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Abstract

We investigate a measure of “dominant perceived orienta-
tion” that has recently been developed to match the out-
put of a human study involving 40 subjects. The results
of this measure are compared with humans analyzing seven
“teaser” images to test its effectiveness for finding perceptu-
ally dominant orientations. The use of low-level orientation
is then applied to a “quick search” problem important in im-
age database applications. Since both pigeons and humans
are able to perform coarse classification of certain kinds of
scenes, e.g., city from country, without taking time or brain-
power to solve the image understanding problem, we con-
jecture that the collective behavior of low-level textural fea-
tures such as orientation may be doing most of the work.
We demonstrate a simple test of global multiscale orienta-
tion for quickly searching a database of vacation photos for
likely “city /suburb” shots. The orientation features achieve
agreement with human classification in 91 out of 98 of the
scenes.

1 Introduction

The fact that orientation is an important feature for tex-
ture recognition and discrimination [1] has been recognized
for some time, especially after the physiological experiments
performed by Hubel and Wiesel [2] suggested the existence
of orientation selective mechanisms in the human visual sys-
tem. Oriented filters are now in use for a variety of texture
problems such as multiscale texture analysis [3] [4] and anal-
ysis of flow textures [5] [6].

However, the use so far has been restricted to relatively
“low-level” and pixel-level applications. In this paper we
consider using “vision texture” or the global texture proper-
ties of the image as a quick way to make a first pass at higher-
level problems, such as annotating or retrieving a particular
set of your digitized vacation photos. Studies with pigeons
[7] support the hypothesis for a mechanism that looks at col-
lective low-level features for making comparatively high-level
quick classifications. In this study, the textural features are
dominant orientations, measured by an algorithm developed
to approximate human perception of dominant orientation.

A number of researchers have proposed computational
schemes for measuring local orientation at each pixel posi-
tion using directional filters in the spatial domain [6] [5] [8]
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Figure 1: Two textures quickly distinguished by their global
orientation (from E. H. Adelson).

[9] and in the Fourier domain [10] [11]. However, to find
global dominant orientation information in textures, further
decision making is needed. For example, in Figure 1, an al-
gorithm finding dominant global orientations would use the
local estimated orientations of all the pixels to decide that
Figure 1(a) has an overall dominant vertical orientation and
Figure 1(b) has overall dominant orientations in the vertical
and horizontal directions.

In [12] Picard and Gorkani introduced an algorithm to
extract dominant orientation information from a texture in
a way that closely approximated results from a large hu-
man visual study. The orientation finding algorithm was
able to find at least one dominant orientation chosen by the
human subjects in 95 of the 111 test images from the Bro-
datz Album [13]. Except for some small modifications, this
is the algorithm used in this paper. After a brief overview
of the algorithm in the next section, we apply it to seven
“teaser” 1mages which were designed to test the limitations
of the method regarding filter size and some “higher-level”
human visual processing. A human study is also run on
these images to compare the computer and human orienta-
tion decisions. Finally we show an application to natural
scenes, where the dominant textural orientations are used to
quickly index through 98 digitized photos'. The algorithm
picks out those scenes corresponding to a city or a suburb
which have strongly oriented man-made structures such as
buildings, cars and sign posts. The results of the algorithm
were found to agree with human classifications in 91 of the
98 images.

Images available by ftp from the authors.



2 Background: finding “perceptual”
orientations

The orientation-finding algorithm we use is similar to those
of Kass and Witkin [5], Rao and Schunck [6] and Bigiin and
Granlund [8] in that it estimates the local orientation and
its strength at each pixel of the image using a combination
of the magnitudes of the outputs of a set of directional filters
convolved with the image in the spatial domain. Unlike the
works mentioned above, the implementation used here and
in [12] extracts orientation information over multiple scales
using a steerable pyramid [14], then combines the orienta-
tions from different scales and decides which are dominant
perceptually, as determined by a human study.

The bottom level of the steerable pyramid (level0) is the
original image, and each higher level is obtained by filtering
and subsampling the previous level. At each level, a set of
directional filters are used to estimate orientations. In the
two studies presented here, we used four and three levels of
the pyramid respectively (four levels were used in [12]). The
number of pyramid levels is set to be the largest it can given
the size of the image or subregion for which the orientation
is being computed.

In [12], to find the dominant global orientations, we first
accumulated the calculated orientation and its strength at
each pixel position into a “strength histogram,” H.:

_ Ne(k)
ST Noli)

where Ng(k) is the sum of the strengths associated with
pixel positions having an angle within the interval: —90°
+ % <6< -90°+ w, and b = 158 is the number
of bins in 180°.

The algorithm in this paper uses a slightly different his-
togram. The H.(k) histogram was known to exaggerate the
orientation in cases such as the Brodatz texture D44 shown
in Figure 2, a blank image with high-contrast orientation in
only a small area. If most of an image region has no orienta-
tions except in a small area, the normalization in (1) causes
the peaks associated with the orientations in the area to be
weighted highly. In the Brodatz study, use of H.(k) gave
very good results. However in natural scenes, where a small
area of orientation tends not to be perceptually salient, the
results were better if we used a histogram with a different
weighting which we call a “number histogram,” H:

H.(k)

T, k=0,1,2,...,b—1 (2)
where Nne(k) is the sum of the number of pixels in the image
associated with angles with strengths bigger than S within
the same intervals as for Hs(k), and N; is the total number
of pixels in the image.

Since the orientation at a pixel is calculated by taking a
ratio of the magnitudes of the filter outputs, in the case of a
blank image, the magnitudes will be zero and the ratio will
be undefined. For H., the normalization is similarly unde-
fined. This case never occurred for the Brodatz textures, but
may occur in natural scenes. This problem is alleviated by

4

Hs and Hn Histograms for D44

[
Orientation

Figure 2: D44 with its prominent H. and less prominent H,,
histograms.

use of H, which only includes orientations having strength
> S.

To determine S, the peaks of H,, were analyzed for sev-
eral images with no oriented structures. It was found that
choosing S = 5 resulted in H,, not being influenced by the
undefined orientation problem described above. The divi-
sion by the total number of pixels in the image ensures that
if there is only a small area of oriented structures then it will
be weighted less than a big area of oriented structures. The
difference can be seen in the case of Figure 2 where the peak
is much less prominent in H,,, represented by the dotted line,
than in H;, represented by the solid line.

To find the dominant global orientations for each image,
the peaks of the orientation histograms for all the scales of
the pyramid have to be analyzed to determine which of them,
if any, correspond to a dominant orientation. This is done
using a measure of “salience” of a peak, dependent on the
height of the peak, its steepness and its width [12]. These
salience measures are then thresholded (different thresholds
for the salience measure are used for each level of the pyra-
mid) to obtain decisions about orientations at each scale, and
combined over scale. The thresholds used in [12] were found
by iterative adjustment until they gave results which closely
matched those found from the study of forty human subjects.
The same thresholds were used in the first study below, and
were used as a starting point for the second study, with only
very slight changes needed to optimize their performance.

3 Study: Teaser images

We designed a set of 256 x 256 “teaser” images to investigate
some of the limitations of filter size and “higher-level” human
visual processing on the orientation-finding algorithm (same
as [12] except that the H, histogram described above was
used and the contrast normalization step was omitted due
to the fact that it is very computationally expensive). A
human study involving 39 subjects was carried out on this
data using the same conditions as [12]. None of the subjects
were researchers in computer vision or pattern recognition.
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Figure 3: “Teaser” images shown to subjects.

The images used in this study are shown in Figure 3(a)-
(g). Figure 3(a) shows horizontal lines with a vertical break
between them. It was interesting for us to see whether the
human subjects would consider the vertical break important
or not. Results showed that 25 out of the 39 subjects who
viewed this image considered the vertical orientation to be
a dominant one. The computer did find both the vertical
and horizontal orientations and gave the vertical orientation
a smaller salience measure. The overall strength given to
the vertical orientation by humans was also smaller than the
horizontal orientation.

Figure 3(b) is the same as Figure 3(a) except that the
distance between the breaks is closer. The goal here was
to see whether the width of the break changes the strength
of the perception of the vertically oriented line, and whether
the current sized filters would pick this break at such a small
width. Indeed the computer picked out the vertical orienta-
tion although the salience measure is slightly less than the
vertical orientation in Figure 3(a). Only 15 of the 39 people
who analyzed this image found the vertical orientation to be
dominant. This example suggests that the width of the break
effects the perceived strength of the vertical orientation.

Figures 3(c) and 3(d) are similar to Figures 3(a) and 3(b)
except that the lines are no longer horizontal and the break
is no longer vertical. In Figure 3(c), all the people did detect
the orientation of the break. The computer also detected the
orientation of the break.

Unlike Figure 3(b) where the smaller width of the break
made it less perceptually dominant, the oriented break in
3(d) is perceived by all the subjects. The computer also

chooses it as a dominant orientation. Similar to the human
results, the strength of the orientation of the break found by
the computer is smaller than the strength of the orientation
of the continuous lines.

In Figure 3(e) it was interesting to see whether the sub-
jects and the algorithm would pick up the horizontal orien-
tation despite the lack of any explicitly horizontal lines. In-
deed, 28 out of 39 subjects chose the horizontal orientation
and gave it the highest strength. The computer only found
the orientation of the line segments connected together. Sim-
ilarly, eight of the 39 subjects picked the vertical orientation
to be dominant. We count this inability of the algorithm to
“group” the lines into their horizontal direction as the first
case of where it fails. We discussed fixes to this failure mode
in [12]; all of the fixes involve more processing which begins
to slow down the “quick glance” approach.

Figure 3(f) illustrates orientations at two different scales.
Both the computer and the human subjects chose the ori-
entation of the diagonals at 43°. The humans (by a nar-
row 24/39 subjects) also picked the vertical orientation to
be dominant. The computer did not pick this orientation;
instead it found the orientation 22° which the majority of
humans did not pick. Also, 4 people chose the horizontal
orientation to be dominant which the computer did not find
at any of the pyramid levels. The computer did not detect
the vertical orientation in any of the pyramid levels. We
count this lack of detecting the vertical orientation as the
second case where the algorithm failed.

Figure 3 (g) is the famous Zolliner illusion [15]. The com-
puter found the diagonal lines to be parallel. The human
data indicates that the subjects also perceived the diagonal
lines to be parallel. One possible reason for the illusion not
working could be due to the experimental design [12] which
had the humans spin a bar on top of the test image. Also
since the human data is quantized (same method as [12]),
small differences between the orientations chosen are some-
times lost.

At first glance, the “teaser” images may seem trivial.
However, the fact that the subjects’ responses were not al-
ways in agreement indicates that not all the orientations were
perceptually obvious and may have required a “high-level”
interpretation. The computer did detect 16 out of the 18
dominant orientations perceived by the majority of the sub-
jects even though the filters were of fixed size and only ap-
plied at four different scales.

4 Study: Natural Scenes

One big problem in designing an image database system in-
volves teaching the computer to recognize different scenes
for annotation and fast retrieval. How can the computer
recognize whether an image is of a “country” scene with
predominantly natural scenery like trees, grass, mountains,
etc. or a “city/suburb” scene with predominantly buildings
and other man-made structures found in a city or suburb
like cars, roads and sign posts? Obviously this problem can
not be completely solved by “low-level” vision. Humans can
easily distinguish different scenes using both “low-level” vi-
sion and “high-level” knowledge based on past experience
and learning. However, an interesting question still can be
posed: How much of a high-level task can be achieved by



using only a collection of low-level features? In this second
study, we demonstrate how textural orientation information
can be used for this problem.

4.1 Recognizing “city/suburb” scenes

Recognizing “city /suburb” scenes provides an application
where textural orientation information can be very useful:
many man-made structures found in the city or a suburb
such as buildings, cars, sign posts, etc. can be viewed to
have a global “textural” appearance with specific dominant
orientations. Assuming an upright camera position, which
would be the case for a lot of pictures taken, the majority
of these dominant orientations are vertical and horizontal.
For example, street lights and sign posts in a picture have
vertical orientations. A picture taken from a frontal view of
a building would have dominant vertical and horizontal ori-
entations. Of course, a picture taken from a building from
an angle will have dominant orientations other than the hor-
izontal and vertical. Unless the perspective is severe, the
vertical orientation of the buildings changes very little but
the horizontal direction can be skewed to other angles usu-
ally at most +45° from the horizontal.

A scene is then more likely to be in a city or a suburb,
if it has a lot of man-made structures with either a strong
vertical orientation or both a vertical orientation and a hor-
izontal orientation which may be skewed (as in the case of
a building with possible perspective). Therefore, it is pos-
sible to design a classification scheme to search for likely
“city /suburb” scenes in a database using the textural orien-
tation information. We designed such a scheme. We apply
the orientation-finding algorithm on regions in an image, to
determine each region’s dominant orientations. Then we la-
bel an image as “city/suburb” if either or both of the follow-
ing conditions are satisfied:

1. More than R regions have only a strong dominant ver-
tical orientation 85° < |6| < 90° where | | is the abso-
lute value operator.

2. More than R regions have both a dominant vertical
orientation and a dominant orientation from —45° <
6 < 45° (to take care of the perspective problem).

As can be seen, this is an exceedingly simple method. Of
course, there will be images of scenes other than “city/suburb”
with dominant orientations found by this algorithm. How-
ever, in the case of an image database, this method pro-
vides a scheme to quickly index through thousands of images
to find those which are more likely to be scenes of the de-
sired category. More specific algorithms can then be applied
to fully understand the content of each image. The use of
texture-like orientation information should reduce the search
space, saving time overall. The focus here is on behavior like
a human “glancing quickly” through a pile of pictures.

4.2 Image test data

To test the “city/suburb” recognizer, we used a set of 98
512 x 512 24-bit RGB digitized photos given to us by BT,
PLC. These images are of various scene types and were not
shot with this classification in mind. The images were la-
beled by us so that tmgN corresponds to the Nth image.
Eleven of these images are shown in Figure 5.

Three people viewed all the 98 images and labeled those
which were “city/suburb” scenes. In future environments, it
is typical that each person will annotate their own photos
and annotations may differ; this makes developing “ground
truth” extremely difficult for the image database query prob-
lem. In essence, one person’s annotation is sufficient for
testing algorithms in database query. By using three people,
we essentially ran three different trials for extra robustness.
There were 35 images out of the 98 which were labeled by
at least two people to be “city/suburb” scenes. There was
an ambiguous set of three images only labeled by one out of
the three people to be a “city/suburb” scene. For this study
we only considered the 35 images judged by at least two out
of three people to be “city/suburb” scenes. For determining
the dominant orientations, we used the NTSC “Y” compo-
nent of the images [16]. No other preprocessing was done on
the images, nor were any images omitted from the original
set we were given.

4.3 Finding orientation in image regions

For natural scenes, we applied the orientation-finding algo-
rithm of [12] except for the modifications described earlier,
to regions in the images. There are a huge number of ways
to divide the images into regions. Determining the best size
and shape for the regions is a very difficult problem since
it depends on the scale and content of the image which can
vary tremendously through a database. For this experiment,
we chose a simple solution of dividing each 512 x 512 image
into square regions of 128 x 128 resulting in 16 regions.

If a region has only a vertical orientation and an orien-
tation from —45° < 6 < 45° satisfying the salience measure
thresholds shown in Table 1 (these thresholds are slightly dif-
ferent from [12] since only three levels of the pyramid were
used), it is considered for the calculation of R. For regions
having only a dominant vertical orientation, we use a higher
salience measure threshold to ensure that only those with
very strong vertical orientations are considered. For this
study, the salience measure threshold was the same for all
pyramid levels, 0.18.

For each of the 98 images, the orientation-finding algo-
rithm was applied over all 16 regions. To choose the value of
R, we calculated a simple histogram shown in Figure 4 where
the x-axis corresponds to the number of blocks having the re-
quired dominant orientations. The dotted line indicates how
many of the 35 “city/suburb” scenes have blocks with the re-
quired orientations. The continuous line indicates how many
of the scenes other than “city/suburb” have blocks with the
required orientations. Different criteria can be considered
for choosing R. It is important to find a value for R which
minimizes the total classification error. However, since there
are only 35 “city/suburb” scenes, it is also important that
the majority of these images are classified correctly. There-
fore, we searched for a value of R which reduces the total
classification error and results in more than 90% of the 35
“city/suburb” scenes to be classified correctly. As can be
seen in Figure 4, R = 3 satisfies the above criterion resulting
in 34/35 “city/suburb” scenes to be classified correctly and
6/63 other scenes to be misclassified as “city /suburb”. This
choice of R resulted only in a total of 7 misclassified scenes.



Threshold | Values
Y2 0.3
" 0.04
o 0.014

Table 1: Threshold values chosen for different pyramid levels
0-2. Notice they are biggest at the coarsest (top) level.

Number of images

4 6 8 10 1
Number of blocks with required orientations

Figure 4: Histogram for determining the value of R

4.4 Misclassified cases

The seven misclassified images along with some correctly
classified images are shown in Figure 5. The misclassified im-
ages are 1tmg008, 1mg036, 1mg047, 1mg029, 1mg089, 1mg056
and 1mg067.

In Figure 5, 1mg021 was correctly classified by the com-
puter to be a “city/suburb” scene. The img047 was not
found by the computer to be a “city/suburb” scene although
it was labeled by the three humans to be one. One problem
is that the details of the buildings in this image compared to
1mg021 are not very sharp. So, even though the computer
did detect the required orientations in these regions, their
salience measures were much smaller than the threshold re-
quirements. It may be the case that the “thresholds” used
by humans adapt to context such as a defocused background;
this type of adaptivity has not been studied yet, but could
be worked into this algorithm.

The img001 was correctly classified as a “city/suburb”
scene and tmg044 and 1mg064 were correctly not classified
as “city/suburb” scenes. On the other hand, scenes img008,
img036 (1/3 subjects chose as “city/suburb”), img056 (1/3
subjects chose as “city/suburb”) and img067 were incor-
rectly classified as “city/suburb”. In $mg008, there are a lot
of structural objects like the house and the fence which cover
more than 25% of the scene and have the dominant orienta-
tions searched by the computer. In 1mg036, there are houses
and cars in the background and the vertical goal post. In
both 1mg056 and 1mg067, there are orientations searched by
the algorithm like the vertical structure behind the man and
the structure behind the girl and the vertical pole beside her
(the strong horizontal lines on her shirt were not considered
since there was no vertical orientation in those regions). The
human annotators for most cases probably considered only
those images with the main subjects directly associated with
a city or a suburb as seen in 1mg001 where there are a build-

Figure 5: Example photos. The seven misclassified cases are
shown at right.

ing and a car. The term “city/suburb” can be ambiguous
for the misclassified cases mentioned above. It would not be
wrong to annotate these images as “city/suburb”; however,
for more complete descriptions, other categories are needed.
There will always be scenes like 1mg029 and :mg089
which have the required orientations searched by the com-
puter like the vertical orientation of the fence and the trees
but which are not considered as “city/suburb” scenes. At
a quick glance, humans sometimes also pick these images;
the study here is conservative in that it gave subjects am-
ple time to classify, but gave the retrieval algorithm only “a
glance.” Nonetheless, using only the textural orientation in-
formation, the computer was able to reduce the search space
by more than half from 98 scenes to 41 scenes, of which 34
corresponded correctly to the human annotation.

5 Summary

In this paper, we introduced the idea of using global textural
features such as orientation for a quick way to make “high-
level” scene classifications. We used a multi-scale method for
finding dominant orientations and compared its output to
that of 39 humans analyzing seven “teaser” images. Except



for two cases, the computer detected the orientations found
by the majority of the humans, thus offering more evidence
that the multiscale orientation finding method of [12] can
find “perceptually important” dominant orientations.

Second, we showed an application where the dominant
textural orientations were used to quickly index through 98
images of natural scenes to find likely “city/suburb” scenes
which have strongly oriented man-made structures such as
buildings, cars and sign posts. Using only dominant orienta-
tion information, the computer was able to reduce the search
space by more than half from 98 scenes to 41 scenes of which
34 corresponded correctly to human classification.

Textural orientation is not intended to solve the “high-
level” problem; we expect the usage of this feature to be
activated by a high-level request and eventually combined
with other features. Although the choice of only orienta-
tion texture (vs. other combinations of textural features)
and particular value of R will vary for other retrieval prob-
lems, the texture and pattern recognition methodology ap-
plied here is generalizable. Moreover, the success of simple
orientation in agreeing with high-level human interpretation
found on this large set of images can not be ignored.

There are many areas for future research — exploring
more complex interactions between filter outputs to deal
with “high-level” effects like grouping and problems with
contrast, exploiting context and prior expectations to adapt
thresholds for background blur, or attaching categorical de-
scriptions other than “city /suburb” to a combination of tex-
tural and other low-level features like color. These features
can be pre-computed beforehand and used to further improve
the “quick-glance” method in real-time image database re-
trieval environments like Photobook [17].

Another direct application for using dominant textural
orientation is that it can be used to find areas in the im-
age with certain types of directional structure for speeding
up object and motion recognition. The dominant global ori-
entation information also gives a quick way to tell if two
textures are similar before applying a more computationally
expensive or attentive image understanding method.
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