be a sample drawn
from an unknown class which we wish to identify. If we assume
for now that the vectors in § are independent, the likelihood
function for class j is simply

p; (X1)p;(X2) - pi(Xn)- (5.1)

After taking the logarithm, we obtain the decision rule:

N
Choose j for which Y logp;(Xnr) is maximized. (5.2)

n=1

To evaluate each log p; (Xy), the technique described in Sec-
tion 2.4 can be used.

Typically, the vectors are formed at each pixel location us-
ing a neighborhood like NVs. Formed in this way, vectors corre-
sponding to adjacent pixels are not independent, so that (5.1)
is not strictly justified. The resulting decision rule does not
take advantage of the statistical dependence among vectors.
However, one can argue that if the dependence among vectors
is similar for all classes, ignoring it for all classes results in a
useful decision rule.

It is worthwhile noting that the summation in (5.2), after
dividing by N, equals the average bit rate of an ideal entropy
coder fed by model p;. Consequently, the decision rule can
in principle be implemented using the structure shown in Fig-
ure 7. Of course in practice, real entropy coders need not be
used, since only the rates and not the actual code bits are
needed.

The possibility of realizing the decision rule in this way
illustrates a connection between data compression and classi-
fication. This connection seems especially important with the
growth of large libraries of image data, where one will want
to search and make decisions on compressed data [29]. Recent



Figure 6: Four-class example of texture classification using the cluster-based model. From left to right, the images are: the
original composite test image, classification using resolution averaging only, and classification using both resolution and spatial

averaging.

Figure 7: A connection between data compression and classification: the minimum-error-probability rule can be realized using
a bank of ideal entropy coders, each tuned to a different source.

work by Perlmutter et al. indicates that combining these two
tasks can result in improved performance for both [30].

The above assumes that nearby pixels come from the same
class. In practice, when working with heterogeneous images,
it is desirable to impose this assumption in a soft manner.
How can this be accomplished? Thinking of the summation
in (5.2) as a local averaging operation is suggestive of spatial
lowpass filtering. In particular, for each class, the logarithm
of the likelihood is obtained for each pixel location, and the
resulting “image” of log-likelihoods can be spatially lowpass
filtered. The decision rule then assigns to each pixel location
the class with the maximum smoothed log-likelihood function
at that location.

As mentioned earlier, it is also possible to average across
several models, each working at a different spatial resolution.
While spatial averaging reflects the assumption that nearby
pixels are likely to have come from the same class, resolution
averaging imposes the requirement that a candidate match
the sample texture at several scales simultaneously. This is
because averaging logarithms corresponds to taking a product,
which will be small if any of the factors is small. Spatial and
multiresolution averaging are not mutually exclusive; in fact,
our best results employ both.

5.1 Classification example

The cluster-based classification scheme was applied to the
composite test image shown on the left in Figure 6. The image
consists of four Brodatz textures, they are (clockwise from top
left) D68, D55, D77, and D84. For each class, three cluster-
based probability models were trained on data that did not
include the test data. Models were obtained at three different
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resolution scales: one model was trained using neighborhood
N, another using the same neighborhood but with the pixel
location offsets scaled by a factor of 2 around the center, and
a third with the offsets scaled by a factor of 4. Since Ng con-
tains 12 conditioning pixels, the total dimensionality for each
of these models is 13.

To perform the classification, three vectors were formed for
every pixel in the test image, one for each of the three reso-
lutions. For each class and each resolution, the logarithm of
the conditional probability of the center pixel was computed
using the corresponding model. These values were then aver-
aged across resolutions. The classification results are shown
in the middle image of Figure 6. The total classification error
rate is less than five percent. The test was repeated using spa-
tial averaging of the logarithms in addition to the resolution
averaging; the results are shown on the right in Figure 6. A
7-tap separable lowpass filter was used to perform the spatial
averaging. The overall classification error rate in this case is
below one percent.

6 Discussion

The preceding sections described the cluster-based probability
modeling technique, and considered some applications. This
section follows up on some of the issues raised in previous
sections, and suggests topics for further study.

6.1 Preprocessing vs. modeling

In a complex signal processing system, some preprocessing is
usually carried out on the input to make the subsequent prob-
abilistic modeling and processing tasks easier. Image compres-
sion systems, for example, often employ an invertible, energy-



compacting transformation as a first step, resulting in a sig-
nal that is easier than the original to quantize and encode
efficiently.

The problem of improving preprocessing operations has re-
ceived much attention among researchers in various disciplines
over the past several decades. The philosophical direction of
such research effort has been towards more sophisticated pre-
processing, enabling less sophisticated probabilistic models to
be used.

Of interest here is the complementary research direction:
toward more sophisticated models, enabling less sophisticated
preprocessing to be used. Examples of techniques in this direc-
tion are vector quantization (VQ) in the areas of compression
and interpolation [14], and artificial neural networks in the
areas of regression and classification [31]. These techniques
reduce the effect of preprocessing on system performance, by
exploiting nonlinear, higher order statistical relationships that
exist among the signal elements. A striking aspect of these ap-
proaches is that they can function largely as “black boxes” —
one need not understand the information source in order to
process it. This is either good or bad, depending on one’s
objectives. The approach advocated here shares the spirit of
these approaches by capturing whatever statistical relation-
ships exist. It differs from them in that these relationships
are made available as an explicit probability law, which may
then be used for a variety of purposes. Moreover, having the
probability law allows us to build a conceptual bridge between
these “black-box” approaches and classical approaches.

The strategy taken in the experimental parts of this paper
has been to work directly in the untransformed observation
space of pixel neighborhoods. This choice draws attention to
the fact that more powerful modeling makes the initial trans-
formation or feature selection step less critical. Were maxi-
mum performance the main goal, then substantial effort would
be justified in devising suitable transformations for use in tan-
dem with the modeling technique described here.

6.2 Relationship to artificial neural
networks and radial basis functions

It was commented in Section 1 that the proposed technique
differs in philosophy from traditional mixture modeling in that
the goal is to approximate a probability law, not to decom-
pose it into physically significant components. Thus, we can
view the modeling problem as one of function approximation,
where the function to be approximated is the PDF or PMF.
In particular, if the ky,,;’s are chosen appropriately, then (2.3)
amounts to a radial basis function (RBF) approximation to
p(x). One might hope, therefore, the RBF literature would
provide insight into such issues as training, means of imple-
mentation, and bounds on approximation accuracy [32, 33,
34]. This is true to some extent, but two differences are ap-
parent. The first is that values of the function being approxi-
mated (a probability law) are never actually observed; instead
our observations consist only of samples that we believe to be
governed by the function. The second difference is in the rel-
evant approximation criterion, which in the applications of
interest here is the relative entropy (1.4). This criterion is not
a distance metric, since it is asymmetric and does not sat-
isfy the triangle inequality. Consequently, much of the RBF
approximation theory does not apply directly.

The relationship to RBF’s suggests a connection to artifi-
cial neural networks (ANN’s). As mentioned in Section 6.1,
a system using the cluster-based probability model does have
certain elements in common with an ANN. Both are capable of
learning complex, nonlinear relationships from training data,
and exploiting them to perform various information process-
ing tasks. We expect that the applications we are considering
could be handled by an appropriate type of ANN with a com-
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parable level of performance. However, there is nothing inher-
ently “neural” about the cluster-based probability model, and
it is not connected to any specific class of hardware topology.

If we compare the cluster-based model with a classical ANN
like a multilayer perceptron, another distinction emerges. The
set of weights in the perceptron, which completely determines
its function, has no obvious interpretation outside the net-
work. For instance, the set of weights cannot be used by some
other perceptron to perform a different task. In contrast, the
method of this paper provides an explicit probabilistic model
for the source, which can be used equally well in a variety of
applications like compression, restoration, and classification.
In principle, this distinction vanishes when the goal of the
ANN is specifically to estimate the PMF[35], rather than to
carry out the ultimate information processing task. In this
case, the approaches may be accomplishing the same thing in
different ways.

Viewing the cluster-based model as an artificial neural net-
work might prove to be useful when it is desired to adapt the
kernels as data are being processed, as opposed to the cur-
rent technique in which the kernels are fixed after an initial
training phase. Also, techniques used in pruning insignificant
nodes in ANN’s might prove useful in eliminating insignificant
kernels during computation. To understand the connection to
neural networks more fully requires study beyond the scope
of this paper.

6.3 Hierarchies of cluster-based models

When cluster-based models are defined directly on pixel neigh-
borhoods, a large number of the clusters are inevitably allo-
cated along the main diagonal of the probability space. This
is a consequence of the high positive correlation of spatially
adjacent pixels in natural images and textures. This is one
reason for working with some other features besides pixels,
where the high correlation is absent. However, this type of
commonality in the kernel distributions among models is sug-
gestive of a plan for organizing a large collection of models
in such a way that they can easily share common attributes
when appropriate. In particular, a tree structure can be used.
Kernels that are common to all of the models can be stored at
the root of the tree. The leaves of the tree would correspond
to the individual models, and the path from the root to each
leaf would specify which kernels would have to be added to
result in the corresponding model. Such hierarchies of models
can be expected to play a substantial role when the cluster-
based technique is applied to large, real-world classification
problems, as occur in digital libraries.

An interesting alternative means of sharing common at-
tributes among several models has been suggested recently by
Pudil et al. [36], in a classification setting. The approach is
to posit a common “background” density for all of the classes,
and to express each class-conditional density as a mixture of
products of this background density with a class-specific mod-
ulating function. Expressing the density in this way simplifies
the sharing of common attributes, and provides a basis for
feature selection: choose the features that provide maximum
deviation from the background. The classification results re-
ported in [36] are for small mixtures (2, 3, and 4 components).
In applications when the goal is to characterize the precise
shape of the density, not just that portion which provides dis-
criminatory power, much larger mixtures may be necessary.

7 Conclusions

A multidimensional probability model, based on cluster analy-
sis, has been presented, analyzed, and applied to certain prob-
lems in image and texture processing. The model combines
the summarizing ability of a histogram with the generalizing



ability of kernel estimation, while avoiding some of the draw-
backs of each. In particular, it avoids the empty-bin problem
associated with high-dimensional histograms, and it performs
better in tail regions than a traditional kernel estimate of the
same complexity.

It was shown that under reasonable conditions, the estimate
converges asymptotically to the true probability law as its
complexity is allowed to increase arbitrarily. In practice, the
model was shown to be successful in applications requiring the
estimation of a joint PMF with up to 13 variables.

Applied to image restoration, the model was used to learn
complex degradations that cannot be expressed easily in math-
ematical form. Lossless compression provided a fair test of the
accuracy of the model; for natural images the results were
competitive with methods designed specifically for lossless
compression. In texture classification, several cluster-based
models were used effectively in a standard Bayesian frame-
work. Performance was also shown to improve when within-
class averaging of log-likelihoods was carried out both spatially
and across scales.

By capturing the high-order, nonlinear relationships that
exist among features, and by providing an explicit estimate
of the governing probability law, the model is able to extend
the performance of otherwise traditional systems that rely on
probabilistic models. The practical value of the cluster-based
probability model was demonstrated by its effectiveness in the
following applications: image restoration, lossless image and
texture compression, and texture classification.
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A Proof of Proposition 1

We consider the case where the kernels have finite support.
The infinite-support case is more involved and is not consid-
ered here.

Since U;,;;r CV C (U;,1 UUj,B),

/ FX)X < / F(X)dx
Uj‘I \%
< / F(X)dX + / F(X)dX
Ujr U; B
(A1)
and
/ fo (X)X < / fos (X)X
Ui v
< / foy (X)dX + / fes (X)dX
Uj 1 U;, B
(A.2)
Expressions (A.1) and (A.2) can be combined to yield
vo(< / F) — fos(X)aX < v4€  (A3)
\%
where
v = / [F(X) — ooy ()X,
Uj‘I
¢ = / fes (X)dX,
Uj‘B
and
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¢ = / - rxax

Let N(Uj,r) and N(Uj g) denote the number of training
samples that lie in U;;r and Uj; p respectively. Choose v suf-
ficiently small so that the all kernels are strictly contained in
their respective cells. This is possible because of the finite-
support hypothesis. Under this condition, the integral of the
cluster-based probability model over the m®® cell is simply the
weight w,, of that cell, so that

/ fo;(X)dX = N(Uj,1)/N
Uj 1
= Prob{X € U; 1} =/ FX)dX  (A4)

and

/ o (X)X = N(Uy )N
L Prob{X €U, 5} = / F(X)dX, (A.5)
Uj,B

where the arrows with the P’s above them signify convergence
in probability (as N — co0) by the weak law of large numbers.
We can rewrite (A.4) and (A.5) as

P
¢—¢

Vi>0 and

Combining (A.3) and (A.6) gives

(A.6)

>e} o,

where we have used the definition of convergence in proba-
bility, and, in simplifying the left-hand side of (A.3), the fact
that if @ —» a’ and b — b', then (a +b) — (a’ +b').

All that remains is to show that £ < §. To this end, choose
e sufficiently small so that

N— o0

lim Prob {

/ [£(X) = fos (X)] dX

/ F(X)dX < 4. (A7)
Se

This is possible because of condition (2.8) and the bounded-
ness of f. Let j' be such that Diam(l{;) < € whenever j > j'.
It follows that U; g C Se, so that

€= /Uj’B F(X)dX < /S fxyax <o 1 (A.8)

Notice the crucial role played by {wm }, the normalized cell
populations. If these weights were absent, then convergence of
the estimate would be contingent on whether the distribution
of the kernel centers is the same as the distribution being
modeled. Defining the weights in this way makes the estimate
asymptotically insensitive to the precise choice of partition.

B The parameter vy

The spread parameter v in (2.2) is necessary because the sam-
ple variance tends to underestimate the value required to al-
low the Gaussian kernels to add up to a uniform density in
regions where the density is in fact uniform. Without v > 1,
the resulting density estimate would be too high at the kernel
centers and too low at the cell boundaries.

This phenomenon is most easily illustrated in one dimen-
sion. Suppose that the true density f is uniform on [—a,a] C
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Figure 8: Ratio of estimated cell-center to cell-edge density
for a uniform distribution in one dimension, as a function of
the global spread parameter +, for large M.

R. Assume that a partition is obtained by dividing [—a, a]
into M equal-sized cells. The within-cell variance is then
a®/(3M?). Suppose that kernels of the form (2.2) are cen-
tered at every cell. For the innermost cell, we can examine
the ratio of f evaluated at the center of this cell (X = 0) to
its value at the right boundary (X = a/M). Call this ratio
R(v). Since the true distribution is uniform, we desire that
R(v) be unity, at least when M is large. Assuming M is odd,
the ratio is given by

R(v) fe(0)/ fe(a/M)

(M—-1)/2

2 2

1+2 Z e O/
m=1

(M-1)/2
e—3M2/v% 4 9 Z 6*3(2”1*1)2/272
m=1

, (B)

which is plotted in the limit as M — oo in Figure 8. The
figure shows that if v+ = 1 (corresponding to leaving 7 out
altogether), then the center-to-edge probability ratio is 2.25,
implying that f is strongly nonuniform. As + increases, the
ratio approaches the desired value of unity as a limit. But
using an excessively large value for v reduces the ability of
the estimate to adapt to local variations in regions where the
true density is nonuniform. The best choice for v depends
on both the true distribution and on the particular partition
U. In practice, a good choice can be determined empirically
by trying several values, then selecting the one that results
in the best performance in the given application. Often this
corresponds to choosing the value of v which maximizes the
likelihood of the given data. In obtaining the experimental
results presented in Sections 3-5, the best values found for ~
ranged between 1.1 and 1.5. It should be noted that the use of
a single, global variance multiplier « is suboptimal; it would
be better (though computationally more expensive) to opti-
mize all of the variances (and all of the means, for that mat-
ter) by some optimization technique such as the expectation-
maximization (EM) algorithm, as discussed in Section 2.2.
However, for large M, (e.g., M = 1,024), the computational
cost of EM appears to be prohibitive, so that the device of
introducing the spread parameter 7 is a reasonable recourse.
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