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Abstract

We present a new technique for estimating the
projective (homographic) coordinate transforma-
tion between pairs of images, taken with a cam-
era that is free to pan, tilt, rotate about its
optical axis, and zoom. The technique solves
the problem for two cases of static scenes: im-
ages taken from the same location of an arbi-
trary 3-D scene, or images taken from arbitrary
locations of a flat scene. A new algorithm is
presented for the parameter estimation and ap-
plied to the task of constructing high resolution
still images from video. This approach general-
izes inter-frame camera motion estimation meth-
ods which have previously used an affine model
and/or which have relied upon finding points of
correspondence between the image frames. The
new projective algorithm which operates directly
on the image pixels is shown to be superior in
accuracy and ability to enhance resolution. The
proposed method works well on image data col-
lected from both good-quality and poor-quality
video under a wide variety of conditions (sunny,
cloudy, day, night). This new fully-automatic
technique is also shown to be robust to devia-
tions from the assumptions of static scene and
no parallax.

1 Introduction

Many problems require finding the coordinate transfor-
mation between two images of the same scene or ob-
ject. Whether to recover camera motion between video
frames, to stabilize video images, to relate or recognize
photographs taken from two different cameras, to compute
depth within a 3-D scene, or to align images for mosaicing
and high-resolution enhancement, it is important to have
both a precise description of the coordinate transforma-
tion between a pair of images or video frames, and some
indication as to its accuracy.

Traditional block matching (e.g. as used in motion esti-
mation) is really a special case of a more general coordinate
transformation. In this paper we demonstrate a new solu-
tion to the motion estimation problem using this more gen-
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eral estimation of a coordinate transformation, and propose
a technique for automatically finding the 8-parameter pro-
jective coordinate transformation that relates two frames
taken of the same static scene. We show, both by the-
ory and example, how the new technique is more accurate
and robust than previous methods which tend to rely on
affine coordinate transformations, approximations to per-
spective, and/or the finding of point correspondences be-
tween the images. The new technique takes as input two
frames, and automatically outputs the eight parameters of
the exact model, to align the frames. It does not require
the tracking or correspondence of explicit features, yet is
computationally practical.

Although the theory we present makes the typical as-
sumptions of static scene and no parallax, we show that
the new estimation technique is robust to deviations from
these assumptions. In particular, we apply the technique to
image resolution enhancement and mosaicing, illustrating
its success on a variety of practical and difficult cases, in-
cluding some that violate the non-parallax and static scene
assumptions.

An example of an image mosaicis shown in Fig 1, where
the spatial extent of the image is increased by panning the
camera while mosaicing (e.g. by making a panorama) and
the spatial resolution is increased by zooming the camera
and by combining overlapping frames from different view-
points.

2 Background

Hundreds of papers have been published on the problems
of motion estimation and frame alignment. (For review
and comparison, see [1].) In this section we review the
basic differences between coordinate transformations and
emphasize the importance of using the “exact” 8-parameter
projective coordinate transformation.

2.1 Coordinate transformations

A coordinate transformation maps the image coordinates,
x = [£,y]" to a new set of coordinates, x' = [¢’,¢']T.
Generally, the approach to “finding the coordinate trans-
formation” relies on assuming it will take one of the forms
in Table 1, and then estimating the two to twelve parame-
ters in the chosen form. An illustration showing the effects
possible with each of these forms is in Fig. 2.



Figure 1: Image mosaic made from three images, one taken looking straight ahead (outlined in a solid line), one taken panning to the left
(outlined in a dashed line), and the third taken panning to the right with substantial zoom-in (outlined in a dot-dash line). The second
two have undergone a coordinate transformation to put them into the same coordinates as the one outlined in a solid line (which we call
the reference frame). This image mosaic, made from NTSC-resolution images, occupies about 2000 pixels across, and, in places shows good
detail down to the pixel level. Note increased sharpness in regions visited by the zooming-in, compared to other areas. (See magnified
portions of the picture at sides.) This figure only shows the result of combining three images, but in the final production, many more images
were used, resulting in a high resolution full-color image showing most of the room.

The most common assumption (especially in motion es-
timation for coding, and optical flow for computer vision)
is that the coordinate transformation between frames is
translation. Tekalp, Ozkan, and Sezan [2] have applied
this assumption to high-resolution image reconstruction.
Although translation is the least constraining and simplest
to implement of the six coordinate transformations in Ta-
ble 1, it is poor at handling large changes due to camera
zoom, rotation, pan and tilt.

Zheng and Chellappa [3] considered a subset of the affine
model — translation, rotation and scale — in image reg-
istration. Other researchers [4][5] have assumed affine mo-
tion (six parameters) between frames. For the assumptions
of static scene and no parallax, the affine model exactly de-
scribes rotation about the optical axis of the camera, zoom
of the camera, and pure shear, which the camera does not
do, except in the limit as the lens focal length approaches
infinity. The affine model cannot capture camera pan and
tilt, and therefore cannot accurately express the “chirp-
ing” and “keystoning” we see in the real world (see Fig. 2).
Consequently, the affine model tries to fit the wrong pa-
rameters to these effects. When the parameter estimation
is not done properly to align the images, then a greater
burden is placed on designing post-processing to enhance
the poorly aligned images.

The 8-parameter projective model gives the exact eight
desired parameters to account for all the possible cam-
era motions. However, its parameters have traditionally
been mathematically and computationally too hard to find.
Consequently, a variety of approximations have been pro-
posed. Before we present our new solution to estimating
the projective parameters, it will be helpful to discuss these
approximate models.

Going from first order (affine), to second order, gives the
12-parameter ‘biquadratic’ model. This model properly
captures both the chirping (change in spatial frequency
with position) and converging lines (keystoning) effects

associated with projective coordinate transformations, al-
though, despite its larger number of parameters, there is
still considerable discrepancy between a projective coor-
dinate transformation and the best-fit biquadratic coordi-
nate transformation. Why stop at 2nd order? Why not
use a 20-parameter ‘bicubic model? While an increase in
the number of model parameters will result in a better fit,
there is a tradeoff, where the model begins to fit noise. The
physical camera model fits exactly in the 8-parameter pro-
jective group; therefore, we know that “eight is enough.”
Hence, it is appealing to find an approximate model with
only eight parameters.

The 8-parameter bilinear model is perhaps the most
widely-used [6] in the fields of image processing, medi-
cal imaging, remote sensing, and computer graphics. This
model is easily obtained from the biquadratic model by re-
moving the four z° and y? terms. Although the resulting
bilinear model captures the effect of converging lines, it
completely fails to capture the effect of chirping.

The 8-parameter pseudo-perspective model [7]) does, in
fact, capture both the converging lines and the chirping of
a projective coordinate transformation. This model may
be thought of as first, removal of two of the quadratic
terms (bfq,/,2 = q,,2 = 0), which results in a ten pa-
rameter model (the ‘q-chirp’ of [8]) and then constraining
the four remaining quadratic parameters to have two de-
grees of freedom. These constraints force the “chirping
effect” (captured by q,s,2 and q,,2) and the “converg-
ing effect” (captured by q,/,, and q,s.,) to work together
in the “right” way to match, as closely as possible, the
effect of a projective coordinate transformation. By set-
ting qa = (142 = Qy’zy, the chirping in the z-direction is
forced to correspond with the converging of parallel lines in
the z-direction (and likewise for the y-direction). There-
fore, of the 8-parameter approximations to the true pro-
jective, we would expect the pseudo-perspective model to
perform the best. Indeed, we have verified this experimen-
tally.
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Table 1: Image coordinate transformations discussed in this paper

Of course, the desired “exact” eight parameters come
from the projective model, but they have been notoriously
difficult to estimate. The parameters for this model have
been solved by Tsai and Huang [9], but their solution as-
sumed that features had been identified in the two frames,
along with their correspondences. In this paper, we present
a simple featureless means of registering images.

Other researchers have looked at projective estimation
in the context of obtaining 3 — D models. Faugeras and
Lustman [10], Shashua and Navab [11], and Sawhney [12]
have considered the problem of estimating the projective
parameters while computing the motion of a rigid planar
patch, as part of a larger problem of finding 3-D motion
and structure using parallax relative to an arbitrary plane
in the scene. Kumar et al. [13] have also suggested reg-
istering frames of video by computing the flow along the
epipolar lines, for which there is also an initial step of cal-
culating the gross camera movement assuming no parallax.
However, these methods have relied on feature correspon-
dences, and were aimed at 3-D scene modeling. Our focus
is not on recovering the 3-D scene model, but on aligning
2-D images of 3-D scenes. Feature correspondences greatly
simplify the problem; however, they also have many prob-
lems which we review below. The focus of this paper is
a simple featureless approach to estimating the projective
coordinate transformation between image frames.

Two similar efforts exist to the new work presented here.
Mann [14], and Szeliski and Coughlan [15] independently
proposed featureless registration and compositing of either
pictures of a nearly flat object, or of pictures taken from
approximately the same location. Both used a 2-D pro-
jective model, and searched over its 8-parameter space to
minimize the mean-square error (or maximize the inner
product) between one frame and a 2-D projective coordi-
nate transformation of the next frame. However, in both
these earlier works the algorithm relies on nonlinear opti-
mization techniques which we are able to avoid with the
new technique presented here.

2.2 Camera motion: common
assumptions and terminology

Two assumptions are typical in this area of research. The
first assumption is that the scene is constant — changes of
scene content and lighting are small between frames. The

second assumption is that of an ideal pinhole camera -
implying unlimited depth of field with everything in focus
(infinite resolution) and implying that straight lines map to
straight lines' . Consequently, the camera has three degrees
of freedom in 2-D space and eight degrees of freedom in 3-
D space: translation (X,Y, Z), zoom (scale in each of the
image coordinates z and y), and rotation (rotation about
the optical axis, pan, and tilt. These two assumptions are
also made in this paper.

In this paper, an “uncalibrated camera” refers to one
in which the principal point® is not necessarily at the cen-
ter (origin) of the image and the scale is not necessarily
isotropic> We assume that the zoom is continually ad-
justable by the camera user, and that we do not know
the zoom setting, or whether it changed between recording
frames of the image sequence. We also assume that each
element in the camera sensor array returns a quantity that
is linearly proportional to the quantity of light received®.
With these assumptions, the exact camera motion that can
be recovered is summarized in Table 2.

2.3 Video orbits

Tsai and Huang [9] pointed out that the elements of the
projective group give the true camera motions with respect
to a planar surface. They explored the group structure as-
sociated with images of a 3-D rigid planar patch, as well
as the associated Lie algebra, although they assume that
the correspondence problem has been solved. The solu-
tion presented in this paper (which does not require prior
solution of correspondence) also relies on projective group
theory. We briefly review the basics of this theory, before
presenting the new solution in the next section.

!When using low cost wide-angle lenses, there is usually
some barrel distortion which we correct using the method
of [16].

2The principal point is where the optical axis intersects
the film.

*Tsotropic means that magnification in the = and y di-
rections is the same. Our assumption facilitates aligning
frames taken from different cameras.

*This condition can be enforced over a wide range
of light intensity levels, by using the Wyckoff princi-
ple [17][18].
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Figure 2: Pictorial effects of the six coordinate transformations of Table 1, arranged left to right by number of parameters. Note that
translation leaves the ORIGINAL house unchanged, except in its location. Most importantly, only the three coordinate transformations
at the right affect the periodicity of the window spacing (e.g. induce the desired “chirping” which corresponds to what we see in the real
world.) Of these, only the PROJECTIVE coordinate transformation preserves straight lines. The 8-parameter PROJECTIVE coordinate

transformation “exactly” describes the possible camera motions.

Scene assumptions

Camera assumptions

Case 1: arbitrary 3-D free to zoom, rotate, pan, and tilt, fixed center of projection
Case 2: planar free to zoom, rotate, pan, and tilt, free to translate
Table 2: The two “no parallax” cases for a static scene.
2.3.1 Projective group in 1-D coordinates

For simplicity, we review the theory first for the pro-
jective coordinate transformation in one dimension®: #’ =
(az 4+ b)/(cxz + 1), where the images are functions of one
variable, z. The set of all projective coordinate transfor-
mations for which ¢ # 0 forms a group, P the projective
group. When a # 0 and ¢ = 0, it is the affine group. When

a =1 and ¢ = 0, it becomes the translation group.

Of the six coordinate transformations in the previous
section, only the projective, affine, and translation opera-
tions form groups.

A group of operators together with the set of 1-D images
(operands) form a group operation®. The new set of images
that results from applying all possible operators from the
group to a particular image from the original set is called
the orbit of that image under the group operation [19].

The equivalent two cases of Table 2 for this hypotheti-
cal “flatland” world of 2-D objects with 1-D pictures cor-
respond to the following. In the first case a camera is at
a fixed location, and free to zoom and pan. In the second
case, a camera is free to translate, zoom, and pan, but the
imaged object must be flat (i.e., lie on a straight line in
the plane). The resulting two (1-D) frames taken by the
camera, are related by the coordinate transformation from
T1 to T2, given by [20]:

zp tan(arctan(zy/z1) — 0), Vi # o4
(az1 +b)/(cx1 + 1), V1 # 04 (1)

T2

°In a 2-D world, the “camera” consists of a center of
projection (pinhole “lens”) and a line (1-D sensor array or
1-D “film”).

Salso known as a group action or G-set [19].
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Figure 3: Video orbits. (a) The orbit of frame 1 is the set of all
images that can be produced by acting on frame 1 with any element
of the operator group. Assuming that frames 1 and 2 are from the
same scene, frame 2 will be close to one of the possible projective
coordinate transformations of frame 1. In other words, frame 2 “lies
near the orbit of” frame 1. (b) By bringing frame 2 along its orbit,
\1/ve can determine how closely the two orbits come together at frame

where a = z2/z1, b = —z3 tan(f), ¢ = tan(f)/z1, and o1 =
z1tan(w/2 + 8) = —1/¢, is the location of the singularity
in the domain. We should emphasize that ¢, the degree of
perspective, has been given the interpretation of a chirp-
rate [20].

The coordinate transformations of (1) form a group op-
eration. This result, and the proof of this group’s isomor-
phism to the group corresponding to nonsingular projec-
tions of a flat object are given in [21].

2.3.2 Projective group in 2-D coordinates

The theory for the projective, affine, and translation
groups also holds for the familiar 2-D images taken of the
3-D world. The ‘video orbit’ of a given 2-D frame is de-
fined to be the set of all images that can be produced by
applying operators from the 2-D projective group to the



given image. Hence, we restate the coordinate transforma-
tion problem: Given a set of images that lie in the same
orbit of the group, we wish to find for each image pair, that
operator in the group which takes one image to the other
image.

If two frames, say, fi and f2, are in the same orbit,
then there is an group operation p such that the mean-
squared error (MSE) between fi and f; = po f» is zero. In
practice, however, we find which element of the group takes
one image “nearest” the other, for there will be a certain
amount of parallax, noise, interpolation error, edge effects,
changes in lighting, depth of focus, etc. Fig. 3 illustrates
the operator p acting on frame f>, to move it nearest to
frame f1. (This figure does not, however, reveal the precise
shape of the orbit, which occupies an 8-D space.)

Summarizing, the 8-parameter projective group cap-
tures the exact coordinate transformation between pictures
taken under the two cases of Table 2. The primary assump-
tions in these cases are that of no parallax, and of a static
scene. Because the 8-parameter projective model is “ex-
act,” it is theoretically the right model to use for estimat-
ing the coordinate transformation. The examples which
follow demonstrate that it also performs better in practice
than the other proposed models. In the next section, we
show a new technique for estimating its eight parameters.

3 Framework: motion parameter
estimation and optical flow

Before presenting our new results, we briefly review exist-
ing methods of parameter estimation for coordinate trans-
formations. We break existing methods into two categories:
feature-based, and featureless. Of the featureless methods,
we consider two subcategories: 1) methods based on mini-
mizing MSE (generalized correlation, direct nonlinear opti-
mization) and 2) methods based on spatiotemporal deriva-
tives and optical flow. Note that variations such as multi-
scale have been omitted from these categories; multiscale
analysis can be applied to any of them. The new algorithm
we develop in this paper (with final form given in Sec. 4) is
featureless, and based on multiscale spatiotemporal deriva-
tives.

Some of the descriptions below will be presented for hy-
pothetical 1-D images taken in a 2-D space. This simplifi-
cation yields a clearer comparison of the estimation meth-
ods. The new theory and applications will be presented
subsequently for 2-D images taken in a 3-D space.

3.1 Feature-based methods

Feature-based methods [22][23] assume that point corre-
spondences in both images are available. In the projective
case, given at least three correspondences between point
pairs in the two 1-D images, we will find the element,
p = {a,b,c} € P that maps the second image into the
first. Let zx,k = 1,2,3,... be the points in one image,
and let z}, be the corresponding points in the other im-
age. Then: zj, = (azxx +b)/(crr + 1). Re-arranging yields

ary +b — xrric = x}, so that a, b, and ¢ can be found by
solving k > 3 linear equations in 3 unknowns:

[xk l—xkak][abc]T:[xfk] (2)

using least squares if there are more than three correspon-
dence points. The extension from 1-D images to 2-D im-
ages is conceptually identical; for the affine and projective
models, the minimum number of correspondence points
needed in 2-D is three and four respectively.

A major difficulty with feature-based methods is find-
ing the features. Good features are often hand-selected, or
computed, possibly with some degree of human interven-
tion [24]. A second problem with features is their sensitiv-
ity to noise and occlusion. Even if reliable features exist
between frames (e.g. line markings on a playing field in a
football video, see Sec. 5.4) these features may be subject
to signal noise and occlusion (e.g. running football players
blocking a feature). The emphasis in the rest of this paper
will be on robust featureless methods.

3.2 Featureless methods based on
generalized cross-correlation

Cross-correlation of two frames is a featureless method of
recovering translation model parameters. Affine and pro-
jective parameters can also be recovered using generalized
forms of cross-correlation.

Generalized cross-correlation is based on an inner-
product formulation which establishes a similarity metric
between two functions, say, ¢ and h, where h = po g is
an approximately coordinate-transformed version of g, but
the parameters of the coordinate transformation, p are
unknown.” We can find, by exhaustive search (applying
all possible operators, p, to k), the “best” p as the one
which maximizes the inner product:

/_ o() foop_"h(“ Ir (3)

o e p~'oh(z)dz

where we have normalized the energy of each coordinate-
transformed h before making the comparison. FEquiva-
lently, instead of maximizing a similarity metric, we can
m(i)glimize some distance metric, such as MSE, given by
f_oo(g(x) —p~' o h(2))> — Dz. Solving (3) has an ad-
vantage over finding MSE when one image is not only a
coordinate-transformed version of the other, but is also an
amplitude-scaled version, as generally happens when there
is an automatic gain control or an automatic iris in the
camera.

In 1-D, the affine model permits only dilating and trans-
lating. Given h, an affine coordinate-transformed version
of g, generalized correlation amounts to estimating the pa-
rameters for dilation, a and translation, b by exhaustive
search. The collection of all possible coordinate transfor-
mations, when applied to one of the images (say, h) serves

"In the presence of additive white Gaussian noise, this
method, also known as “matched filtering”, leads to a max-
imum likelihood estimate of the parameters [25].



to produce a family of templates to which the other image,
g, can be compared. If we normalize each template so all
have the same energy:

a

ha(s) = th(ax +b)

then the maximum likelihood estimate corresponds to se-
lecting the member of the family that gives the largest
inner product:

(9(2), hap(z)) :/

— 00

[oe]

g(z)hap(z)de

This result is known as a cross-wavelet transform. A com-
putationally efficient algorithm for the cross-wavelet trans-
form has recently been presented [26]. (See [27] for a good
review on wavelet-based estimation of affine coordinate
transformations.)

Just like the cross-correlation for the translation group,
and the cross-wavelet for the affine group, the ‘cross-
chirplet’ can be used to find the parameters of a projec-
tive coordinate transformation in 1-D, searching over a 3-
parameter space. The chirplet transform [28] is a general-
ization of the wavelet transform. The ‘projective-chirplet’,
has the form:

ar + b
1) (4)

where h is the ‘mother chirplet’, analogous to the mother
wavelet of wavelet theory. Members of this family of func-
tions are related to one another by projective coordinate
transformations.

ha,b,c = h(

With 2-D images, the search is over an 8-parameter
space. A dense sampling of this volume is computation-
ally prohibitive. Consequently, combinations of coarse-to-
fine and iterative gradient-based search procedures are re-
quired. Adaptive variants of the chirplet transform have
been previously reported in the literature [29]. However,
there are still many problems with the adaptive chirplet ap-
proach; thus, we now consider featureless methods based
on spatiotemporal derivatives.

3.3 Featureless methods based on
spatiotemporal derivatives
3.3.1 Optical flow - “translation flow”

When the change from one image to another is small, op-
tical flow [30] may be used. In 1-D, the traditional optical
flow formulation assumes each point z in frame ¢ is a trans-
lated version of the corresponding point in frame ¢ + At,
and that Az and At are chosen in the ratio Az/At = uy,

the translational flow velocity of the point in question. The
image brightness E(z,t) is described by:

E(z,t) = F(z + Az, t + At), Y(z,1), (5)

where uy is the translational flow velocity of the point in
In the case of pure translation, us is constant across the
entire image. More generally, though, a pair of 1-D images
are related by a quantity, uy(z) at each point in one of the
images.

Expanding the right hand side of (5) in a Taylor series,
and canceling 0th order terms gives the well-known optical
flow equation: u¢FE; + F; 4+ h.o.t. = 0, where F; and F;
are the spatial and temporal derivatives respectively, and
h.o.t. denotes higher order terms. Typically, the higher
order terms are neglected, giving the expression for the
optical flow at each point in one of the two images:

3.3.2 “Affine fit” and “affine flow”: a new
relationship

Given the optical flow between two images, g and h, we
wish to find the coordinate transformation to apply to h to
make it look most like g. We now describe two approaches
based on the affine model: (1) finding the optical flow at
every point, and then fitting this low with an affine model
(‘affine fit’), and (2) rewriting the optical flow equation in
terms of an affine (not translation) motion model (‘affine

flow’).

Wang and Adelson have proposed fitting an affine model
to an optical flow field [31] of 2-D images. We briefly exam-
ine their approach with 1-D images (1-D images simplify
analysis and comparison to other methods). Denote co-
ordinates in the original image, g, by z, and in the new
image, h, by #’. Suppose that h is a dilated and translated
version of g, so ' = ax + b for every corresponding pair
(', z). Equivalently, the affine model of velocity (normal-
izing At =1), um = 2’ — z, is given by uy, = (¢ — 1)z +b.
We can expect a discrepancy between the flow velocity, ¢,
and the model velocity, um, due to either errors in the flow
calculation, or to errors in the affine model assumption, so
we apply linear regression to get the best least-squares fit
by minimizing:

crie=3 (tm—us)’ =Y (um+ Fe/Fr) (7)
xT
The constants @ and b that minimize ef;; over the en-
tire patch are found by differentiating (7), and setting the
derivatives to zero. This results in what we call the “affine
fit” equations:

s | B R Bt g I

Alternatively, the affine coordinate transformation may
be directly incorporated into the brightness change con-
straint equation (5). Bergen et al. [32] have proposed this
method, which we will call ‘affine flow’, to distinguish it
from the ‘affine fit’ model of Wang and Adelson (8). Let
us show how ‘affine flow’ and ‘affine fit’ are related. Sub-
stituting u,, = (az 4+ b) — z directly into (6) in place of uy
and summing the squared error:

Eflow = Z(umEm + Et)2 (9)

x

over the whole image, differentiating, and equating the re-
sult to zero, gives a linear solution for both ¢ and b:

Zm x2Ei,Z$ in a—1 - _ Z [l D O
(10)



To see how this result compares to the ‘affine fit’ we

rewrite (7)
Um E.r + Et 2
ern = () (1)
X

and observe, comparing (9) and (11) that ‘affine flow’ is
equivalent to a weighted least-squares fit, where the weight-
ing is given by E2. Thus the ‘affine flow’ method tends to
put more emphasis on areas of the image that are spatially
varying than does the ‘affine fit’ method. Of course, one is
free to separately choose the weighting for each method in
such a way that ‘affine fit’ and ‘affine flow’ methods both
give the same result. Both our intuition and our practical
experience tends to favor the ‘affine flow’” weighting, but,
more generally, perhaps we should ask “What is the best
weighting?” (e.g. maybe there is an even better answer
than the choice among these two). Lucas and Kanade [33],
among others, have considered weighting issues.

Another approach to the ‘affine fit’ involves computa-
tion of the optical flow field using the multiscale iterative
method of Lucas and Kanade, and then fitting to the affine
model. An analogous variant of the ‘affine flow’ method
involves multiscale iteration as well, but in this case the it-
eration and multiscale hierarchy are incorporated directly
into the affine estimator [32]. With the addition of mul-
tiscale analysis, the ‘fit’ and ‘flow’ methods differ in addi-
tional respects beyond just the weighting. Our intuition
and experience indicates that the direct multiscale ‘affine
flow’ performs better than the ‘affine fit’ to the multiscale
flow. Multiscale optical flow makes the assumption that
blocks of the image are moving with pure translational
motion , and then, paradoxically, the affine fit refutes this
pure-translation assumption. However, ‘fit’ provides some
utility over ‘flow” when it is desired to segment the image
into regions undergoing different motions [34], or to gain
robustness by rejecting portions of the image not obeying
the assumed model.

3.3.3 ‘Projective fit’ and ‘projective flow’: new

techniques

Analogous to the “affine fit” and “affine flow” of the
previous section, we now propose two new methods: ‘pro-
jective fit’ and ‘projective flow’. For the 1-D affine coordi-
nate transformation, the graph of the range coordinate as
a function of the domain coordinate is a straight line; for
the projective coordinate transformation, the graph of the
range coordinate as a function of the domain coordinate is
a rectangular hyperbola [21]. The ‘affine fit’ case used lin-
ear regression; however, in the projective case we will use
‘hyperbolic regression.” Consider the flow velocity given by
(6) and the model velocity:

um:x/—x:ax—i—b—x (12)
cr +1
and minimize the sum of the squared difference paralleling

(9): o
e=Y (T 2 (13)

cr +1 F.

For ‘projective-flow’ (‘p-flow’) we use, as for affine flow, the
Taylor series of wm:

U+ = b+(a—bc)x+(bc—a)cx2—|—(a—bc)c2x3—|—~ -+ (14)

and again use the first 3 terms, obtaining enough degrees of
freedom to account for the 3 parameters being estimated.
Letting € = Z:(—h.o.t.)2 = Z((b + (a —be— 1)z + (be —
a)cac2)Em + Et)2, q2 = (be —a)e, 1 = a —bc — 1, and
do = b, and differentiating with respect to each of the
3 parameters of q , setting the derivatives equal to zero,
and verifying with the second derivatives, gives the linear
system of equations for “projective flow”:

PR O *F2 Zx2Ei q2 Zx2E$Et

il O Zx2Ei Zin q |[=— TPy Fy (15)
Zx2Ei Zin ZEi qo %EmEt

In Sec. 4 we will extend this derivation to 2-D images and

show how an iterative approach may be used to compute

the parameters, p, of the exact model, by using a feedback

system where the feedforward loop involves computation

of the approximate parameters, q in the extension of (15)
to 2-D.

As with the affine case, ‘projective fit’and ‘projective
flow’ (15) differ only in the weighting assumed, although
‘projective fit’ provides the added advantage of enabling
the motion within an arbitrary subregion of the image to be
easily found. In this paper we are only considering global
image motion, for which we have found the projective flow
to be best.

4 Multiscale ‘projective flow’
parameter estimation

In the previous section, two new techniques, ‘p-fit’ and ‘p-
flow’ were proposed. Now we describe our algorithm for es-
timating the projective coordinate transformation for 2-D
images using ‘p-flow’. We begin with the brightness con-
stancy constraint equation for 2-D images [30] which gives
the flow velocity components in the z and y directions,
analogous to (6):

UfEm—i—’Uny—I—Et%O (16)

As is well-known [30] the optical flow field in 2-D is
underconstrained®. The model of pure translation at ev-
ery point has two parameters, but there is only one equa-
tion (16) to solve, thus it is common practice to compute
the optical flow over some neighborhood, which must be at
least two pixels, but is generally taken over a small block,
3 x 3,5 x 5, or sometimes larger (e.g. the entire image, as
in this paper).

Our task is not to deal with the 2-D translation flow,
but with the 2-D projective flow, estimating the eight pa-
rameters in the coordinate transformation:

, |:x/:| _ Alz,y]" +b _ Ax+b

(17)

X = y cTle,y]T +1 eTx+1

The desired eight scalar parameters are denoted by p =
[A,b;c,1], A € R**? b e R**!, and ¢ € R**!,

As with the 1-D images, we make similar assumptions in
expanding (17) in its own Taylor series, analogous to (14).

8 Optical flow in 1-D did not suffer from this problem.



If we take the Taylor series up to 2nd order terms, we ob-
tain the biquadratic model mentioned in Sec. 2.1. As men-
tioned in Sec. 2.1, by appropriately constraining the twelve
parameters of the biquadratic model we obtain a variety of
8-parameter approximate models. In our algorithm for es-
timating the exact projective group parameters, we will
use one of these approximate models in an intermediate
step.? We illustrate the algorithm below using the bilinear
approximate model since it has the simplest notation.'®
First we will incorporate the approximate model directly
into the generalized fit or generalized flow. The Taylor
series for the bilinear case gives:

Um + & = Qo' zyTY + quia® + qz'yY + o
Um+y:Qy’myxy'i'Qy’mx'i'Qy’yy'i'Qy’ (18)

Incorporating these into the flow criteria yields a simple set
of eight linear equations in eight unknowns, for “bilinear
flow”, appearing in (19). The summations are over the
entire image (all = and y) if computing global motion (as is
done in this paper), or over a windowed patch if computing
local motion. This equation looks similar to the 6 x 6
matrix equation presented in Bergen et al. [32].

In order to see how well the model describes the coor-
dinate transformation between 2 images, say, ¢ and h, one
might warp'’ h to g, nsing the estimated motion model,
and then compute some quantity that indicates how dif-
ferent the resampled version of h is from g. The MSE
between the reference image and the warped image might
serve as a good measure of similarity. However, since we
are really interested in how the exact model describes the
coordinate transformation, we assess the goodness of fit by
first relating the parameters of the approximate model to
the exact model, and then find the MSE between the ref-
erence image and the comparison image after applying the
coordinate transformation of the exact model. A method
of finding the parameters of the exact model, given the
approximate model, is presented in Sec 4.1.

4.1 ‘Four point method’ for relating
approximate model to exact model

Any of the approximations above, after being related to the
exact projective model, tend to behave well in the neigh-
borhood of the identity, A = I,b = 0,¢c = 0. In 1-D, we
explicitly expanded the model Taylor series about the iden-
tity; here, although we do not explicitly do this, we shall
assume that the terms of the Taylor series of the model cor-
respond to those taken about the identity. In the 1-D case
we solve the 3 linear equations in 3 unknowns to estimate
the parameters of the approximate motion model, and then
relate the terms in this Taylor series to the exact param-
eters, a, b, and ¢ (which involves solving another set of 3

°Use of an approximate model that doesn’t capture
chirping or preserve straight lines can still lead to the true
projective parameters as long as the model captures at least
eight degrees of freedom.

"The pseudo-perspective gives slightly better perfor-
mance; its development is the same but with more
notation.

"'The term warp is appropriate here, since the approxi-
mate model does not preserve straight lines.

equations in 3 unknowns, the second set being nonlinear,
although very easy to solve).

In the extension to 2-D, the estimate step is straightfor-
ward, but the relate step is more difficult, because we now
have eight nonlinear equations in eight unknowns, relating
the terms in the Taylor series of the approximate model
to the desired exact model parameters. Instead of solving
these equations directly, we now propose a simple proce-
dure for relating the parameters of the approximate model
to those of the exact model, which we call the ‘four point
method’:

1. Select four ordered pairs (e.g. the four corners of the
bounding box containing the region under analysis,
or the four corners of the image if the whole image
is under analysis). Here suppose, for simplicity, that
these points are the corners of the unit square: s =

[51, 82,83, 84] = [(Oa O)T’ (0’ 1)T’ (1’ O)T’ (1’ 1)T]'

2. Apply the coordinate transformation using the Taylor
series for the approximate model (e.g. (18)) to these
points: r = wm(s).

3. Finally, the correspondences between r and s are
treated just like features. This results in four easy
to solve linear equations:

! ! !
Tk — xkaykalaoaoaoa_xkxka_ykxk
! — ! !
Yk O,O,O,xk,yk,l,_xkyk,_ykyk

T
[ amlm’amly’bml’aylm,ayly,byl,cm,Cy ] (20)

where 1 < k < 4. This results in the exact eight
parameters, p.

We remind the reader that the four corners are not fea-
ture correspondences as used in the feature-based methods
of Sec. 3.1, but, rather, are used so that the two feature-
less models (approximate and exact) can be related to one
another.

Tt is important to realize the full benefit of finding the
exact parameters. While the “approximate model” is suf-
ficient for small deviations from the identity, it is not ad-
equate to describe large changes in perspective. However,
if we use it to track small changes incrementally, and each
time relate these small changes to the exact model (17),
then we can accumulate these small changes using the law
of composition afforded by the group structure. This is
an especially favorable contribution of the group frame-
work. For example, with a video sequence, we can accom-
modate very large accumulated changes in perspective in
this manner. The problems with cumulative error can be
eliminated, for the most part, by constantly propagating
forward the true values, computing the residual using the
approximate model, and each time relating this to the ex-
act model to obtain a goodness-of-fit estimate.

4.2 New algorithm for ‘projective flow’:
overview

Below is an outline of the algorithm; details of each step
are in subsequent sections.
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Figure 4: Method of computation of eight parameters p between
two images from the same pyramid level, ¢ and h. The approximate
model parameters q are related to the exact model parameters p in
a feedback system.

Frames from an image sequence are compared pairwise
to test whether or not they lie in the same orbit:

1. A Gaussian pyramid of three or four levels is con-
structed for each frame in the sequence.

2. The parameters p are estimated at the top of the pyra-
mid, between the two lowest-resolution images of a
frame pair, ¢ and h, using the iterative method de-
picted in Fig. 4.

3. The estimated p is applied to the next higher-
resolution (finer) image in the pyramid, pog, to make
the two images at that level of the pyramid nearly
congruent before estimating the p between them.

4. The process continues down the pyramid until the
highest-resolution image in the pyramid is reached.

4.3 Multiscale iterative implementation

The Taylor-series formulations we have used implicitly as-
sume smoothness; the performance is improved if the im-
ages are blurred before estimation. To accomplish this,
we do not downsample critically after low-pass filtering in
the pyramid. However, after estimation, we use the origi-
nal (unblurred) images when applying the final coordinate
transformation.

The strategy we present differs from the multiscale it-
erative (affine) strategy of Bergen et al. in one important
respect beyond simply an increase from six to eight param-
eters. The difference is the fact that we have two motion
models, the ‘exact motion model’ (17) and the ‘approxi-
mate motion model’, namely the Taylor series approxima-
tion to the motion model itself. The approximate motion

model, using the algebraic law of composition afforded by
the exact projective group model. In this strategy, the
exact parameters are determined at each level of the pyra-
mid, and passed to the next level. The steps involved are
summarized schematically in Fig. 4, and described below:

1. Initialize: Set ho = h and set pgo to the identity
operator.

2. Tterate (k=1...K):
(a) ESTIMATE: Estimate the 8 or more terms

of the approximate model between two image
frames, g and hgx_1. This results in approximate
model parameters .

(b) RELATE: Relate the approximate parameters
qx to the exact parameters using the ‘four point
method’. The resulting exact parameters are pg.

(¢) RESAMPLE: Apply the law of composition to
accumulate the effect of the pg’s. Denote these
composite parameters by pox = Pk 0 Pok—1-
Then set hx = po,xoh. (This should have nearly
the same effect as applying px to hr—_1, except
that it will avoid additional interpolation and
anti-aliasing errors you would get by resampling
an already resampled image[6]).

Repeat until either the error between hjy and g falls be-
low a threshold, or until some maximum number of itera-
tions is achieved. After the first iteration, the parameters
g2 tend to be near the identity since they account for the
residual between the “perspective-corrected” image hi and
the “true” image g. We find that only two or three itera-
tions are usually needed for frames from nearly the same
orbit.

A rectangular image assumes the shape of an arbitrary
quadrilateral when it undergoes a projective coordinate
transformation. In coding the algorithm, we pad the un-
defined portions with the quantity NaN, a standard TEEE
arithmetic value, so that any calculations involving these
values automatically inherit NaN without slowing down the
computations. The algorithm (in Matlab on an HP 735)
takes about six seconds per iteration for a pair of 320x240
images.



4.4 Exploiting commutativity for
parameter estimation

There is a fundamental uncertainty [35] involved in the si-
multaneous estimation of parameters of a noncommutative
group, akin to the Heisenberg uncertainty relation of quan-
tum mechanics. In contrast, for a commutative'? group (in
the absence of noise), we can obtain the exact coordinate
transformation.

Segman [36] considered the problem of estimating the
parameters of a commutative group of coordinate transfor-
mations, in particular, the parameters of the affine group
[37]. His work also deals with noncommutative groups, in
particular, in the incorporation of scale in the Heisenberg
group® [38].

Estimating the parameters of a commutative group is
computationally efficient, e.g., through the use of Fourier
cross-spectra [39]. We exploit this commutativity for es-
timating the parameters of the noncommutative 2-D pro-
jective group by first estimating the parameters that com-
mute. For example, we improve performance if we first
estimate the two parameters of translation, correct for the
translation, and then proceed to estimate the eight pro-
jective parameters. We can also simultaneously estimate
both the isotropic-zoom and the rotation about the opti-
cal axis by applying a log-polar coordinate transformation
followed by a translation estimator. This process may also
be achieved by a direct application of the Fourier-Mellin
transform [40]. Similarly, if the only difference between g
and h is a camera pan, then the pan may be estimated
through a coordinate transformation to cylindrical coordi-
nates, followed by a translation estimator.

In practice, we run through the following ‘commutative
initialization’ before estimating the parameters of the pro-
jective group of coordinate transformations:

1. Assume that h is merely a translated version of g.

Estimate this translation using the method of
Girod [39].
Shift h by the amount indicated by this estimate.

Compute the MSE between the shifted h and g,
and compare to the original MSE before shifting.

If an improvement has resulted, use the shifted
h from now on.

2. Assume that h is merely a rotated and isotropically
zoomed version of g.

(a) Estimate the two parameters of this coordinate
transformation.

(b) Apply these parameters to h.

12 A commutative (or Abelian) group is one in which el-
ements of the group commute, for example, translation
along the x-axis commutes with translation along the y-
axis, so the 2-D translation group is commutative.

!*While the Heisenberg group deals with translation
and frequency-translation (modulation), some of the con-

cepts could be carried over to other more relevant group
structures.
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(¢) If an improvement has resulted, use the
coordinate-transformed (rotated and scaled) h
from now on.

3. Assume that k is merely an “x-chirped” (panned) ver-
sion of ¢, and, similarly, ‘x-dechirp’ h. If an improve-
ment results, use the ‘x-dechirped’ h from now on.
Repeat for y (tilt.)

Compensating for one step may cause a change in choice
of an earlier step. Thus it might seem desirable to run
through the commutative estimates iteratively. However,
our experience on lots of real video indicates that a single
pass usually suffices, and in particular, will catch frequent
situations where there is a pure zoom, a pure pan, a pure
tilt, etc, both saving the rest of the algorithm computa-
tional effort, as well as accounting for simple coordinate
transformations such as when one image is an upside-down
version of the other. (Any of these pure cases corresponds
to a single parameter group, which is commutative.) With-
out the ‘commutative initialization’ step, these parameter
estimation algorithms are prone to get caught in local op-
tima, and thus never converge to the global optimum.

5 Performance/Applications

5.1 A paradigm reversal in resolution
enhancement
Much of the previous work on resolution enhance-

ment [4][41][42] has been directed toward military appli-
cations, where one cannot get close to the subject matter;
therefore, lenses of very long focal length were generally
used. In this case, there was very little change in perspec-
tive and the motion could be adequately approximated as
affine. Budgets also permitted lenses of exceptionally high
quality, so that the resolving power of the lens far exceeded
the resolution of the sensor array.

Sensor arrays in earlier applications generally had a
small number of pixels compared to today’s sensors, leaving
considerable “dead space” between pixels. Consequently,
using multiple frames from the image sequence to fill in
gaps between pixels was perhaps the single most impor-
tant consideration in combining multiple frames of video.

We argue that in the current age of consumer video,
the exact opposite is generally true: subject matter gener-
ally subtends a larger angle (e.g. is either closer, or more
panoramicin content), and the desire for low cost has led to
cheap plastic lenses that have very large distortion. More-
over, sensor arrays have improved dramatically. Accurate
solution of the projective model is more important than
ever in these new applications.

In addition to consumer video, we believe there will be
a large market in the future for small wearable wireless
cameras. A prototype, the “wearable wireless webcam” (a
head-mounted video camera uplinked to the Internet [43])
has provided one of the most extreme testbeds for the algo-
rithms explored in our research, as it captures noisy trans-
mitted video frames, grabbed by a camera attached to a



human head, free to move at the will of the individual. The
projective model is especially well-suited to this new appli-
cation, as a person can turn their head (camera rotation
about an approximately fixed center of projection) much
faster than they can undergo locomotion (camera trans-
lation). The new algorithm described in this paper has
consistently performed well on noisy data gathered from
the headcam, even when the scene is not static and there
is parallax.

5.1.1 Four ways by which “resolution” may be

enhanced
1. Sub-pixel “filling in the gaps”:

2. Scene widening: Increased spatial extent; stitching
together images in a panorama.

3. Saliency: suppose we have a wide shot of a scene,
and then zoom into one person’s face in the scene.
In order to insert the face without downsampling it,
we need to upsample the wide shot, increasing the
meaningful pixel count of the whole image.

4. Perspective: in order to seamlessly mosaic images
from panning with a wide angle lens, images need to
be brought into a common system of coordinates re-
sulting in a “keystoning” effect on the previously rect-
angular image boundary. Thus we must hold the pixel
resolution constant on the “squashed” side and up-
sample on the “stretched” side, resulting in increased
pizel resolution of the entire mosaic.

The first of these four may arise from either microscopic
camera movement (inducing image motion on the order of
a pixel or less) or macroscopic camera movement (inducing
motion on the order of many pixels). However, as move-
ment increases, errors in registration will tend to increase,
and enhancement due to (1) will be reduced, while the en-
hancement due to (2), (3), and (4) will increase.

Results of applying the proposed method to subpixel
resolution enhancement are not presented in this paper but
may be found in [21].

5.2 Increasing “resolution” in the ‘pixel

sense’

Figure 5 shows some frames from a typical image sequence.
Figure 6 shows the same frames brought into the coordinate
system of frame (c), that is, the middle frame was chosen
as the reference frame.

Given that we have established a means of estimating
the projective coordinate transformation between any pair
of images, there are two basic methods we use for finding
the coordinate transformations between all pairs of a longer
image sequence. Because of the group structure of the pro-
jective coordinate transformations, it suffices to arbitrarily
select one frame and find the coordinate transformation
between every other frame and this frame. The two basic
methods are:
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1. Differential parameter estimation: The coordi-
nate transformations between successive pairs of im-
ages, Po,1, P1,2, P2,3, .., estimated.

2. Cumulative parameter estimation: The coordi-
nate transformation between each image and the ref-
erence image 1s estimated directly. Without loss of
generality, select frame zero (FEj) as the reference
frame and denote these coordinate transformations as
Po,1, Po,2, P03, ...

Theoretically, the two methods are equivalent:
Fo differential method
Eo (21)

However, in practice, the two methods differ for two rea-
sons:

Po,1 Op120... Opn—1,nEn

pO,nEn

cumulative method

1. cumulative error: In practice, the estimated coordi-
nate transformations between pairs of images register
them only approximately, due to violations of the as-
sumptions (e.g. objects moving in the scene, center of
projection not fixed, camera swings around to bright
window and automatic iris closes, etc.). When a large
number of estimated parameters are composed, cumu-
lative error sets in.

2. finite spatial extent of image plane: Theoret-
ically, the images extend infinitely in all directions,
but, in practice, images are cropped to a rectangular
bounding box. Therefore, a given pair of images (es-
pecially if they are far from adjacent in the orbit) may
not overlap at all; hence it is not possible to estimate
the parameters of the coordinate transformation using
those two frames.

The frames of Fig 5 were brought into register using
the differential parameter estimation, and “cemented” to-
gether seamlessly on a common canvas. “Cementing” in-
volves piecing the frames together, for example, by me-
dian, mean, or trimmed mean, or combining on a sub-
pixel grid [21]. (Trimmed mean was used here, but the
particular method made little visible difference.) Fig 7
shows this result (“projective/projective”), with a compar-
ison to two non-projective cases. The first comparison is
to “affine/affine” where affine parameters were estimated
(also multiscale) and used for the coordinate transforma-
tion. The second comparison, “affine/projective,” uses the
six affine parameters found by estimating the eight projec-
tive parameters and ignoring the two “chirp” parameters
¢ (which capture the essence of tilt and pan). These six
parameters A, b are more accurate than those obtained
using the affine estimation, as the affine estimation tries to
fit its shear parameters to the camera pan and tilt. In other
words, the affine estimation does worse than the six affine
parameters within the projective estimation. The affine
coordinate transform is finally applied, giving the image
shown. Note that the coordinate-transformed frames in
the affine case are parallelograms.

5.3 Submosaics and the support matrix

Two situations have so far been dealt with:
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(a) (b) (c) (@) ©

»n15

Figure 5: Frames from original image orbit, sent from the wearable amateur television transmitter (“netcam ). The entire sequence,
consisting of 20 color frames, is available (see note at end of bibliography), together with examples of applying the proposed algorithm to
this data.

YT

(a) (b) (c) (@) ©

Figure 6: Frames from original image video orbit after a coordinate transformation to move them along the orbit to the reference frame (c).
The coordinate-transformed images are alike except for the region over which they are defined. Note that the regions are not parallelograms;
thus, methods based on the affine model fail.
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~ projective/projective

affine/projective

Figure 7: Frames of Fig 6 “cemented” together on single image “canvas”, with comparison of affine and projective models. Note the good
registration and nice appearance of the projective/projective image despite the noise in the amateur television receiver, wind-blown trees,
and the fact that the rotation of the camera was not actually about its center of projection. To see this image in color, look at [44], where
additional examples (e.g. some where the algorithm still worked despite “crowd noise” where many people were entering and leaving the
building) also appear. Note also that the affine model fails to properly estimate the motion parameters (affine/affine), and even if the “exact”
projective model is used to estimate the affine parameters, there is no affine coordinate transformation that will properly register all of the

image frames.

1. The camera movement is small, so that any pair of
frames chosen from the video orbit have a substan-
tial amount of overlap when expressed in a common
coordinate system. (Use differential parameter esti-
mation.)

2. The camera movement is monotonic, so that any er-
rors that accumulate along the registered sequence are
not particularly noticeable. (Use cumulative parame-
ter estimation.)

In the example of Fig 7, any cumulative errors are not par-
ticularly noticeable because the camera motion is progres-
sive, that is, it does not reverse direction, or loop around
on itself. Now let us look at an example where the camera
motion loops back on itself and small errors, due to viola-
tions of the assumptions (fixed camera location and static
scene), accumulate.

Consider the image sequence shown in Fig 8. The image
mosaic arising from bringing these 16 image frames into
the coordinates of the first frame exhibited somewhat poor
registration due to cumulative error; we use this case to
illustrate the importance of submosaics.

The “differential support matrix'®’, for which the entry
Am,n tells us how much frame n overlaps with frame m

1€The ‘differential support matrix’ is not necessarily
symmetric, while the ‘cumulative support matrix’ for which
the entry bfq,, ,, tells us how much frame n overlaps with
frame m when expressed in the coordinates of frame 0 (ref-
erence frame) is symmetric.
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when expressed in the coordinates of frame m, for the se-
quence of Fig 8 appears in Fig 9.

Examining the support matrix, and the mean-squared
error estimates, the local maxima of the support matrix
correspond to the local minima of the mean-squared error
estimates, suggesting the submosaics'™: {7,8,9,10,6,5},
{1,2,3,4}, and {15,14,13,12}. Tt is important to note that
when the error is low, if the support is also low, the error
estimate might not be valid. For example if the two images
overlap in only one pixel, then even if the error estimate
is zero (e.g. perhaps that pixel has a value of 255 in both
images) the alignment is not likely good.

The selected submosaics appear in Fig 10. Estimating
the coordinate transformation between these submosaics,
and putting them together into a common frame of ref-
erence results in a nice image mosaic (Fig 10) about 1200
pixels across, where the image is sharp despite the fact that
the person in the picture was moving slightly and the cam-
era operator was also moving (violating the assumptions of
both static scene and fixed center of projection).

5.4 Flat subject matter and alternate
coordinates

Many sports such as football or soccer are played on a
nearly flat field that forms a rigid planar patch over which
the analysis may be conducted. After each of the frames

17Researchers at Sarnoff also consider the use of submo-
saics, and refer to them as tiles [41][42]



Figure 8: The Hewlett Packard “Claire” image sequence, which violates the assumptions of the model (the camera location was not fixed,
and the scene was not completely static). Images appear in TV raster-scan order.

(a) (b) (© @

Figure 9: Support matrix and mean-squared registration error defined by image sequence in Fig 8 and the estimated coordinate transfor-
mations between images. (a) entries in table. The diagonals are one since every frame is fully supported in itself. The entries just above
(or below) the diagonal give the amount of pairwise support. For example, frames 0 and 1 share high mutual support (.91). Frames 7, 8,
and 9 also share high mutual support (again .91). (b) corresponding density plot (more dense ink indicates higer values). (c) mean-square
registration error (d) corresponding density plot

frames 5-11

frames 12-15

completed mosaic

Figure 10: Submosaics are each made from subsets of the images that share high quantities of mutual support and low estimates of mutual
error, and then combined to form the final mosiac.

14



undergoes the appropriate coordinate transformation to
bring it into the same coordinate system as the reference
frame, the sequence can be played back showing only the
players (and the image boundaries) moving. Markings on
the field (such as numbers and lines) remain at a fixed loca-
tion, which makes subsequent analysis and summary of the
video content easier. This data makes a good test case for
the algorithms because the video was noisy and the players
caused the assumption of static scene to be violated.

Despite the players moving in the video, the proposed
method successfully registers all of the images in the orbit,
mapping them into a single high-resolution image mosaic
of the entire playing field. Figure 11(a) shows 16 frames of
video from a football game combined into a single image
mosaic, expressed in the coordinates of the first image in
the sequence. The choice of coordinate system was arbi-
trary, and any of the images could have been chosen as the
reference frame. In fact, a coordinate system other than
one chosen from the input images could also be used. In
particular, a coordinate system where parallel lines never
meet, and periodic structures are “dechirped” (Fig 11(b))
lends itself well to machine vision and player-tracking al-
gorithms[45]. Even if the entire playing field was never
visible in any one image, collectively, the video from an
entire game will likely reveal every square yard of playing
surface at one time or another, hence enabling us to make
a mosaic of the entire playing surface.

6 Conclusions

We presented new connections between different motion
estimation approaches, in particular, a relation between
“affine fit” and “affine flow.” This led us to propose
two new techniques, “projective fit” and “projective flow”
which estimate the projective (homographic) coordinate
transformation between pairs of images, taken with a cam-
era that is free to pan, tilt, rotate about its optical axis,
and zoom. A new multiscale iterative algorithm for pro-
jective flow was presented and applied to mosaicing. The
algorithm solves for the 8 parameters of the “exact” model
(the projective group of coordinate transformations), is
fully automatic, and converges quickly. The use of the al-
gorithm with submosaics, useful when the camera motion
loops back on itself, has also been demonstrated.

The proposed method was found to work well on im-
age data collected from both good-quality and poor-quality
video under a wide variety of conditions (sunny, cloudy,
day, night). Tt has been tested with a head-mounted wire-
less video camera, and performs successfully even in the
presence of noise, interference, scene motion (such as peo-
ple walking through the scene) and parallax (such as the
wearer’s head moving freely.)
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