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Abstract

One of the fundamental challenges in pattern
recognition is choosing a set of features appropri-
ate to a class of problems. In applications such
as database retrieval, it is important that im-
age features used in pattern comparison provide
good measures of image perceptual similarities.

In this paper, we present an image model with a
new set of features that address the challenge of
perceptual similarity. The model is based on the
2-D Wold decomposition of homogeneous ran-
dom fields. The three resulting mutually orthog-
onal subfields have perceptual properties which
can be described as “periodicity”, “directional-
ity”, and “randomness”, approximating what are
indicated to be the three most important dimen-
sions of human texture perception. The method
presented here improves upon earlier Wold-based
models in its tolerance to a variety of local inho-
mogeneities which arise in natural textures and
its invariance under image transformation such
as rotation.

An image retrieval algorithm based on the new
texture model is presented. Different types of
image features are aggregated for similarity com-
parison by using a Bayesian probabilistic ap-
proach. The effectiveness of the Wold model at
retrieving perceptually similar natural textures is
demonstrated in comparison to that of two other
well-known pattern recognition methods. The
Wold model appears to offer a perceptually more
satisfying measure of pattern similarity while ex-
ceeding the performance of these other methods
by traditional pattern recognition criteria. Ex-
amples of natural scene Wold texture modeling
are also presented.

1 Introduction

Current worldwide efforts of digitizing massive archives of
image, film, and video have created an immediate demand
for automated retrieval systems. Tools assisting search
among texture-rich imagery have broad applications in, to
name a few, video editing, medical image query, and com-
modity markets such as carpet, tile, and upholstery.

*This work was supported in part by BT, PLC, Interval
Research Corp., and NEC

A retrieval system serves the purpose of saving human
users the time and effort of browsing the entire database;
hence, it is expected that the retrieved images resemble the
visual properties of the prototype pattern provided by the
human user. To build such a system, it is important that
the features used for pattern comparison are faithful to
those used by humans in comparing patterns. Considering
image retrieval as a pattern recognition application, we
face the difficult problem of choosing a set of features for
measuring perceptual similarity.

A human texture perception study conducted by Rao
and Lohse [1] has indicated that the three most impor-
tant perceptual dimensions in natural texture discrimina-
tion can be described as “repetitiveness”, “directionality”,
and “granularity and complexity”. Hence, it is desirable for
a texture-based retrieval system to use modeling features
which relate image attributes to these perceptual saliencies.
We propose here a set of image features based on the two-
dimensional (2-D) Wold decomposition of random fields to
capture the properties of human texture perception.

Given a 2-D homogeneous random field, the Wold theory
allows it to be decomposed into three mutually orthogonal
components. The perceptual properties of these compo-
nents can be described as “periodicity”, “directionality”,
and “randomness”, agreeing closely with the most impor-
tant dimensions of human texture perception.

The 2-D Wold decomposition has been recently applied
to spectral estimation and texture modeling by Francos et
al. [2][3][4]. In their work, it is assumed that the images
are homogeneous random fields and the model designs are
based on the actual image decomposition. Although their
algorithms performed well on a few texture examples, they
are not robust or computationally efficient enough to han-
dle databases where image quantity is large and inhomo-
geneity abounds.

In this paper, we present a new Wold-based texture
model (“Wold model” for short) and its applications to
image retrieval in a large texture database and to natural
scene representation. Our emphasis is on constructing per-
ceptually important features which can be used for image
recognition and similarity comparison. In the model we
propose, the Wold features which preserve the perceptual
property of the Wold components are extracted without
having to decompose each image. The algorithms for im-
age modeling and similarity comparison are also designed
to tolerate a variety of local inhomogeneities of textures,
as well as transformations such as pattern rotation. The
problem of aggregating different types of features for im-
age similarity comparison is resolved by using a Bayesian
probabilistic approach.



The effectiveness of the Wold model for natural texture
modeling is demonstrated in image retrieval experiments
in comparison to the performance of two other well-known
pattern recognition methods, namely, the shift-invariant
principal component analysis (SPCA) [5] and the multires-
olution simultaneous autoregressive (MRSAR) [6] model-
ing. The Wold model appears to offer a perceptually more
satisfying measure of pattern similarity while exceeding the
performance of these other methods by traditional pattern
recognition criteria.

To illustrate how the Wold features can be used in natu-
ral scene representations, an image segmentation algorithm
and experimental segmentation and representation results
are also presented.

Section 2 contains a brief review of the 2-D Wold de-
composition theory and a discussion on its previous appli-
cations to texture modeling. Section 3 presents the new
Wold-based texture model. Section 4 describes the appli-
cation of the new model to image retrieval, showing re-
trieval examples of the Wold, the SPCA and the MRSAR
methods in comparison. Section 5 demonstrates the Wold
texture modeling of natural scene images. A discussion of
the strengths and weaknesses of the new Wold model is in
Section 6, followed by the Conclusions.

2 Theory Review and Previous Work

To make the paper self-contained, we provide in this sec-
tion two major theorems of the 2-D Wold decomposition
theory of homogeneous random fields. Extensive presenta-
tions and the proofs of the theorems can be found in [2][7].

2.1 Theory Review

Let {y(m,n)}, (m,n) € Z% be a real valued, regular, and
homogeneous random field. On the 2-D plane, a set of to-
tal order and non-symmetric half-plane (NSHP) is defined
such that the boundary line of a NSHP is of rational slope.
Denote this set by O.

Theorem 1 (2-D Wold decomposition) A homoge-
neous regular random field {y(m,n)} can be represented
uniquely by the following decomposition:

y(m,n) = w(m,n) + p(m,n) + g(m,n). (1)

Field {w(m,n)} is purely-indeterministic and has a
moving average (MA) representation

S ak Du(m —kn—1),  (2)

(0,0)=(k,1)

w(m,n) =

where Z(0,0)j(k,l) a®(k,1) < oo and a(0,0) = 1. The
innovation field {u(m,n)} is white. Field {p(m,n)}
and {g(m,n)} are deterministic. Field {p(m,n)} is
half-plane deterministic. Field {g(m,n)} is general-
ized evanescent and g(m,n) = ) _,eo(m,n), where
eo(m,n) is the evanescent field of {y(m,n)} with re-
spect to the total-order and NSHP support o € O. Fields
{w(m,n)}, {p(m,n)}, and {eo(m,n)}, 0 € O, are mutually
orthogonal.

A homogeneous random field has a spectral distribu-

tion function (SDF) in the form of a Fourier-Stieltjes inte-
gral. Define all spectral functions on the rectangular region

-5 7] x [-5. 5]

Theorem 2 Let F,(&,n) be the SDF of a regular homo-
geneous random field {y(m,n)}, and let F;(£,n) denote
the singular part of Fy(&,m). Let Fu(&,m), Fp(€,n), and
Fy(&,n) be the SDF of the purely-indeterministic, the half-
plane deterministic, and the generalized evanescent com-
ponents of {y(m,n)}. Function Fy(&,n) can be uniquely
represented as

where Fy(&,n) = Zoeo Fe,(&,n) and F., (&,n) is the SDF
of the evanescent field of {y(m,n)} with respect to the total-
order and NSHP definition o € O. Function F,(&,n) is
absolutely continuous and Fy(&,m) + Fy(&,m) = F, (&, n) is

singular with respect to the Lebesgue measure.

By Theorem 2, the decomposition of the purely-indeter-
ministic and the deterministic components of a regular ho-
mogeneous random field can be achieved by separating the
singular and the absolutely continuous components of the
SDF. This is known as Lebesgue decomposition [8].

In order to apply the 2-D Wold theory to texture mod-
eling, some approximations on the deterministic random
fields were made [3]. A half-plane deterministic field is
approximated by a harmonic random field, which in the
spectral domain appears as the 2-D Dirac é-functions sup-
ported by discrete points. The SDF of an evanescent field is
absolutely continuous in one dimension and singular in the
orthogonal dimension, appearing as 1-D Dirac é-functions
supported by lines with rational slopes.

As shown in (2), the purely-indeterministic field has a
white noise driven MA representation. Under certain con-
ditions usually satisfied in practice, a 2-D autoregressive
(AR) representation of this field exists [9].

In the following, we refer to the harmonic, evanescent,
and indeterministic components of a random field as the
Wold components.

2.2 Previous Work on Wold-based
Texture Modeling

A Wold-based model can be built by decomposing an im-
age into its Wold components and modeling each of the
components separately. The Wold texture models reported
to date decompose an image via one of two approaches:
1) the spectral decomposition method — an approxima-
tion of Lebesgue decomposition as global thresholding of
Fourier spectral magnitudes [2][3]; 2) the maximum likeli-
hood (ML) parameter estimation — estimating Wold pa-
rameters in the spatial domain by fitting a high-order AR
process, minimizing a cost function, and solving sets of lin-
ear equations [10]. The effectiveness of these methods was
demonstrated on a few texture examples.

Comparing the two approaches, the MI, method provides
more accurate estimates, but the spectral decomposition
method is computationally more efficient. Furthermore,
although the Wold theory assumes the homogeneity of the
random field, the principle of Lebesgue decomposition can
be applied to textures which are not strictly homogeneous,
but whose spectral peaks remain sufficiently structured to
be extracted.

Based on the discussions above, it is reasonable to choose
the spectral approach as a starting point. Given the spec-
trum of an image, a decomposition algorithm is expected
to identify and extract the spectral frequencies associated



Figure 1: Example of 2-D Wold decomposition. (a) A
patch of Brodatz texture D11: Homespun woolen cloth; (b)
DFT magnitudes of (a); (c) Identified harmonic frequen-
cies; (d) Extracted harmonic component; (e) Extracted in-
deterministic component; (f) Synthesized image of (a) from

(d) and (e).

with the harmonic and evanescent components. However,
we found that a simple global thresholding scheme, as the
one used in [3], does not work for many natural textures
in the Brodatz database.

A decomposition example is given in Figure 1. A patch
of Brodatz texture [11] D11 “Homespun woolen cloth”,
shown in (a), is decomposed by extracting the harmonic
peak frequencies of its Fourier spectrum. Shown in (b),
the Fourier magnitude of this pattern has five high fre-
quency peaks' which are only locally large. Their values
are actually smaller than some of the low indeterministic
frequencies. These peaks are important since they give rise
to the fine weaving patterns. A global thresholding will ei-
ther pick up some of the low indeterministic frequencies or
omit the weak harmonic peaks. To decompose the texture,
two circular Gaussian functions are used to threshold the
Fourier magnitudes: one qualifies the peaks and the other
determines the region of support. The height and variance
of these Gaussians are data dependent. The extracted fre-
quencies, marked in (c), are then removed from the Fourier
transform function and inserted into a blank 2-D complex
plane. Image (d) and (e) are the inverse Fourier transform
of these two complex functions. The synthesized image (f)
is the result of adding images (d) and (e).

Although this thresholding scheme is successful in the
example, fully automating the decomposition algorithm
has been found to be very difficult given the large variety of
patterns present in the Brodatz database. Moreover, there
are unanswered questions regarding the ambiguity involved
in decomposing the values of the harmonic frequencies in
discrete spectra. In the past, we have proposed methods of
building Wold-based models without actual image decom-
position [12][13]. In both methods, textures were classified
into harmonic and inharmonic categories and modeled ac-
cordingly. However, the binary boundary imposed between
the two categories was a major drawback of the approach.

'Only half of the 2-D frequency plane is considered due
to spectral symmetry.

In the next section, we introduce a new Wold-based model
which, without decomposing patterns and setting harsh de-
cision boundaries, extracts and incorporates features that
preserve the perceptual property of the Wold components.

3 A New Wold-based Texture Model

3.1 The Construction of the New Model
3.1.1 Brodatz Database

The database used in the retrieval experiments reported
in this paper is the “Brodatz texture database”. It contains
1008 natural texture patches cropped from all 112 pictures
in the Brodatz Album [11]. Each Brodatz texture provides
nine 128 x 128 subimages in 8-bit gray levels. This col-
lection contains a large variety of natural textures, includ-
ing the many inhomogeneous ones which are not usually
included in texture studies. By including the entire Bro-
datz collection in the database, we allow the potential of
confusion and failure that exists when texture algorithms
encounter non-texture regions in natural scenes. Examples
of the database are shown in Figure 2.

3.1.2 Other Texture Models

Using the benchmarking method reported in [14], the re-
trieval performance of several image models over the Bro-
datz database was evaluated by computing their recogni-
tion rate operating characteristics. The image classes are
defined by the original Brodatz album pages. The aver-
age recognition rate (each image in the database is used
once as retrieval prototype) is computed for different num-
bers of the top retrieved images. A 100% recognition rate
is reached by a search when 8 matches are found within
the top retrieved images considered. For example, if the
first 15 retrieved images are considered and 4 matches are
found for an image, then the recognition rate for that image
at retrieved set size 15 is 50%. The models evaluated in-
clude the MRSAR, the SPCA, the tree-structured wavelet
transform (TWT) 2 [15], and the three Tamura features of
coarseness, contrast, and directionality [16] as used in [17].
Note that this evaluation method uses a traditional pattern
recognition criterion, not necessarily agreeing with percep-
tual criteria.

The benchmarking results show that, when compared to
the other three, the MRSAR model offers the best intra-
class recognition rate (see Figure 13 in Section 6.2). Re-
cently, a Gabor wavelet decomposition model was also ap-
plied to image retrieval and its performance benchmarked
against the MRSAR model [18]. By the recognition rate
operating characteristics, the retrieval performance of the
Gabor and MRSAR methods are similar. Therefore, by
this criterion, it would be reasonable to regard MRSAR as
a representative of the state-of-the-art texture modeling for
image database retrieval. However, in many retrieval cases
where structured image patterns are involved, we observe
that the MRSAR model is incapable of distinguishing im-
ages with very little perceptual resemblance, showing its
limitations in measuring perceptual similarity. Examples
will be shown in Figure 8 and 9 in Section 4.2. This weak-
ness of the MRSAR model is innate since the model only

2The TWT method is sensitive to image sizes. Much
smaller than the 512 x 512 used in [15], the 128 x 128
database image size had a negative impact on the TWT
performance in the benchmarking.
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Figure 2: Example images of the Brodatz texture database. (a) D10: Crocodile skin. (b) D36: Lizard skin.

Swinging light. (d) D62: European marble.

characterizes the interaction among neighboring image pix-
els, where neighbors are determined by the model order.
As an autoregressive (AR) process, the MRSAR model is
most appropriate for modeling random fields with contin-
uous spectra (fine and purely random texture). When us-
ing an AR process to model an image with many spectral
peaks (spatially periodic structures), it is often difficult to
avoid both the information loss inherent in fitting with a
low-order model and the extra computation and overfitting
with a higher-order model.

3.1.3 Constructing the New Wold Model

Perceptually, by Rao and Lohse’s study [1], the existence
of periodic structure is the strongest perceptual cue in tex-
ture discrimination. We carefully examined the Fourier
spectra of all the images in the Brodatz database, conclud-
ing the following:

e Natural textures often contain multiple Wold com-
ponents.  Perceptually structured textures usually
have dominant harmonic components which appear as
structured spectral peaks. Conversely, when the har-
monic components are significant, they usually domi-
nate the perceptual pattern discrimination.

e Although certain local inhomogeneities (such as tex-
ture on an uneven surface or viewpoint distortion)
spread out or change the frequencies of the spectral
peaks slightly, the intrinsic structure of these peaks
remains.

e Strong evanescent components correspond to eminent
directionality in patterns; local inhomogeneities have
only a minor effect on these components.

The distinct spectral signatures of some textures from
the Brodatz database are shown in Figure 3. The reptile
skin in (a) has a prominent harmonic component. The
spectral peaks are structured and supported by isolated
point-like regions. The cheesecloth in (b) has a strong
evanescent component — large spectral peaks supported by
a line-like region. The beach sand in (c) is mostly inde-
terministic, with fairly smooth discrete Fourier transform
(DFT) magnitudes.

Considering the observations above and the discussions
in Section 2.2, we designed the new Wold-based texture
model to first conduct a “harmonicity test” on an image.
This test provides a measure of the confidence that the

(a) (b) ()

Figure 3: Examples of Brodatz database textures exhibit-
ing distinct spectral signatures in terms of Wold compo-
nents. Top row: originals; bottom row: DFT magnitudes.
(a) D3: Reptile skin, having a prominent harmonic com-
ponent (spectral peaks supported by discrete points). (b)
D105: Cheesecloth, having a strong evanescent component
(spectral peaks supported by a line). (c) D29: Beach sand,
having mostly a indeterministic component.

image can be characterized as highly structured (or rela-
tively unstructured). Based on this measure, either har-
monic peak feature extraction or MRSAR fitting, or both,
are applied. The final Wold representation of the image
contains the harmonic confidence measure and the corre-
sponding harmonic peak features and MRSAR features.

The construction of the new model emphasizes the per-
ceptually most salient harmonic information. It also in-
corporates the demonstrated robustness of the MRSAR
model. The new model avoids the decomposition of images.
The knowledge of harmonic and indeterministic compo-
nents is combined probabilistically by using the harmonic
confidence measure. Details of the new model are explained
in the following subsections.

3.2 “Harmonicity Test” for Feature
Extraction

To determine the prominence of harmonic structures in
a texture, we examined the energy distribution of image
autocovariance functions.

As shown in the top two rows of Figure 4, the autocovari-



Figure 4: Distinct autocovariance energy distribution of
some Brodatz database textures. From top row to bottom:
the originals; the absolute value of autocovariance func-
tions; and the small displacement regions. (a) D3: Reptile
skin: with periodic energy concentration in the entire dis-
placement plane. (b) D69: Wood grain: with more small
displacement energy. (c) D29: Beach sand: with most en-
ergy gathered in small displacement region.

ance energy of a highly structured texture is concentrated
periodically throughout the 2-D displacement plane. In
contrast, the autocovariance energy of a random-looking
texture concentrates in a small displacement region. The
ratio between the autocovariance “small displacement en-
ergy” (defined below) and its total energy (total sum of the
absolute value of the function) can be used as an indication
of the image harmonicity. (In this work, the autocovariance
value at the zero displacement is always ignored.)

An image is first zero-meaned and Gaussian tapered.
Standard deviation of 0.375 is used in all image tapering
in this work. The image autocovariance is computed as
the inverse DFT of the image power spectrum. Starting
from the zero displacement, a region is grown outwards
continuously until the value of the autocovariance function
is lower than a small portion of the function range (10%
in our experiments). This region is regarded as the small
displacement region. Examples are shown in the bottom
row of Figure 4. The energy in this region is used as the
“small displacement energy”.

The autocovariance energy ratio, r., is computed for
each image in the Brodatz database. The histogram of
these ratios has a bi-modal structure. (Gaussian assump-
tions are made to model the energy ratio data using an
expectation and maximization (EM) procedure. Denote
the resulting classes as wp (harmonic) and w, (random).
The EM algorithm gives the means and variances of the
Gaussian conditional probability density functions of r.,
denoted as p(r.|wn) and p(r.|w,), and the prior probabili-
ties, denoted as p(wp) and p(wy). Details of the EM fitting
results can be found in Appendix A.

Given the autocovariance energy ratio r. of an image,
the posterior probability of wp can be computed as

wrlr) = plre,wn) _ p(re,wn)
p( h| 6) p(Te) p(re,wh) —|—p(re’wr)
p(re|lwn)p(wn) @

p(relwn)p(wn) + p(re|wr)p(wr)

This probability is then used as the confidence measure
of characterizing the image as highly structured. Conse-
quently, the confidence of describing the image as relatively
unstructured is

p(wrlre) =1 = p(wn|re). (5)

For a given image, the values of p(wn|r.) and p(wy|re) de-
termine what feature sets are computed. By the property
of Gaussian functions, any value of r. gives non-zero pos-
terior probabilities. To save computation and storage, val-
ues of p(wn|r.) and p(wy|r.) smaller than 0.001 are consid-
ered insignificant and set to zero (for about 5% of Brodatz
database images). Corresponding to the non-zero p(wp|re)
and p(wy|r.), the harmonic peak features and the MRSAR
features are computed respectively.

3.3 TFeatures for Harmonic Structures

The Wold feature set characterizing the harmonic structure
of an image consists of the frequencies and the magnitudes
of the harmonic spectral peaks. To extract the feature set,
the image is first zero-meaned and Gaussian tapered, and
then its DFT magnitudes are computed. The local maxima
of the magnitudes (excluding values below 5% of the mag-
nitude range) are found by searching a 5 X 5 neighborhood
of each frequency sample. The size of the neighborhood
is chosen to match the resolution of the estimated spec-
tra so that the resulting local maxima are separated from
each other by at least two frequency samples. Next, the lo-
cal maxima are examined for the harmonic peaks. A local
maximum is a harmonic peak only if its frequency is either
a fundamental or a harmonic. A fundamental is defined
as a frequency which can be used to linearly express the
frequencies of some other local maxima. A harmonic is a
frequency which can be expressed as a linear combination
of some fundamentals. Starting from the one with the low-
est frequency and in ascending order of their frequencies,
each local maxima is checked first for its harmonicity —
if its frequency can be expressed as a linear combination
of the existing fundamentals, and then for its fundamen-
tality — if the multiples of its frequency, combined with
the multiples of existing fundamentals, coincide with the
frequency of another local maximum. A tolerance of two
sample points in both row and column directions is used
in the frequency matching. Examples of harmonic Wold
features are shown in Figure 5. Note that it is usually not
necessary to use all detected harmonic peaks for the fea-
ture sets. In this work, only the ten largest ones are kept
for each image.

The harmonic Wold features inherit from the Fourier
spectral magnitude the property of spatial shift-invariance,
a property that is usually important when comparing im-
ages. It is often desirable for a retrieval system to also
provide users options such as pattern comparison with re-
spect to relative rotation. TLocal orientation adjustment
may also be used to “straighten out” an inhomogeneous
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Figure 5: Harmonic features of three Brodatz database
textures. From the top row to the bottom: originals; DFT
magnitudes; and harmonic peak feature frequencies. (a)
D3: Reptile skin. (b) D14: Woven aluminum wire. (c)
D52: Oriental straw cloth.

pattern. Since the spatial relationship of the harmonic
peaks in a Wold feature set does not vary under rota-
tion, effects of relative rotation among textures may be
reduced by rotating the peaks to align the main orienta-
tion of the texture to a chosen direction (horizontal in this
work). The main orientation of a texture is defined here
as the direction of the lowest fundamental frequency in the
feature set. Note that this direction may not correspond
to the perceptually most salient orientation in the image,
but this does not matter for the purposes of comparing im-
ages after aligning their orientations. Aligning the peaks
using the frequency with the most energy (not necessarily
the lowest fundamental frequency) is not as useful since the
energy distribution can be influenced by many non-pattern
attributes, such as local lighting and contrast. Since each
feature set typically consists of a small number of peaks,
its rotation involves minimal computation compared to a
rotation in the spatial domain. Note that similar savings
can be gained on other coordinate transformations.

In image retrieval, the user selects a prototype image
and the retrieval algorithm searches through the database
test images for the ones that are similar to the proto-
type. The comparison of the texture harmonic structures
is carried out by matching the Wold feature sets. De-
note the peak feature magnitude values of a prototype
and a test image by mp(s) and m;(r) respectively, where
s = (s1,82),r = (r1,72) € 7. Region 7 is half of the
discrete frequency plane. The harmonic pattern similarity
between the two images is measured as:

N ) S (5 gy T(S)melr)
Mm_; p(); o= e ©

where wp(-) is a point spread weighting function, imple-
mented here as a 5 X 5 (size found empirically) Gaus-

sian mask with unity at the center and standard devia-
tion ¢ = /5. This function enables peak matching within
a small neighborhood of the prototype peaks. This not
only compensates for the frequency sampling effects of the
DFT operation, but also tolerates small frequency shifts of
the harmonic peaks caused by inhomogeneities in the data.
The function of the ratio term is to weigh the difference
mp(s) . my(r)

mp(s)+mi(r)  mp(s)+m(r)
reaches its maximum when my(s) = m(r). Note that the
larger the value M, the more similar the two harmonic
patterns.

of the peak magnitudes since [

3.4 Features for Relatively Unstructured
Textures

The indeterministic component of a texture can be mod-
eled by an AR process (Section 2). Various AR implemen-
tations have been used in texture modeling. In this work,
we use the second order symmetric MRSAR model of Mao
and Jain [6].

The least squares error (LSE) method is used to estimate
the MRSAR model parameters. Other methods, such as
the ML estimation [19] and the 2-D Levinson type algo-
rithm [20], can also be used. Tt has been shown that un-
der the experimental circumstances similar to this work,
the LSE and the ML estimates offer very similar perfor-
mance [21]. The 2-D Levinson algorithm is especially use-
ful when the model order determination is involved in the
parameter estimation. Since the MRSAR modeling in this
work targets the relatively unstructured patterns in an im-
age, a fixed second-order model is chosen and the LSE
estimation is used for its computational simplicity.

At each of the second, third, and fourth resolutions, four
SAR coefficients are estimated for an image. These coef-
ficients and the estimation error compose a five-parameter
vector. The vectors from three resolutions are then con-
catenated to form a fifteen-parameter MRSAR feature vec-
tor. The covariance matrix of the feature vectors within
each image is also computed, and two images are compared
by examining the Mahalanobis distance of their MRSAR
feature vectors. The results of image retrieval based solely
on the MRSAR features is compared in Section 4.2 to the
performance of the new Wold model.

3.5 Detecting Evanescent Components

Since the spectral signatures of evanescent components are
straight lines, an algorithm using the gray-scale Hough
transform was developed to detect evanescent components
in the frequency domain. After computing the Hough
transform of the image DFT magnitudes, the histogram
of line slope angles is built. The variance of this histogram
and the variance of the Fourier energy along lines corre-
sponding to the sharp peaks in the histogram are found to
be discriminative features for evanescent detection. This
algorithm accurately identifies the images from the Bro-
datz pictures D49, D105, and D106 as highly evanescent.
Perceptually, these images indeed have distinctively strong
directional properties.

The fact that the Brodatz database contains few
strongly evanescent samples makes it impossible to statisti-
cally determine how the evanescent information should be
incorporated into the modeling procedure. In this work,



the evanescent database images are modeled by MRSAR
processes.

3.6 Measuring Similarity of Textures

Using the Wold features of textures, the image similarities
can be measured by either the harmonic peak matching
or the MRSAR feature Mahalanobis distances. However,
since the harmonic and the MRSAR features are of dif-
ferent types, it is an open question how the two measures
should be best combined so that the resulting measure re-
flects the overall similarity of textures. In the context of
image retrieval, we propose the following probabilistic joint
measure for image similarity.

Given a prototype image, the system generates two im-
age orderings by using the harmonic peak and the MRSAR
features respectively. In each ordering, the entire database
is sorted by the descending order of the image similarity
to the prototype. For an arbitrary test image, its order
numbers in the two orderings are typically different. De-
note its order number in the harmonic ordering by Oy and
the one in the MRSAR ordering by 0,%. As discussed in
Section 3.2, we consider the posterior probabilities p(wp|re)
and p(wr|r.) as a measure of our confidence to characterize
the prototype texture as highly structured or relatively un-
structured. More specifically, these probabilities indicate
the degree of our belief in the two orderings. Hence, the
joint order number of the test image is computed as

O]oint = th(Wh|Te) + Orp(wr|re).

The final similarity ordering of the database is formed by
sorting images in the ascending order of their joint order
numbers.

As an additional benefit, with this similarity measure,
we have found that the system is less sensitive to the
choices of threshold parameters (such as the 10% for the
small displacement energy calculation in Section 3.2), while
giving improved overall retrieval performance.

4 Image Retrieval Using the New
Wold Texture Model *

4.1 Image Retrieval System

The image retrieval algorithm proposed here consists of
four stages. The first stage is the harmonicity test and
evanescent detection. Given a prototype image, its auto-
covariance energy ratio is computed to obtain the poste-
rior probabilities p(wp|re) and p(wr|r.). Probability values
smaller than 0.001 are set to zero. In the second stage,
corresponding to the non-zero posterior probabilities, the
harmonic peak feature set and the MRSAR features are
estimated respectively. The harmonic peaks in the feature
set are rotated to align their main orientation to horizontal.
The third stage provides database image orderings where
the entire database is sorted by the descending order of
the image similarity to the prototype. In each ordering,
the similarities are measured by either the harmonic peak
matching or the MRSAR feature Mahalanobis distances.
In the last stage, different orderings are combined using

*Tmages having the same similarity measure value to
the prototype share the same order number.

*Both the Photobook system and the Wold model soft-
ware are available by request.
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Figure 7: The non-zero region of the Gaussian weighting
function wy(-) for harmonic peak matching (o = /5).

the method described in Section 3.6 to form the final joint
ordering. The flow-chart of this image retrieval system is
shown in Figure 6.

The retrieval experiments are carried out on the Brodatz
texture database using the Photobook test environment de-
scribed in [22]. Parameters used to compute the posterior
probabilities for a prototype image in harmonicity testing
can be found in Table 1 of Appendix A. The Gaussian
weighting function for harmonic peak matching is shown
in Figure 7.

Each harmonic peak feature set contains the 2-D fre-
quencies and magnitudes of ten harmonic peaks, yielding
twenty integers and ten floating-point numbers per image.
A MRSAR feature set includes the 15-parameter feature
vector and the 15 x 15 feature covariance matrix (120 dis-
tinct numbers due to symmetry), for a total of 135 floating-
point numbers per image. For a 128 x 128 image, fea-
ture computation takes typically 0.18 second for the har-
monic peaks and 38 seconds for the MRSAR features on
an HP9000/735 workstation. The memory needed to store
the features of the entire database is 81 kilobytes for the
SPCA, 545 kilobytes for the MRSAR, and 580 kilobytes
for the Wold.

4.2 Image Retrieval Examples

In Figures 8 and 9, two examples of Wold-based image re-
trieval are shown together with the results given by the
SPCA model and the MRSAR model. The two latter
models are described and benchmarked in [14]. The pic-
tures are in the format of the “Photobook” display window.
The upper left image is the user selected prototype image.
In raster-scan order after the prototype, the retrieved im-
ages are shown by descending similarity to the prototype®.
With pre-computation of the features, all three methods
search the database in interactive-time (the search is faster
than loading the images for display).

In our experiments, two performance criteria are con-
sidered. One is quantitative: the nine samples from each
original Brodatz texture form a class and a perfect “tra-
ditional pattern recognition performance” implies that all
nine images appear at the first row of the output display.
The other criterion is qualitative and more difficult to eval-
uate: the retrieved images should be in the order of their

®The drawback of sequential display is that images hav-
ing the same order number appear as different in their
ordering.
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Figure 6: Flow-chart of the image retrieval algorithm based on the new Wold texture model.

perceptual similarity to the prototype image. In fact, the
latter criterion is subject to cognitive and other influences.
It is not clear if there exists a unique “correct” ordering
agreed upon by all people. Our claims about the Wold
features being perceptual rely on the studies of Rao and
Lohse, and on personal interaction with the features while
searching through the Brodatz database.

An example demonstrating the superior qualitative and
quantitative performance of the new Wold features is
shown in Figure 8. Here, the prototype image is straw
cloth. In (a) and (b), both the SPCA and the MRSAR
methods fail to find other straw cloth pictures as the most
similar; they each retrieve images perceptually very dif-
ferent from the prototype. In (c), the new Wold model
provides both “intra-class” accuracy and “inter-class” sim-
ilarity. Tt perfectly finds all eight other straw cloth patterns
in the database and fills the display with other highly struc-
tured textures.

In Figure 9, the experiment is repeated on a prototype
image of reptile skin. The results in (a) and (b) show
that the SPCA and the MRSAR methods confuse the pe-
riodic reptile skin patterns and the random-looking cork
patterns. In (c), the Wold method not only just retrieves
periodic patterns with many reptile skin images up front,
but also shows robustness to the rotational and local inho-
mogeneities of the reptile skin.

In both examples, the Wold-based method uses largely
the harmonic information in the textures (re = 6.36% and
6.41%, p(wn|re) = 0.893 and 0.892). This is consistent with
the fact that both prototype images contain prominent pe-
riodic structures.

5 Wold Features and Natural Scene
Representation

In this section, we demonstrate how to generate descrip-
tions for textured regions of natural scenes in terms of
Wold features. The scene image is first segmented by us-
ing its MRSAR features and a K-means-based clustering
algorithm. The Wold features are then extracted for the
segmented image patches.

5.1 Textured Region Segmentation

Numerous image segmentation methods have been pro-
posed for various tasks [23][24][25]. While the common
practice is to partition the entire image, our focus here is
to detect and segment sizable and relatively homogeneous

regions in a scene. Note that precision of region bound-
aries is not an important concern in representing natural
scene contents for retrieval; it is more important to ex-
tract features that provide a basis for subsequent content
identification.

An unsupervised segmentation algorithm has been de-
veloped to find reasonably homogeneous image regions.
The algorithm is robust to slight inhomogeneities due
to perspective viewpoint and uneven textured surfaces.
Smooth regions (small variations in pixel values) are first
detected by thresholding the local variances at each pixel
in a 9 X 9 neighborhood. These regions are useful for re-
trieval requests such as “find pictures with a patch of sky
at upper left”. The main segmentation algorithm is a K-
means-based clustering of image pixels in MRSAR feature
space. Pixels in smooth regions are excluded from this
procedure since the LSE estimates of their MRSAR coef-
ficients are unreliable due to the underdetermined linear
equations.

The pixel MRSAR features are the same as described in
Section 3.4. To initialize the clustering algorithm, the im-
age is tessellated into rectangular regions (64 x 64 squares
on 256 x 384 8-bit gray scale images in the experiments
below). In a typical iteration, the Mahalanobis distances
of each pixel to every cluster are computed and the pixel is
re-assigned to the nearest cluster. Small clusters (less than
4000 pixels) are eliminated and their members re-assigned.
Clusters are merged when their mutual Mahalanobis dis-
tance is small. The program terminates after a given num-
ber of iterations or when no pixel changes its cluster mem-
bership in an iteration. One morphological closing [26]
operation is applied to the segmentation output to smooth
the boundaries. The structuring elements used in the two
examples shown below have diameters of 15 and 30 pixels
respectively.

5.2 Natural Scene Representation
Examples

Figures 10 and 11 show two examples of textured region
segmentation and representation in natural scenes. In both
figures, the K-means-based segmentation results are shown
with smooth regions marked in black. The number of iter-
ations used in clustering are 15 and 30 respectively for the
two images.

The example shown in Figure 10 illustrates the segmen-
tation and representation of a city scene. The segmented
building is shown in (¢). The autocovariance energy ratio of
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Figure 8: Tmage retrieval of the straw cloth pattern comparing three methods: (a) SPCA, (b) MRSAR, and (c¢) Wold.

each picture, the images are raster-scan ordered by their similarities to the image in upper left.
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Figure 9: Tmage retrieval of the reptile skin pattern comparing three methods: (a) SPCA, (b) MRSAR, and (c¢) Wold. In
each picture, the images are raster-scan ordered by their similarities to the image in upper left.
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(d) ()

Figure 10: Segmentation of a city scene. (a) Original; (b) Segmentation result with smooth regions in black; (c) Segmented
building; (d) DFT magnitudes of building; (e¢) Extracted harmonic peaks.
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Figure 11: Segmentation of a national park scene. (a) Original; (b) Segmentation result with smooth regions in black; (c)
Segmented cliff; (d) segmented rocks.
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Figure 12: Examples of perceptually similar textures which
exhibit distinct spectral signatures. (b) and (c): two
patches of Brodatz database texture D41: Lace. (a) and
(d): DFT magnitudes of (b) and (c) respectively.

the building is r. = 11.88% (p(wn|re) = 0.489), hence the
region should be represented by both the harmonic peak
and the MRSAR features. The DFT magnitudes and the
harmonic peak features of the building patch are shown in
(d) and (e). In computing the DFT, a 128 x 128 Gaussian
window (o = 24) is applied to the center of the building.
The harmonic peak extraction in this example shows the
robustness of the algorithm to inhomogeneity due to per-
spective, even though no explicit perspective coordinate
transform was included.

Note that not only does the segmentation find the build-
ing patch in the image, but also the Wold representation of
the patch indicates the presence of a “highly structured re-
gion.” For recognition and retrieval, this description rules
out large categories of content such as “grass.” If a user
were browsing for city scenes, the algorithm could skip over
images without any highly-structured regions.

Figure 11 shows a national park scene and its segmen-
tation. Both the cliff and rock patches have no harmonic
structures (Te > 45%) and hence are modeled by their MR-
SAR features. In addition, the cliff has a strong evanescent
component which can be detected by the method described
in Section 3.5.

6 Discussion

6.1 Image Inhomogeneity

The effectiveness of the new Wold-based model depends
on the properties of the estimated image spectra. On the
spectra estimated by the simple method (windowed pe-
riodogram) used here, the proposed image modeling and
comparison system is surprisingly insensitive to small sur-
face inhomogeneities and viewpoint changes. However, the
performance of the new model will be compromised when
the inhomogeneities alter image spectra substantially.

One example is given in Figure 12. If shown to a hu-
man, the two lace pictures could be judged similar. Nev-
ertheless, one of the lace patterns has prominent spectral
harmonic peaks and the other does not. The reason is that
the netting pattern in (c) is not homogeneous enough to
form strong peaks in its spectra, nor does the netting cover
enough area of the image to reinforce the weak periodicity
that is present. Instead, the high contrast flowers in (c)
overwhelm the harmonic component in spectra. However,
a human viewer seems to “homogenize” the netting, and
considers the two lace pictures to be similar.

A related issue is the effect of spatial perspective trans-
formations on image spectral peaks. An example is the
building patch in Figure 10. Here the algorithm is able to
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Figure 13: Retrieval performance operating characteris-
tics — average recognition rates over the entire Brodatz
database, considering from 8 up to 100 top retrieved im-
ages. Methods shown (from top curve to bottom): new
Wold-based model, multiresolution simultaneous autore-
gressive (MRSAR) model, shift-invariant principal compo-
nent analysis (SPCA), tree-structured wavelet transform

(TWT), and Tamura features.

cope with the local inhomogeneity to extract the deformed
harmonic peaks. Both theoretical and algorithmic solu-
tions for Wold-based texture modeling under perspective
transformation are planned as future research.

6.2 Performance Over the Brodatz
Database

The quantitative measure of the retrieval performance
is obtained using the benchmarking method described
in 3.1.2. In Figure 13, the average recognition rate charac-
teristics of the new Wold-based method over the Brodatz
database is plotted against those of four other methods:
MRSAR, SPCA, TWT, and the Tamura features. Fig-
ure 13 shows that, by the traditional pattern recognition
criterion, the new Wold model is a little more effective than
the MRSAR and much better than the SPCA, the TWT,
and the Tamura features. However, the key advantage of
Wold over the others is not captured by this traditional
quantitative benchmark, but involves qualitative searching
for perceptually similar patterns, as demonstrated by some
examples in the last section.

Comparing the recognition rate averaged within each
Brodatz class, the MRSAR method performs better on 10
of the 112 classes at neighbor size 8. Examples are D38
(Water), D41 (Lace), D80 (Straw cloth), and D84 (Raf-
fia). In all ten classes, some patches are quite homoge-
neous and have prominent spectral peaks while others do
not. For the homogeneous patches, the Wold model uses
the harmonic information and considers other database im-
ages with strong harmonic components as more similar to
the prototype than some of the patches in the same Bro-
datz class. In these classes, the MRSAR model captures
the average local spatial interaction and outperforms the
Wold model by up to 18%. However, it is arguable if hu-



man would agree with the original Brodatz grouping for
some of these classes.

Although the Brodatz collection presents the largest va-
riety of natural textures in the research literature to date,
it is a very limited set. For instance, the Wold model
which represents both the harmonic structure and the over-
all randomness in a pattern should outperform the MRSAR
model on textures with mixed-spectra. However, most of
the highly structured Brodatz textures have uniform back-
grounds and simple local features. On these images, the
MRSAR model, which is incapable of representing large
scale spatial arrangements, performs no worse than the
Wold model and can even achieve 100% recognition (eg.:
D14, D20, D34, and D47). Although the Wold model
does better in cases such as D3 (93.1% vs. 54.2%) and
D52 (98.6% vs. 58.3%), its strength is not shown strongly
against the MRSAR model given the limited variety of the
database images.

The fundamental weakness of this performance evalu-
ation is the lack of a meaningful benchmarking method
for perceptual similarity in image retrieval. The current
classes are defined by the image origin in the Brodatz al-
bum, but not the visual similarities. This is especially
problematic for inhomogeneous images, where members of
different classes can be perceptually more similar than sam-
ples from the same original Brodatz picture. Examples are
the subimages of D36 (Figure 2 (b) Lizard skin) and D3
(top image of Figure 3 (a) Reptile skin). However, to at-
tempt to regroup the images by their perceptual categories
is not as easy as it appears. For example, although seman-
tic grouping is not valid, it is often unnatural for a human
to perceive the visual and the semantic similarities among
images separately. One example is the five Brodatz brick
wall patterns which differ in scale and surface properties.
The Wold model will not retrieve all the brick images to-
gether and therefore cannot be claimed to be “semantic,”
although its features do yield semantic descriptions (pe-
riodicity, directionality, randomness). The current claims
for performance regarding perceptual similarity rely on the
relation of the model features to the perceptual dimensions

identified by Rao and Lohse.

7 Conclusions

A new texture model based on the 2-D Wold random field
decomposition theory is presented and applied to image
retrieval in the Brodatz texture database.

The structure of the new model reflects the correspon-
dence between the perceptual properties of the Wold com-
ponents and the properties of human texture perception. It
emphasizes the perceptually most salient harmonic struc-
tures in a texture while using the robust statistical models
to represent the relatively unstructured patterns. The new
model avoids the actual decomposition of images and is
designed to tolerate a variety of inhomogeneities in natu-
ral data, making it suitable for use in large collections of
natural patterns.

The Wold-based model provides a new approach in mod-
eling textures with mixed-spectra. Since the model uses
harmonic peak extraction and MRSAR modeling to target
different parts of the spectra, it is able to avoid a common
problem found in statistical modeling: the information loss
inherent in fitting highly structured textures with a low-
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| Wh wr
mean 6.3579 43.6936
variance | 10.0241  295.6701
prior 0.1270 0.8730

Table 1: Parameters of two Gaussian classes fitted to the
autocovariance energy ratio data.

order model, or the extra computation and overfitting with
a higher-order model.

Based on the Wold texture model, a new image retrieval
algorithm is proposed. Different types of image features are
aggregated for similarity comparison by using a Bayesian
probabilistic approach. Compared to other texture models,
the Wold model appears to offer perceptually more satisfy-
ing results in the image retrieval experiments while exceed-
ing the performance in recognition by traditional quanti-
tative criteria.

A K-means-based image segmentation method is pre-
sented to demonstrate how the Wold-based model can be
used to characterize textured regions in natural scenes.
The Wold feature sets constructed for these regions can
be used subsequently in image content description.
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A EM Fitting of Autocovariance
Energy Ratio Data

Two Gaussian probability density functions are fitted to
the autocovariance energy ratio data generated from the
entire database. The function parameters estimated by
an EM algorithm are shown in Table 1. The joint prob-
ability density functions p(re,wn) p(re|wn)p(wn) and
p(re,wr) = p(re|wr)p(wy) are plotted in Figure 14, together
with the energy ratio histogram.
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