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ABSTRACT

We develop a method for the simultaneous restoration and
halftoning of fingerprints using the “M-lattice”, a new non-
linear dynamical system. This system is rooted in the
reaction-diffusion model, first proposed by Turing to ex-
plain morphogenesis (the formation of patterns in nature).
But in contrast with the general reaction-diffusion, the state
variables of the M-lattice are guaranteed to be bounded.
The M-lattice system is closely related to the analog Hop-
field network and the cellular neural network, but has more
flexibility in how its variables interact. These properties
make it better suited than reaction-diffusion for several new
engineering applications. The proposed method for enhanc-
ing fingerprints explores the ability of the M-lattice to form
oriented spatial patterns (like reaction-diffusion), while pro-
ducing binary outputs (like feedback neural networks). The
fingerprints synthesized by the M-lattice retain and empha-
size more of the relevant detail than do those obtained by
adaptive thresholding, a common halftoning method em-
ployed in traditional fingerprint classification systems.

1. INTRODUCTION

The reaction-diffusion model was first proposed by Tur-
ing in 1952 in order to explain the growth of hydra tentacles.
Subsequently, it has been used as a model for mammalian
coating patterns, such as, for example, zebra stripes, leop-
ard spots, etc.. Until recently, reaction-diffusion systems
have been researched predominantly by mathematical biol-
ogists working on theories of natural pattern formation and
by chemists working on modeling the dynamics of complex
chemical reactions [1], [2]. However, the past several years
have seen a significant surge in interest in reaction-diffusion
systems, primarily for exploiting them in the areas of com-
puter graphics [3], [4] and image processing [5].

For pattern formation to occur, a reaction-diffusion sys-
tem must exhibit local instability to small non-homogeneous
perturbations. But practical considerations dictate that the
system’s state variables should be bounded in the large-
signal regime. A major difficulty associated with the reaction-
diffusion paradigm is that it possesses the pattern-forming
property only for a restricted class of non-linear reaction
functions [6]. This drawback narrows the scope of the model’s
engineering applications.

A common approach aimed at preventing numerical over-
flow caused by the instability of reaction-diffusion systems
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has been to clip the magnitudes of the state variables by
adding an “if” statement to the numerical method (e.g.,
Forward Euler) used for solving the system of differential
equations on the computer [4]. For some reaction-diffusion
systems, this technique eventually manages to stop the state
variables from changing between successive time steps. How-
ever, controlling a system of differential equations from
within the numerical method destroys the mathematical in-
tegrity of the original dynamical system, making it hard to
analyze and adapt to new applications.

The main contribution of this paper is the formulation
of the “clipped M-lattice system” as a more practical and
flexible extension of the reaction-diffusion model [7]. By us-
ing a warping function to facilitate boundedness, this new
system allows more flexible non-linear interactions than the
reaction-diffusion system. Furthermore, in contrast with
the original reaction-diffusion system, convergence of the
clipped M-lattice system to a fixed point has been observed
in computer simulation for a large variety of non-linear re-
action functions. In order to account for some of these ob-
servations, we have proven the total stability of a subclass
of the clipped M-lattice system [8]. The M-lattice system
is closely related to the analog Hopfield network [9] and
the cellular neural network [10], but has more flexibility in
how its variables interact. The model’s ability to inherit
the pattern-formation aspects of reaction-diffusion is illus-
trated in an application to the restoration and enhancement
of scanned fingerprint images.

The rest of this document is organized as follows. Sec-
tion 2 discusses the basic properties of the reaction-diffusion
model. Section 3 reviews the M-lattice system. Section 4
derives the pattern-formation properties of one type of the
clipped M-lattice system and applies it to the pre-processing
of fingerprints. Section 5 summarizes the report.

2. REACTION-DIFFUSION

Turing’s last paper before his death was a first attempt
to provide a scientific explanation for the dappled patterns
of pigmentation in animals [1]. Many mammals have promi-
nent coat markings. For example, zebras have stripes, gi-
raffes have contoured patches, leopards and cheetahs have
spots; the furs of many dogs and cats also display various
forms of stripes and patches of different color. In addition,
many tropical fish exhibit colorful patterns of spots and
stripes.

Turing proposed to model nature’s behavior by an inter-
action of chemicals that he called “morphogens”. The sim-



plest model uses two morphogens: the “activator” and the
“inhibitor”. The morphogens themselves are produced by
chemical reactions among particular enzymes in every cell of
the animal’s skin during the animal’s embryonic stages [2].

According to this model, the two morphogens react with
each other; however, the model consisting of reaction alone
cannot account for the tremendous variety of coating pat-
terns observed in animals. Since there is no inter-cellular
flow of morphogens in the model, every cell acts as an in-
dependent autonomous system, producing the final mor-
phogen concentrations based only on random initial con-
centrations. Therefore, cells end up in stable states that
have no correlation or spatial structure, unlike the major-
ity of patterns occurring in nature. In order to supplement
the model with the needed transport mechanism, Turing
incorporated a diffusion term into the system of equations.
Thus, a typical reaction-diffusion system is a set of heat
equations, coupled by non-linear reaction terms.

As a case study, Turing modeled the tentacle formation
in hydra (a small tubular fresh-water polyp) with a 1-D
reaction-diffusion system:
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where 14 (z,t) and 11 (z,t) are the concentrations, and D4
and D; are the diffusion rates of the activator and the in-
hibitor morphogens, respectively. The term g(z), called the
“evocator”, is a waveform of small random perturbations.

To gain a qualitative understanding of the operation
of a two-morphogen reaction-diffusion system, consider two
morphogens, the activator and the inhibitor, each reacting
with itself and the other. While the reactions influence the
local concentrations of the two morphogens, the diffusion
transports the morphogens from cell to cell. Suppose the ac-
tivator is auto-catalytic but diffuses slowly. In other words,
its concentration increases in proportion to the amount al-
ready present, but its diffusion rate is low compared to that
of the inhibitor. Thus the activator and the inhibitor create
two opposing tendencies. On one hand, the activator con-
centration grows at a high rate locally, but does not spread
fast enough to replace the inhibitor everywhere. On the
other hand, the inhibitor consumes the activator at a low
rate locally, but, because of its high diffusion constant, the
inhibitor is delivered faster to remote sites, keeping the ac-
tivator concentration finite everywhere. The competition
between these two tendencies causes the concentration pro-
files of the activator and the inhibitor to settle into patterns
of peaks and valleys.

We now summarize Turing’s analysis. The cells of hy-
dra are assumed to be equally spaced and comprise a peri-
odic 1-D lattice with the period of N, cells. Using a pop-
ular discretization of the second derivative, followed by lin-
earization around a fixed point, turns (1) into the equivalent

“small-signal” model:
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where the subscript “s”denotes a small deviation from the
equilibrium value:

Ya,eq(Nay t = to) = 1,eq(na, t = to) = 4.

The combination of discretization and linearization has
turned spatial derivatives into spatial convolutions, making
the variables corresponding to different spatial indices in
(2) intermixed. Variables are separated in a standard way
by applying the Discrete Fourier Transform (DFT), turning
convolutions into multiplications:
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The equations in (3) are a special case of the two-morphogen
linear reaction-diffusion system of the form:

b s (ko t i .

% = (ke §) [ — 4D sin’ (7zrv )
-+ T12¢I,S(kﬂﬂ’t)’

P15 (ke t in® (T2

Dbl _ (1,1 [ 1Dy sin? (22)]

+ T21’¢)A,S(k17t)v (4)

where the diffusion rates, D4 and Dy, are restricted to be
non-negative. The constants r,,, m, are called the marginal
reaction rates. Depending on the eigenvalues and the initial
conditions, the system (4) can exhibit six types of solutions,
which are summarized in Table 1 for a 2 x 2
reaction-diffusion system.

The solution is a non-stationary spatial wave, unless
A(kz) is real. Both traveling wave and standing wave solu-
tions are called non-stationary, because the amplitudes of
such waves undergo sign changes.

Traveling waves cannot model an animal coat texture,
because they do not produce a constant spatial pattern.
Also, if the real part of A\(k;) is negative, then the spatial
harmonics decay to zero. Thus, for explaining the forma-
tion of natural patterns, such as zebra stripes and leopard
spots, it was the sixth mode (growing spatially-stationary
waves) that received a lot of attention [2]. The other modes
of reaction-diffusion systems have also been used, for in-
stance, in modeling the behavior of oscillating chemical re-
actions [2].



The only mode of the system in (4) that is capable of
producing stationary spatial waves is the one corresponding
to A(kz) € R, A(kz) > 0 for some range of k. Since the
amplitude of every k. that belongs to this band of spatial
frequencies grows as a function of time, the system becomes
unstable for those values of k.. Therefore, in order to pro-
duce stationary spatial waves, the system must be unstable
for at least one spatial frequency. The harmonic k; = 0
is excluded from the band of unstable wave numbers by
definition. This maintains stable equilibrium levels in the
absence of diffusion and guarantees that the system will be
unaffected by homogeneous perturbations.

Turing has determined the conditions on D4 and Dy
under which the system in (4) is stable to homogeneous
(i.e., DC) perturbations and unstable to non-homogeneous
(i.e., AC) perturbations at least for one value of k, [1]. Tur-
ing gave the name “chemical wavelength” to this dominant
spatial frequency, characteristic of (1).

As the amplitude of the dominant mode grows, the lin-
ear analysis ceases to be valid. However, Turing argues
that the linear behavior predicts the overall non-linear be-
havior reasonably well. Subsequent computer simulations
have confirmed this for many reaction-diffusion systems [8].

The present research emphasizes the use of reaction-
diffusion models for synthesis and analysis of textures, re-
gardless of whether or not every detail of the model con-
sidered is biologically plausible. Additionally, it has been
shown that when discretized diffusion is replaced by a gen-
eral finite impulse response (FIR) filter, even
single-morphogen systems become capable of pattern for-
mation [8]. This capability is utilized in applying the model
to fingerprint restoration, which is described in Section 4.

3. M-LATTICE

A variety of non-linear reaction functions do not only facil-
itate local instabilities, essential for synthesizing textures,
but also cause undesirable large-signal growth of state vari-
ables without bound. In order to alleviate this problem,
while retaining the pattern-formation capabilities, we pro-
pose to study the reaction-diffusion system on a spatial grid
and allow a general FIR filter in place of the discretized dif-
fusion operator. By controlling the growth of the non-linear
terms with a sigmoidal warping function, we arrive at the
M-lattice system. As we show in Section 4, using a warping
function does not destroy the small-signal behavior of the
model, which is responsible for the formation of spatial pat-
terns. Moreover, one can design the system such that the
morphogen concentrations are bounded in the large-signal
regime. The origin of the name “M-lattice system” comes
from its roots in the reaction-diffusion paradigm, where M
is the number of morphogens, or layers, in the lattice.
3.1. General Definition

Let 1;(t) € R be a state variable as a function of time
at each lattice point 4, wherei =1, ..., N. Let x;(¢) be an
output variable, obtained from ;(t) via x:(t) = g(¥i(¢)).
The “warping” function, g(u), an example of which appears
in Figure 1, must be of a saturating type so as to limit
the range of the output variables. Construct ¢ (¢) and ¢(t)
by concatenating 91 (t), ..., ¥n(t) and xi(t), ..., x~(¢),
respectively into column vectors.
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Figure 1: Plots of the clipping warping function for three
different temperatures.

Definition 3.1 Suppose that the given functions, fi(X(t)),
are continuous, differentiable, and bounded. Let the matriz
A be real with all eigenvalues having negative real parts:
A e RVN A = [ai;], and ¥V i R(\[A]) < 0. Define
F(R()) by concatenating f1(T(t)), ..., fn(X(t)) into a col-
umn vector. Then the M -lattice system ' is a possibly non-
linear autonomous dynamical system, described by the fol-
lowing equation:

WO~ adw + fro. 6

A crucial property of the M-lattice system is that its
state variables are bounded [8].

3.2. Clipped M-Lattice System
Consider the M-lattice, (5), with f((t)) et ﬁg@()’(’(t))

Definition 3.2 Suppose that the given function, ®(X(t)),
is conlinuous, twice-differentiable, and bounded. Let the
matriz A be real, symmetric, and negative-definite:
AeRNN A =ay], A= AT, and V i \;[A] < 0. Then
the clipped M -lattice system is the following possibly non-
linear dynamical system:

WO ade) + T, (©)

As part of the analysis, we have shown that a subclass of
the clipped M-lattice system possesses total stability, which
is manifested in asymptotic convergence, regardless of the
initial conditions [8]:

Proposition 3.1 Consider a special case of the M -lattice
system, (6), in which A = Diag {a1, ..., an}, Vi a; <O0.
Any solution trajectory of this diagonal-state clipped

M -lattice system converges to a finite asymptotically stable
fized point, f € RN (or ¥ € [-1,1]V ).

IThis is the definition adapted for the present paper. The
general M-lattice system is defined in [8].



Thus far, no proof of total stability exists for the more
general system, (6). However, fixed points of the form
X € {—1,1}" are asymptotically stable [8]. In all experi-
ments of the type that we discuss below, the general clipped
M -lattice system exhibited convergence in computer simu-
lation.

3.3. Comparison to Other Models

Several key aspects of the general M-lattice system, (5),
with various saturating warping functions are unique when
compared to other closely related models. Unlike the ana-
log Hopfield network or the cellular neural network, the
M-lattice system allows the A matrix to have off-diagonal
elements. In addition, the interactions among the output
variables, x;(t) can in principle be described by a very gen-

eral non-linear function, f((t)). This flexibility enables
the M-lattice system to capture the behavior of a wider
variety of physical systems.

If A is a diagonal matrix with negative elements on
the main diagonal and ®(/(¢)) is a multilinear polynomial
(i.e., a polynomial whose independent variables have the
powers zero or one [11]), then the M-lattice system with
a sigmoidal warping function becomes the analog Hopfield
network. For binary outputs, the M-lattice system, like the
analog Hopfield network, is capable of optimization in the
sense of the Hamming distance of one [11], [8].

If A is a diagonal matrix with the same negative el-
ement on the main diagonal and 6,3@()’(’@)) is a circulant
(or block-circulant) symmetric matrix, which represents the
convolution with a linear shift-invariant FIR filter, then the
clipped M-lattice system, (6), becomes the original cellular
neural network [10].

4. PRE-PROCESSING OF FINGERPRINTS

A typical fingerprint identification system contains a
pre-processing step, which involves the restoration, enhance-
ment, and halftoning of the original scanned and finely
quantized fingerprint image. The essential steps comprising
the identification sequence are: determining the type of the
fingerprint, counting of ridges and bifurcations, and locat-
ing the core. A binary fingerprint image is more amenable
for these tasks than a gray-scale fingerprint image [12].

We propose a pre-processing scheme that not only
halftones the original fingerprint image, but also removes
artifacts that can hinder the identification process. The
method uses the ability of the clipped M-lattice system to
excite locally-growing stationary spatial waves, which are
the signature of reaction-diffusion systems, as well as to
produce equilibrium images that have binary-valued pixels.

The motivation for using the reaction-diffusion aspect
of the clipped M-lattice system is that fingerprint images
have distinct patterns of thin curves, remotely resembling
zebra stripes. Reinforcing the harmonics that create these
curves will emphasize the essentials of the fingerprint, while
suppressing the artifacts.

Let A and H be block-circulant symmetric matrices.
Then the clipped M-lattice system, (6), can be written as
follows:

dy (i, t)

7 = a(i) (7, t) + s(7A) — h(id) * x(7,t), (7)

where 7 € 2%, a(il) and h(7) are the FIR filters, corre-
sponding to A and H, respectively, and s(ii) € [—1,1] is
the original finely quantized input image signal.

The advantage of using this type of the clipped M-lattice
system for the pre-processing of fingerprints is that it can be
guaranteed to produce binary outputs [8]. It now remains to
demonstrate that (7) possesses the desired pattern-formation
properties.

4.1. Small-Signal Regime: Reaction-Diffusion

Choose A and H such that the unique interior fixed
point, ¥ () € (—1,1), of (7) is at (7). Denote the DFT
of the filters by A(k) and H(k). By Definition 3.2, it is
necessary for the matrix A, representing the linear term
of the M-lattice system, to be made negative-definite. For
the system in (7), A is block-circulant and symmetric, con-
taining a(7) in the first row. Since the DFT basis consists
of the eigenvectors of a block-circulant matrix, the A(K)
coefficients are proportional to the eigenvalues of A, and
therefore must be negative, Before (i, ¢) reaches the clip-
ping levels, (7) simplifies to:

% = s(i) + (a(ﬁ) _ %h(ﬁ)) )
Taking the DFT of both sides of (8) yields:
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where F(k) =
set to S(k), the DF'T equivalent of the original image. Hence,
from the discussion in Section 2, making F'(k) positive for
a set of spatial frequencies creates the onset of growing
spatially-stationary waves.

The adaptive filter, H(k), was designed so as to include
information about the dominant orientation at each pixel
of the original image, shown in Figure 2(a) [13]. The dom-
inant orientation at a pixel is characterized by the angle,
0; € [—m, 7], and by the relative strength (or magnitude),
m; € [0, 1], of that angle’s presence at pixel i. Each filter is
a 2-D Gaussian, whose level sets are oriented ellipses. De-
note the diagonal matrix of variances by V;, the rotation

matrix by ®;, and the position vector by 77 € Z?:

o, 0 cosf; —sinb;
Vi= { 0 aiz’y O = sinf;  cos0; - (A

(k) — TH(k)’ and the initial condition is

The relative sizes of 01-2,z and Uf,y depend on m; and de-
termine the skewness of filters with respect to the dominant
orientation:

L
oty =5(1—m), of,=L-dl, (12)

where L x L is the size of the filter mask in pixels. Then
the (unnormalized) oriented low-pass filter is given by:

hi(it) = exp{—i' O] Vi@®;ii}. (13)



Pertinent to fingerprint restoration is the kind of filter-
ing that delineates the ridges, while canceling fluctuations
in the DC level and getting rid of extraneous information.
Thus, H(k) and A(k) are constructed so as to make the
frequency bands corresponding to the ridges have negative

DFT coefficients [14], and the T factor amplifies the effect.

4.2. Large-Signal Regime: Halftoning

Figure 2(a) is a typical scanned and finely quantized
fingerprint image from the NIST database [15]. The origi-
nal image is 512 x 512 pixels and was low-pass filtered and
down-sampled by a factor of 2 in each dimension in order to
speed up the computation. From the figure, it can be seen
that the original fingerprint is corrupted by a number of
scratches, and several regions are obscured by uneven illu-
mination. As shown in Figure 2(b), the common fingerprint
halftoning method, based on adaptive median filtering and
thresholding [12], only makes these artifacts more appar-
ent, because it increases the image’s contrast. The adap-
tive threshold is set to the average of the minimum and the
maximum gray levels within some neighborhood surround-
ing each pixel of the original fingerprint image. The optimal
size of the window was determined to be 5 x 5 pixels by trial
and error.

There are two arguments in favor of using the clipped
M-lattice system-based approach. First, the analysis of
Section 4.1 implies that the attainable signal-to-noise ra-
tios can be very large. Essentially, the clipped M-lattice
system applies the filters, a(7) and h(7), an infinite num-
ber of times by the virtue of being a continuous-time sys-
tem. Second, no separate halftoning step is needed, since
the clipped M-lattice system binarizes the image.

Figure 2(c) displays the processed fingerprint image.
The scratches have been removed and the unevennesses
in the DC levels throughout the image have been elimi-
nated. Essential detail such as ridges and bifurcations ap-
pear as continuous black curves, distinctly enhanced against
a noise-free white background. Moreover, ridges and bifur-
cations have been extended even into the regions where they
are barely detectable in the original image. This illustrates
the celebrated synergetic property of reaction-diffusion sys-
tems: the emergence from noise of a spatial pattern, whose
qualitative characteristics are pre-determined by the sys-
tem’s parameters. Using the Connection Machine (CM-2),
the final image is produced in 25 iterations at the time step
of 0.1 sec for the total time of less than 3 seconds or 1
minute including the system time and the I/O.

5. SUMMARY

We have reviewed the reaction-diffusion model, empha-
sizing its use of instability to form patterns. In an attempt
to broaden the class of non-linear reaction functions that
lead to bounded reaction-diffusion systems, we have intro-
duced the M-lattice. We have shown that the clipped M-
lattice is capable of synthesizing textured images by the
same mechanisms as does the reaction-diffusion system.

The problem of simultaneous fingerprint restoration and
halftoning is a natural application of the clipped M-lattice
system, because of its ability to synthesize zebra stripes,
which appear qualitatively similar to ridges and bifurca-
tions found in human fingerprints. Incorporating orienta-

tion detection causes the clipped M-lattice system to act as
an infinitely-aggressive band-pass filter. As a result, ridges
are extracted at the highest contrast, even if they are only
faintly detectable in the original image, while scratches, un-
evennesses in illumination, and other defects are removed.
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class of both R[] <0 either R[] >0 A type of
wave (stable) (unstable) solution
traveling decaying growing complex oscillatory
standing decaying growing complex oscillatory
(sum of a decaying | (sum of a growing
traveling wave traveling wave
and its reflection) | and its reflection)
stationary decaying growing real non-oscillatory

Table 1: Six modes admitted by a 2 x 2 reaction-diffusion system. The terms “decaying” and “growing” refer to the temporal

behavior.

Figure 2: Restoration and halftoning of fingerprints. (a) the original “fingerprint” image; (b) the “fingerprint” image
halftoned by a standard adaptive-threshold method; (c¢) the “fingerprint” image restored and halftoned by the clipped
M-lattice system operating in the reaction-diffusion mode utilizing orientation information at each pixel of the original.



