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Abstract

This paper demonstrates a new application of
computer vision to digital libraries — the use of
texture for annotation, the description of con-
tent. Vision-based annotation assists the user
in attaching descriptions to large sets of images
and video. If a user labels a piece of an im-
age as “water,” a texture model can be used to
propagate this label to other “visually similar”
regions. However, a serious problem is that no
single model has been found to be good enough
to reliably match human perception of similar-
ity in pictures. Rather than using one model,
the system described here knows several tex-
ture models, and is equipped with the ability
to choose the one which “best explains” the re-
gions selected by the user for annotating. If
none of these models suffices, then it creates
new explanations by combining models. Ex-
amples are given of annotations propagated by
the system on natural scenes. The system pro-
vides an average gain of four to one in label
prediction over a set of 98 images.

1 Introduction

Digital libraries of text, sound, image, video, and other
data are rapidly growing in size and availability. The con-
tent is diverse — news footage, medical imagery, art col-
lections, whale flukes, consumer goods, weather photos,
Disney movies, fabric samples, home video, vacation pho-
tos, and more. However, tools for accessing digital content
are still in their infancy. This paper describes a new step
toward improving content access — the use of computer vi-
sion to help generate descriptions for annotatingimage and
video.

Traditionally, access to multimedia libraries has been
in the form of text annotation — titles, authors, captions,
and descriptive labels. Text provides a natural means of
summarizing massive quantities of information. Text key-
words consume little space and provide fast access into
large amounts of data. When the data itself is text, it
can be summarized using sophisticated computer programs
based on natural language processing and artificial intelli-
gence.

When the data is not text, but rather sound, image, or
video, then generating labels is considerably more difficult.

*This work was supported in part by BT, PLC, Hewlett-
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Figure 1: Two scenes labeled by humans as “city” or “coun-
try.” These labels can also be generated by the computer
through the use of “vision texture,” scene description based
on collective texture features.

The labeling process requires some unknown transforma-
tion to first convert the signals to symbols. How humans
accomplish this transformation so effortlessly remains a
mystery. To date, when a database needs annotation, a
person has to enter the labels by hand at great cost and
tedium.

Of course, some access to pictures, sound, and video
will be best achieved without text — for example, the user
may wish to “find another shot like this” or to “skip to the
end of the song.” In these cases, a signal is compared to
another signal — conversion to text is not required. Solving
requests like these is the difficult quest of new research
in pattern recognition, computer vision and acoustic scene
analysis. Progress is rapidly being made in the ability to
search for similar scenes based on shape, color, and texture.
Examples are the QBIC system of IBM [1], SWIM system
of ISS [2], and Photobook system of MIT [3] [4].

Even “purely visual” databases (e.g. a collection of
paintings) will still tend to have text associated with them
(title, artist, subject, etc.). Annotation is both important
for preparing multimedia digital libraries for query and re-
trieval, and useful for adding personal notes to the user’s
online collection. But annotation is costly in time and dol-
lars to perform; tools that save work annotating are greatly
needed.

Tools that help annotate multimedia databases need to
be able to “see” and “hear” as the human sees and hears
— so that if the human says “label this stuff grass” the
computer will not label just that stuff, but also go find
other grass that “looks the same” and label it too.! Tex-

!Eventually, we expect the computer will infer most of
these labels without being told; the present system collects



ture features, although low-level, play an important role in
the high-level perception of visual scenes —enabling the dis-
tinction of regions like “water” from “grass” or “buildings”
from “sky.” Such features alone will not solve the complete
annotation problem, but they will be a key component of
the solution.

Ideally, computers will be able to intelligently combine
vision, acoustic scene analysis, and text annotation to pro-
vide users access to content. This paper describes a first
step in the combination of vision and text annotation —
specifically, the use of “vision texture” to assist in annota-
tion.

2 Vision texture and annotation

Computer vision has traditionally focused on the “things”
in pictures described by their specific geometry, shape, or
structure, e.g. people and objects such as cars, houses,
or machine parts. However, pictures also contain grass,
water, leaves, sky, crowds of people, and other “stuff” that
does not depend on specific shape or structure, but is best
described by collective properties. There is not a sharp
boundary between the categories “things” and “stuff,” just
like there is not a sharp boundary between count nouns and
mass nouns;’ nevertheless, the distinction prevails as two
endpoints of a useful continuum.

This research focuses on the use of collective visual prop-
erties, or “vision texture” for annotation. Texture models
extract “stuff” features such as directionality, periodicity,
randomness, roughness, regularity, coarseness, color distri-
bution, contrast, and complexity, which are hypothesized
to be important for human perception and attention [5]
[6] [7]. Low-level color texture features [8] have also been
shown to be useful for “selection” of regions of interest
preceding actual recognition.

Low-level texture features may also play a significant
role in high-level tasks such as recognition. Studies with
pigeons [9] indicate they can recognize categories such as
“water” and “tree;” such studies support the hypothesis for
a simple’ mechanism, that perhaps looks at collective low-
level features for making comparatively high-level quick
classifications. A recent study [10] demonstrated that fea-
tures based on texture orientation closely matched human
high-level classifications on 91 out of 98 digitized vacation
photos (two of which are shown in Fig. 1). Simple color
histograms have also been shown to be useful in the recog-
nition task of matching known models to unknown image
data [11]. The belief that low-level vision is limited to only
low-level tasks is too restrictive.

2.1 Annotation by fickle users

Scene annotation is an ill-posed problem in general. Con-
sider the two pictures from Boston in Fig. 2, where one
picture is of rows of pews and one is of a stained-glass win-
dow. Both of these frames exist in one of our travel video
databases, where the annotator labeled them “church.”
Simple visual features do not reliably predict this anno-
tation. However, by having a user identify and annotate
parts of a picture, e.g. encircle the pews and label them

feature-label pairings toward this goal.
2How many lions in a pride, or how many jellyfish in a
smack?

3 «Simple” enough for a bird brain.

Figure 2: Two keyframes labeled “church” from a travel
video of Boston

“pews,” then features can eventually be identified that are
consistent with the labelings. Moreover, these feature-label
pairings can be combined with Al systems based on text,*
to begin to learn that pew features might also be likely to
predict the label “church.” Gradually, the associations be-
tween image features and descriptions can be refined until
the system begins to recognize annotations automatically
and reliably.

No algorithms have yet succeeded in mimicking human
description of scenes, except for in a few highly-constrained
situations. The solution proposed here is not to try to solve
the whole (unconstrained) annotation problem automati-
cally, but to develop tools that assist the human interac-
tively, and that learn the user’s preferences.” The system
proposed here provides an interaction where the user la-
bels a region and the system determines “similar” regions
in which to propagate the user’s label.

The problem of finding visually similar regions to which
to propagate the label is very close to the problem that
arises in retrieval of similar pictures [1] [14]. Tn both cases,
features need to be identified which are important for mea-
suring similarity.

Determining which model gives the best features for
measuring similarity is complicated by the fact that users
are fickle. People are nonlinear time-varying systems when
it comes to predicting their behavior. A user may label the
same scene differently, and expect different regions to be
recognized as similar when his or her goals change.

Many factors influence the way people measure simi-
larity, making human similarity decisions very difficult to
predict. In Fig. 3 for example, some would say the top two
images are most similar in pattern and scale. Others would
say the two brick images are most similar because they are
both brick. In fact, measuring similarity is significantly
more complicated than these examples reveal, encompass-
ing arguments that feature spaces for measuring similarity
may be non-metric [16] and non-symmetric [17]. We briefly
identify the following influences:

Visual features Regions may look similar at a quick

*WordNet [12] for example, contains synonyms and se-
mantic relations of English words and concepts. It can be
used to retrieve “semantically close” words, e.g. “operat-
ing room” retrieves “hospital” with the semantic relation
“part-of” [13].

® After interacting with many users, however, the system
might begin to recognize some “universal” preferences and
adopt those for automatic annotation.
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Figure 3: Tmage similarity can be perceptual or semantic.
It can also be influenced by culture, context, or user pref-
erence. Presently, vision-based annotation helps the most
with perceptual similarity; it notices that all of these have
similar horizontal/vertical structure. However, one model
may decide that the two brick images are most similar,
and another model may decide that the top two images
are most similar. People, too, will arrive at different deci-
sions, depending on which set of features best meets their
goals. The four images shown here are taken from [15].

glance; you could swap one for the other and proba-
bly not notice, e.g. dense leafy treetops and grass.

Viewpoint Images may be of the same scene, but differ in
camera viewpoint or lighting. Tt may take the viewer
a little more time to recognize that the images are
the same.

Semantics Regions may be similar because they contain
similar objects, e.g. windows on an office building
and windows on a car.

Culture and past The non-periodic lower right brick
pattern of Fig. 3 may be considered to be periodic
if it conjures up an image of a brick wall. Perception
and semantics are both influenced by what a person
has seen, and by what his or her language and culture
emphasize.

Note that the influences above are not mutually exclu-
sive. All four can be at work and the user will still perceive
similarity. Humans do not separate these influences natu-
rally. For example, people have difficulty perceiving small
changes in perspective; most people find it hard to accu-
rately draw a picture in perspective even though that is
the way they have seen it all their life; they recognize and
sketch a building as having predominately vertical paral-
lel lines and right-angle corners, when it will almost never
appear this way in a photo. Since we want the system ul-
timately to be evaluated by the human using it, we will
have to grapple with this mixture of influences affecting
similarity.

Given these influences, it seems misguided to look for
some universal measure of similarity within pictures. In re-
stricted applications, e.g. inspection for a mark of a partic-
ular size and shape, similarity matches can be made quite
precisely. But in general picture retrieval, at least for the
immediate future, there are important reasons to keep the
human in the system, i.e. to make semi-automated tools.

The discussion above deals with locating similar regions
after the human has annotated one region, so that the sys-
tem can propagate the annotation. The system does not
yet generate the description; it is still generated by the
user. However, the system can store the user’s annotations
along with which texture features were used to character-
ize the annotated region. As the system accumulates this
knowledge for different contexts, e.g. art collections vs.
wedding videos, it can begin to learn which combinations
of features form good predictors of descriptions. Thus,
the preliminary steps here will feed naturally into larger
“common-sense” systems for querying images.

2.2 There is no one best model

Over the last decade, about twenty basic texture models
have been presented in the literature and shown to achieve
around 90% classification on homogeneous textures. Most
of the models are not designed for non-homogeneous re-
gions as are typical in natural scenes. Very few compar-
isons have been made on large diverse data sets. Perhaps
the strongest conclusion that can be made on these models
is that their performance is data-dependent.

The data set for which we develop this annotation sys-
tem is potentially the most diverse of all, for we cannot
predict what images people will want to annotate. To eval-
uate which texture model does “best” for this unknown



Table 1: Models known by the system

Model Description Ref.
HIST-D Color histogram differences

HIST-EE  Color histogram energy and entropy [19]
HIST-T Color histogram invariant features [20]
EV FEigenvectors of RGB covariance [21]
MSAR Multiscale simultaneous auto-regressive  [22]
TSW Tree-structured wavelet transform [23]

data set is not doable in a meaningful way; it is arguable
what measure would provide a universal measure of “best,”
given the four influences discussed above, and their own
data dependency. Moreover, the “best” performance aver-
aged over a large diverse set may coincide with individually
poor performance on the region of greatest interest to the
user. Conclusive results may be reached someday, but they
will require carefully combining data from many digital li-
braries, many users, and many years of interaction and
analysis.

We assume that there is neither one model that will be
optimal for recognizing and annotating all kinds of stuff
in pictures, nor is there a unique non-overlapping arrange-
ment of labels that users will want to use to annotate a
picture.® Instead, we assume that a user might assign
multiple labels to possibly overlapping regions. We also
assume that models will tend to specialize, and that they
can work alone or together to model regions in the images.
This second assumption is in the same spirit as the “So-
ciety of Mind” [18], whereby specialized agents, or models
in this case, interact to make sense of what they see. In
this case we have a “society of models” which interact to
explain “stuff” in pictures.

We expect that only about a dozen different models
might be needed; six models are in the current system —
five from the recent literature, and one simple model based
on a color histogram. The framework described in this pa-
per does not depend on the specific number or choices of
models; it is simple to snap models in or out because of
the tree paradigm outlined below. It is an open problem
to decide which texture models in the literature are best
to include in this system.

2.3 Models in the present system

The six models used in the present system are listed in Ta-
ble 1; they are not proposed as an optimal subset. They
include four models which consider color and two which do
not, and three models which are based on first order statis-
tics and three which are based on second order statistics or
filtering. As mentioned, very few conclusions exist on the
relative strengths of texture models for different classes of
data; hence, there is not enough information at this time
to choose an optimal subset.

The six models above are described and motivated in
the references, with the exception of HIST-D which is de-
scribed below. Presently, it is difficult to state which mod-
els are expected to perform best on which kinds of data.

6This departs from the traditional computer vision
viewpoint of using one model to segment an image into non-
overlapping regions before assigning labels to the regions.

The annotation system helps “discover” these relations,
but a lot more data is needed before general predictions
can be inferred empirically. A few comments are given
below on each of the six models used presently.

The HIST-D model works as follows: Concatenate the
histograms of the Ohta [24] color components I, I, I5 into
a feature vector, then compare two feature vectors with the
Euclidean distance. We know of no studies which evaluate
this model.

The HIST-EE model consists of the energy and entropy
features of the three Ohta color channels. These have been
shown [19] to improve discrimination (in comparison to
filter energy features used alone) among an extended set of
images formed from twelve color granite images.

The HIST-I model computes illumination invariant fea-
tures of RGB histograms. These features were shown to
outperform two comparable sets of color features on recog-
nition of twenty-seven images, consisting of nine different
scenes, each shot under three different conditions of illumi-
nation [20].

For the EV model, three separate covariances are com-
puted on the R, GG, and B color components, and the values
corresponding to the twenty-one largest eigenvectors are
kept as features for each component. FEuclidean distance
is used for comparison. We have not seen any published
studies of the use of this model for discrimination or recog-
nition of color images, although eigenvectors are commonly
used for a variety of pattern recognition problems [21].

The MSAR model computes parameters for a second-
order simultaneous autoregressive model over three scales,
for a total of fifteen features [22]. The fifteen features are
computed on the NTSC gray component. A Mahalanobis
distance was used for discrimination. This model has been
found to work better than eigenvectors for retrieval of im-
ages in the Brodatz [15] texture database [25].

The TSW features are also based only on the NTSC gray
component. Unlike in [23] where their trees were averaged
across several samples from the same Brodatz image, here
only one tree of features is generated per selected image
region because the regions are not big enough to support
several samples. The wavelet trees were expanded down
four levels, as in that paper. This method has been shown
to outperform similar transform methods on a test set of
30 Brodatz textures [23].

2.4 Annotation to help learn context

A patch from the side of a building and a patch from a
street can have identical pixel values. Perceptually indis-
tinguishable texture patches can be extracted from a grass
lawn and from mandril fur. Generally, when a person looks
at a tiny region of an image they cannot tell what it is; the
patches cannot be identified without context. This am-
biguity is not restricted to the visual system; if someone
says “Atlanta is in Miami” the sentence is confusing unless
they first mention they are talking baseball. The context
(baseball) must be present for accurate understanding to
occur.

If a system uses texture features based only on small
patches selected by the user, then the system will some-
times propagate the labels to patches which look the same,
but which should not have the same label. This problem
will arise in any annotation systems that ignore context.



Hence, this drawback of the current context-free use of vi-
sion texture is recognized up front. Multiscale and region-
adjacency information, along with common-sense knowl-
edge, along with lots of ground-truth feature-label relations
are needed to make progress in incorporating context.

The present system assists directly in gathering “labeled
ground truth” (annotation) for a large collection of data.
This data will be helpful for learning how to deal effec-
tively with context, as well as for other applications. Fu-
ture improvements to the present system are planned for
incorporating context.

3 New Photobook with annotation

We began with the MIT Photobook image retrieval system
[3] [4], and have augmented it to perform interactive anno-
tation. The evolved “interactive annotation extension to
Photobook” is still called “Photobook” for short. Photo-
book from the user’s perspective is described first below,
followed by an explanation of how the system “looks at”
the problem.

3.1 What the user sees

A number of decisions are involved in designing an anno-
tation system from scratch. We have made assumptions
to bootstrap the process. They are listed here to indicate
that they are variables which can be explored further; none
are critical to the results here.

1. Users should not be restricted to either “perceptual”
labels or “semantic” labels. The system should adapt
to the user’s notion of similarity.

2. Users should not have to carefully trace out the entire
region that they wish to label. They can label a sub-
set and the label should propagate to visually similar
regions both within the picture they are looking at,
and within other pictures.

3. Users should be able to assign labels to arbitrarily
shaped, possibly overlapping regions. Currently, im-
plementation constraints only allow the labeling of
coarse subimages (patches).

4. Users should get fast, visual responses from the an-
notation system.

In the current system, the user can browse through a
database of scenes. He or she can select patches from one
or more images as “positive examples” for a label, which
is chosen from a menu (shown in Fig. 4). The system then
propagates the label to new regions in the database that
it thinks should also have the label. The user can imme-
diately view the results. Falsely labeled patches can be
removed by selecting them to be “negative examples” for
the label. This is how the user “corrects” the system. The
user can continue to add positive or negative examples for
the same label or different labels. The system responds
differently depending upon which patches are selected as
positive or negative examples.

The system remembers each of the positive and negative
examples designated by a user. Unless the user clears the
state of the system, the system makes its decisions with
the intent to satisfy everything it knows. Hence, it will
always try to label everything that “looks like” positive
examples while not labeling negative examples or anything
that “looks like” them.

bark
building

car

ar

leaves

Figure 4: Photobook’s label menu



3.2 How the system “sees”

Here we describe the new Photobook system with annota-
tion. The discussion below proceeds in two parts: first, a
description of the pre-processing — what is in place before
the user arrives; second, a description of the run-time pro-
cessing — how does the system dynamically choose models
and respond to user feedback?’

3.2.1

In the examples shown in this paper, the test data con-
sists of ten natural 512 x 512 color scenes taken from a set
of 98 digitized vacation photos (the same set used in [10]).
Each image in the database is split into square subimages
or “patches” (64 per image for the current system; e.g. see
Fig. 6). The pre-processing and run-time algorithms deal
only with these patches; the tree formation does not cur-
rently consider what image a patch came from, or where in
the image the patch was located. As mentioned above, no
spatial context (region adjacency) is presently exploited.

Before the user interacts with the system, the system
has already been designed to know a set of M models, and
has pre-computed a tree classification for each model, T,
m = 1...M. In the current system, M = 6 trees are built
using the following steps:

Pre-processing: configuring model trees

1. Compute a feature vector for the model for each
patch. Note that the number of features and the dy-
namic range of the feature values are both dependent
on m.

2. Cluster the patches based on their feature vectors.
Here we used the common-neighbor clustering of
Jarvis and Patrick described in [26] since it is in-
dependent of the definition of feature distance. Two
images are put in the same cluster if they have k; = 4
of their k nearest neighbors in common and are k-
nearest neighbors of each other. Neighbors were de-
termined by computing distances using whichever
distance metric was presented in the references for
each model; typically this was either a Euclidean or
a Mahalanobis distance.

3. Form a hierarchical tree of the clusters. Each patch
is a bottom “leaf” in the tree after an initial cluster-
ing from the previous step for k=5. In this step, k is
incremented, k = 5...20 with each increment link-
ing together clusters, and growing the tree upward
hierarchically. Once the tree is established, distances
between the feature vectors will no longer be needed;
instead, distance will be measured by ancestral dis-
tance between two clusters. All patches sharing the
same parent (patches are in the same cluster) are dis-
tance “0” from each other, patches sharing the same
grandparent are distance “1”, etc.

In the present research, each tree includes all the patches
in the database, and trees are reconfigured as new data is
introduced to the collection. In the future, this requirement
can be relaxed and trees can specialize over portions of the
data set.

"There is currently no post-processing, although inter-
esting post-processing is possible based on the knowledge
accumulated during a session with a user.

3.2.2 Run-time processing: model selection and
user feedback

As mentioned earlier, no single model is able to robustly
recognize the variety of different patches that a user might
believe should have the same label. In the algorithm de-
scribed next, certain tree nodes (“covers”) are identified
as having “best explained” the positive examples, and the
“best” of these covers are chosen to guide the labeling,
where “best” is defined below.

At run-time, each model has a tree, T,,, which describes
that model’s sense of similarity between any two patches.
At any point while the user is interacting with the system,
there exists a set of positive examples and negative exam-
ples for a label L. Fach time this set changes, the system
updates the labeling according to the method below.

Define a “cover” as a tree node which parents (or “cov-
ers”) at least one positive example and no negative ex-
amples. Then a “hypothesis” for the examples is a set of
covers which together parent all positive examples. A pos-
itive example may be covered by more than one parent, i.e.
overlap is permitted.® The covers in a hypothesis may be
taken from one or more of the M trees.

Under this formulation, the system need only determine
the “best” such hypothesis. The “best” hypothesis here is
taken to be the hypothesis which has the fewest covers and,
of those hypotheses, parents the fewest total leaves, i.e. the
covers are few and small.

Finding the best hypothesis over all nodes in all trees
is combinatorially prohibitive, so we employ a two step
approximation. First, the best hypothesis is found for each
tree. The nodes in those M hypotheses are then pooled and
searched for the overall best hypothesis. This algorithm
can be formalized as:

1. Oy = BestHyp(Covers(Th,))
2. C = BestHyp(U Cr)

m

where Covers(T') is the set of covers in tree T, BestHyp(.S)
is the best hypothesis given the set of covers S, and C'is the
overall best hypothesis. Finding the optimal BestHyp(.S)
is NP-hard, so we approximate it with a greedy algorithm
that iteratively chooses the “best-looking” cover in .S and
places it in BestHyp(.S) until all positive examples have
been covered. The “best-looking” cover in S is the one
which parents the most uncovered positive examples and,
of those covers, parents the fewest total leaves.

Once the best hypothesis C is found, all images parented
by a cover in C are assigned the label L. The system follows
this algorithm for each possible label I, and patches may
end up with multiple label assignments. In this case, the
system displays a list of the assigned labels under the patch.

The current system has no concept of the “quality” of
an example, i.e. the fact that some positive examples are
more prototypical of a label than others, and that some
negative examples are more anti-typical than others. For
the labels used here, a prototype for one label is usually
not a good prototype for another; in fact, it is usually a
negative example of the other. The current system exploits
this phenomenon by assuming that a positive example for

#In AT terminology, this system learns “internally dis-
junctive disjunctive concepts given instances over M tree-
structured attributes.”
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Figure 5: Two hypothetical model trees. Given the four positive examples p1...ps and one negative example n1, the overall
best hypothesis will contain node 1 (because it covers two positives with 3 total leaves) and node 2 (because it covers the
remaining two positives). Hence patches pi1, b1, p2, ps, ps, and by are labeled. Patches b3, bs, and n; remain unlabeled.
Using the left tree alone would given the same results, except b2 would also remain unlabeled. Using the right tree alone

would have labeled all patches except nj.

one label is a negative example for all others. That is, the
interface fabricates a set of “implicit” negative examples
whenever the user inputs a positive one. This is occasion-
ally harmful, but more often it significantly reduces the
number of inputs required to reach a satisfactory labeling.
In the future, we plan to relax the strict non-overlap of
labels imposed by this assumption by adding an internal
“quality” factor for examples.

3.3 Multiple labels for the same patch

The user currently is allowed to pick one label per patch;
however, a patch may still receive multiple labels. Con-
sider a picture of trees against a blue sky. If the user
labels several pure sky patches “sky” and pure tree-top
patches “leaves” and does not label the mixed sky/leaves
patches, then the system may label these patches with both
the “sky” and “leaves” labels. The success of this “mixture
labeling” appears to be a by-product of the use of multi-
ple models. With only one model, the mixed sky/leaves
patches could either be grouped with sky, with leaves, or
with neither. With different models for sky and leaves, the
mixed patches can be grouped with sky by one model, and
with leaves by the other model. Hence, a mixed region can
automatically receive multiple labels.

3.4 Performance examples of the system

Examples of annotation in the new Photobook system are
shown and discussed below. In our tests, the best overall
hypothesis was usually identical to the best hypothesis for
some model tree. In such a case, we say that model alone
was the “best model” for the labeling. Omne case where
multiple models were used (not illustrated here) was where
one kind of building was in one scene and another kind was
in another scene. The user selected regions of the buildings
from both scenes to be labeled “building.” One model gave
the best cover for the buildings in one scene, and another
model gave the best cover for the buildings in the other
scene. The two models were united to explain the common
label and produce the overall hypothesis.

In Fig. 6, the user selected four prototypes (positive
examples) of “sky” (outlined in red —look in upper left) and
two prototypes of “grass” (outlined in red —lower left). The
system decided that model MSAR was best for grass, and
used it to find and label the ten additional grass patches.
The model EV was found to be best for sky, and was used
to find and label the other twenty-eight sky patches.

The performance may vary depending on exactly which
patches are selected as prototypes. Typically, selecting two
to four prototypes that are “representative” of the desired

label gives the best performance initially. Because of the
large block-size, and correspondingly, the tendency for one
block to contain more than one region, the performance in
the present system is roughest around the edges. However,
fine segmentation is not necessary for most retrieval appli-
cations. Knowing that “about half” of an image consists
of regions labeled “building” is sufficient for many kinds of
retrieval.

Figure 7 shows an example of labeling a city shot. Here
the user selected three prototypes of “building,” two of
“car,” and two of “street” (each prototype is outlined in
red). The system selected the model HIST-D for all three
classes of labels and labeled the regions in a satisfying way
to the user. Note that within a class, even though each pro-
totype patch is quite different, they contain the same kind
of visual “stuff,” in the context of this database. If the “car
stuff” is sufficiently unique compared to the other content
in the database, this low-level approach meets with success.
The idea that simple color histograms could provide useful
invariants for object recognition was demonstrated in [11].
Thus, vision texture is sometimes able to find objects like
cars, even though cars are not usually considered texture.

The true performance of a labeling system is ultimately
judged by the user. In the two examples above, the user
achieved a labeling that was deemed satisfactory without
having to correct the system.

Figures 8 and 9 illustrate the response of the system
to user feedback via negative examples. Initially, the user
selected the four red-outlined “leaves” regions in Fig. 8.
The model TSW was chosen for finding and labeling four-
teen other patches as “leaves.” The user disagreed with
the labeling of the roof/window patch by TSW and indi-
cated that the patch is a negative example for the class
“leaves.” This feedback resulted in another labeling hy-
pothesis which labeled more of the house and the fence
area as “leaves” (this iteration is not shown). The user
then de-selected the fence patch, giving a satisfying label-
ing. This labeling is shown in Fig. 9, with the two patches
in red indicating the two negative examples used after the
result of Fig. 8.

Note that each interaction with the user modifies the set
of input examples. Hence, the system is free to choose a
new model or combination of models at any time during the
interaction. This choice happens transparently; the user
only sees the selected /de-selected patches and the labels.

Over the three cases illustrated in Figs. 6-9, the average
annotation gain (savings to the user) can be measured to
be 1:5. This gain is the ratio of inputs from the user to
the total outputs which get labeled satisfactorily. Inputs



are the total number of positive and negative examples.
For example, in Figs. 8 and 9 the total inputs was 6 and
the total outputs (after the user was satisfied) was 16. In
Fig. 6 the gain ratio was 6:44. Note that performance ratios
such as this always depend on error tolerance: the more
false labels you allow, the more true labels you can get.
This trade-off becomes more apparent in a large diverse
database (example below).

4 Extensions and applications

The performance of the system as described above is cur-
rently interactive-time (on an HP 735 workstation) show-
ing labelings immediately after the user has selected pro-
totypes. Note that most of the work is done off-line before
the user interacts with the system. Only if new data is
added suddenly by the user will the system need to pause
and reconfigure its trees. Currently the user cannot add
new data during annotation, but this is an area for future
extension.

We have recently run the above system on the entire set
of 98 vacation photos (98 x 64 = 6272 patches). Although
the labeling is slower, we have identified small adaptations
that should return the process to interactive-time. Our ini-
tial implementation builds the same trees except for omit-
ting the TSW.? Given 250 inputs of positive and negative
examples, the system labeled an additional 1169 patches.
Of the system-labeled patches, about 90% were estimated
to be correct by the user. Hence, although the system size
scaled up by a factor of ten with a diverse collection of im-
ages, the labeling still provides a 1:4 gain (with ten percent
error tolerance) in terms of saving work for the user.

4.1 Learning from the annotations
(post-processing)

One immediate application of the above results is in re-
trieving images that have a certain content, i.e. “find im-
ages that are mostly grass and sky.” Another step is to
begin to learn higher image categories, e.g. the system
may be taught that shots that are half sky at the top and
largely grass at the bottom are “outdoor, open shots.” Cer-
tain mixes of content, e.g. “car, street, building,” can also
be associated with certain contexts, e.g. city shots.

One can imagine many things to do with the labeled
output at this stage. For example, one can go back and
determine if particular models “specialize” in finding par-
ticular types of image content. Consistent feature-label
pairings could also be used to predict annotations given
only image data. For example, it might take the HIST-D
model features found to correspond well to buildings, and
make a note of these for a future query on buildings in
an un-annotated system. The results at this stage have
opened the door to interaction between high-level descrip-
tion and low-level textural features.

4.2 Sound textures for annotating audio
collections

The principles demonstrated here also apply to “sound tex-
tures” in digital audio libraries. Like visual textures, sound

?Based on experience searching with TSW in the Pho-
tobook environment, we expected it would give poor recog-
nition on the patches. It was also the most computational
for preprocessing so it was omitted from the larger study.

textures can be stochastic or periodic, e.g. the stochastic
sounds of applause or a bubbling fish tank, or the repet-
itive “chunk chunk sluurrp” of a copy machine. Texture
is useful not only for recognizing such sounds, but also for
describing concepts such as timbre and rhythm. Many of
the same models used for vision texture appear to work
well for sound texture [27] [28].

To adapt the method presented here, one may substi-
tute sound features for image features. One can also easily
substitute new models for the six here. Once the classi-
fication trees are built, the user would select a segment
of sound to be labeled, and then the system would de-
cide which model or combination of models best character-
ized it. Tt would then propagate the label to “perceptually
similar” sounds based on that characterization. As in the
case of the visual database, pairings of labels and features
can be accumulated and used to learn automatic labelings
and higher categories. Eventually the system may acquire
enough knowledge to be able to query un-annotated data,
and to do most of the common (predictable across different
users) annotation on its own.

5 Summary

A new system that combines low-level texture with high-
level descriptions to assist users in annotating digital li-
braries has been demonstrated. To the best of our knowl-
edge, this system is new in the following ways:

e It illustrates the use of texture for assisting the user
interactively in annotating multimedia databases.

o [t dynamically selects from multiple texture models,
based on the behavior of the user in selecting a region
for labeling.

o [t uses trees of clusters as an internal model represen-
tation, which makes it flexible enough to allow com-
binations of clusters from different models. Hence,
if no one model is “best” then it can create a new
hypothesis by pruning and merging relevant pieces
from the model trees it knows.

o It does not depend upon a metric similarity space
during annotation; the metrics are only used to ini-
tially cluster the patches into hierarchical trees. The
trees are fast to search, permitting interactive-time
comparison among the multiple models.

e It has persistent knowledge; it stores what it has
learned in terms of positive and negative examples,
and uses these to improve its labeling ability.
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Figure 6: The user input six positive examples for this scene (outlined in red); the computer generated forty-four satis-
factory labels
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Figure 7: The user input seven positive examples for this scene; the computer generated thirty-seven satisfactory labels

b

e

iy
b a7

e
| /

.'?"'

i
A

ztreet

—_—
|
|

ztreet

strest

street




'ﬁ*?‘

Figure 8: The user input four positive examples; the system generated many satisfactory and unsatisfactory “leaves”
labels in this image
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Figure 9: The user gave corrective feedback (negative examples outlined in red) to the output shown in Fig. 8, resulting
in sixteen satisfactory labels
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