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Abstract

Good probabilistic models are needed in data
compression and many other applications. A
good model must exploit contextual information,
which requires high-order conditioning. As the
number of conditioning variables increases, di-
rect estimation of the distribution becomes expo-
nentially more difficult. To circumvent this, we
consider a means of adaptively combining sev-
eral low-order conditional probability distribu-
tions into a single higher-order estimate, based
on their degree of agreement. Though the tech-
nique is broadly applicable, image compression
is singled out as a testing ground of its abili-
ties. Good performance is demonstrated by ex-
perimental results.

1 Introduction

In various image processing tasks, the ability to make
good use of contextual information can be an important
factor in determining performance. This is particularly
apparent in the case of lossless image compression, where
each pixel is entropy coded according to an estimated prob-
ability mass function (PMF), conditioned on contextual
information that will be available at the time of decoding.
Usually this information is in the form of a subset of the
previously encoded pixels, or causal neighborhood, around
the pixel to be encoded. In principle, the larger this neigh-
borhood, the greater the compression. In practice, how-
ever, there are difficulties with large neighborhoods. The
difficulties can be traced to the fact that the number of
possible values (states) of the neighborhood increases ex-
ponentially with neighborhood size.

In previous papers we proposed a probability model that
mitigates some of these difficulties[l, 2]. The model used
clustering to summarize relevant information in the train-
ing data, and exploited the smoothness of the underly-
ing probability law to effectively interpolate probability be-
tween conditioning states. When applied to lossless image
compression, the technique allowed processing with large
neighborhoods. However, it was found that the compres-
sion ratios achieved were only about as good as those re-
ported for other techniques. One explanation is that, al-
though the model allows for large neighborhoods, to ad-
equately approximate the corresponding high-dimensional
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probability law would require a source-dependent degree of
complexity that may be impractical.

In this paper we consider a different attack on the
large-neighborhood problem. The next section motivates
the approach through a quasi-real-world example involv-
ing strange weathermen. The idea is to obtain a large-
neighborhood PMF estimate by combining several individ-
ual PMFs, each conditioned on a different small neighbor-
hood. This problem is similar to that of integrating data
from multiple sensors, or of making decisions based on ac-
cumulated evidence. These problems are ill-posed, in the
sense that there are many possible “right answers” consis-
tent with the given constraints. There will be infinitely

many possible large-neighborhood PMF's consistent with a
given set of small-neighborhood ones. How does one choose
among them?

The two principles given below can provide some guid-
ance; in particular, they suggest the following procedure:
combine the given PMF's by first taking their pointwise ge-
ometric mean, then either exaggerating or understating the
shape of the result, according to whether the conditional
PMFs agree or disagree with one another.

Principle 1. If an event is impossible when conditioned
on A, then it is impossible when conditioned on both A and
B, regardless of B.

This is a simple consequence of probability theory, and
implies that each conditional PMF should have “veto
power.” This will be the case if a product rule of com-
bination is employed, which is suggestive of the geometric



Figure 1: An example of exaggerated consensus in three dimensions. The arrows indicate the direction of integration.
The lower graph in (c) shows three of the many possible shapes for p(z|y = Y,z = Z), each consistent with the given
p(z|ly =Y) and p(z|z = Z). Arguably, the solid curve requires a less contrived p(z,y, z) than either dotted curve.

mean or similar function.

Principle 2. If the conditional PMFs agree (are nearly
identical), then it is reasonable to assign even greater prob-
ability to those events deemed already probable in their con-
sensus, and to assign even less probability to those events
deemed already improbable.

Unlike the first, this principle is not a consequence of
probability theory, but rather it expresses a belief about
what real-world joint probability distributions tend to be
like. In fact, it is easy to concoct hypothetical counterex-
amples — joint distributions for which this principle fails
entirely. However, we believe that such distributions are
atypical in the applications that interest us. The next sec-
tion provides a heuristic justification of this principle, while
further justification is provided by the positive experimen-
tal results presented in Section 4.

2 Strange Weathermen and
Least-Contrived Joint Densities

The plausibility of Principle 2 can be established by
means of a somewhat fanciful example. Imagine two good
but eccentric weathermen, one of whom makes her predic-
tion of tomorrow’s weather solely on the basis of today’s
average humidity h, ignoring all other factors. The other
bases his prediction solely on today’s average temperature
t, while also ignoring everything else. Let R denote the
event “it will rain tomorrow.” Suppose that on a partic-
ular day, weatherman 1 asserts that Pr(R|h = H) = 0.6,
while weatherman 2 asserts that Pr(R|t = T) = 0.7. As-
suming for the moment that both assertions are as reliable
as possible given their limited conditioning information,
how might a person combine them into a single probability
estimate, Pr(R|h = H and t =T)?

Since the two weathermen reach qualitatively the same
conclusion — namely, that R is likely to be true — even
though they base their predictions on entirely different in-
formation, it seems natural to assign an even higher prob-

ability to R than is assigned by either weatherman individ-
ually. That is, Pr(R|h = H and ¢t = T") should be assigned
some higher value like 0.75 or 0.8, instead of the average
value 0.65.

Had we not been talking about probability, but instead
about some measurable physical quantity, our conclusion
might have been quite different. If one lab tells you that
your cholesterol level is 180 and another tells you that it’s
190, you certainly would not conclude from this that it is
200. In such cases, averaging would make more sense.

Note the key role played here by the assumed unrelated-
ness of h and ¢. For if they had been strongly related, then
the two assertions would no longer have provided indepen-
dent confirmation of the likelihood of R. In the extreme
case where h and ¢ completely determine one another, sim-
ple averaging would again make more sense than exagger-
ating.

We now consider one more example, this one more ab-
stract but perhaps more relevant to image processing. Let
z, y, and z be random variables that obey an unknown
joint density function p(z,y, z). Suppose that the two con-
ditional densities p(z|y = Y) and p(z|z = Z) are both
known reliably for particular observations Y and Z, and
that we wish to estimate p(z|y = Y,z = Z) by combining
the two conditionals in some way. This problem is ill-posed
in the sense that there are infinitely many different possi-
ble joint densities p(x, y, z), each consistent with the stated
constraints (i.e., the given conditional densities). Hence,
infinitely many functions p(z|y =Y,z = Z) are possible.

Suppose, however, that the two given conditional den-
sities happen to agree in shape, for instance as shown in
the lower graphs in Figure 1 (a) and (b). Each corresponds
to the integration of the joint density along the plane as
indicated in the corresponding top graph. Again, the ill-
posed question we would like to answer is, “what is the
joint density along the line of intersection (y = Y,z = Z),
shown in the top graph in Figure 1 (c)?” Of the infinitely
many possibilities, three are shown in the corresponding



lower graph, representing the range of possible behavior.
Curve I differs drastically in shape from the two first-order
conditional densities; curve II strongly resembles the condi-
tionals; and curve III is an exaggerated version of the con-
ditionals. Let’s consider in turn the implications of each of
these being correct.

Curve I seems unlikely, since it bears no resemblance
to either of the two observed first-order conditionals. For
it to be correct, the joint density would have to possess
a very peculiar structure. Along each of the two integra-
tion planes, p(z,y, 2) would have to integrate to the com-
mon shape of the given conditionals. Yet it would have
to have a very different shape along the intersection line.
Although certainly possible, this calls for extremely coin-
cidental behavior of p(x,y, z) in very different regions of
space. Such behavior is even less plausible when the sce-
nario is extended to higher dimensions.

Though not as obvious, curve II (the average of the given
first-order conditionals) also calls for p(z,y, z) to have a pe-
culiar structure. For if no such structure were present, the
effect of integrating would be to average over the many
different shapes assumed by p(z,y = Y', 2 = Z') at dif-
ferent values of (Y', Z'), thereby moderating whatever the
shape happened to be at the intersection line. The given
first-order conditionals, which are the results of the inte-
gration, would then be moderated versions of the function
we’re after, not replicas of it. Curve II requires that this
moderation not occur, that is, it requires p(z,y, z) to have
a peculiar structure.

Among the three, only curve III, which exaggerates the
shape of the first-order conditionals, is consistent with the
expected moderating effect of integration. The exagger-
ated shape is consistent with a joint density that has no
particular assumed structure — one less contrived than the
sorts of joint densities called for by curves I and II.

“Less contrived” does not necessarily imply “smoother.”
Rather, a joint density which exaggerates along the in-
tersection line is less contrived because it offers a simpler
explanation for why the two first-order conditionals match
each other: they inherit their common shape from the same
region of probability space, namely, the region close to the
intersection line. Such a joint density may or may not be
smoother than others that satisfy the same constraints.

As in the weatherman example, our conclusion would
have been different had y and z been strongly related (e.g.,
if they had been different names for the same variable),
or had the shapes of the given conditionals not coincided
(lack of consensus). In either of these situations, averaging
would be more appropriate than exaggeration.

The words “least contrived” are suggestive of a maxi-
mum entropy formulation. Maximum entropy techniques
remove unwanted degrees of freedom in underconstrained
problems by finding the distribution which is closest to uni-
form while meeting the given constraints. The justification
of maximum entropy techniques in general is a subject of
debate, but our concern is only with the following question:
when used in combining conditional PMFs, does it result
in exaggeration? The answer is “yes,” at least in some
cases where exaggeration seems justified.! The present pa-
per is concerned with “proof of principle” of exaggerated
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consensus, for which a more heuristic treatment suffices.

3 Application to lossless grayscale
image compression

Figure 2: A lossless compression system for grayscale im-
ages.

Some applications require that an image be compressed
with absolutely no distortion. Compression schemes which
preserve the image exactly are termed lossless.

While lossy image compression systems typically com-
press by a factor of 10 or more while maintaining excellent
image quality, lossless systems tend to give much worse
compression factors (typically less than 2, see for exam-
ple [3]). The exact amount of compression achieved de-
pends on both the image’s true statistical properties and
the compression system’s ability to exploit them. The first
is beyond our control; the second is not.

Consider the lossless compression system illustrated in
Figure 2. The efficiency of such a system depends on the
quality of the PMF estimate provided to the arithmetic
coder by the probability modeling unit for each pixel to be
encoded[4].

Let  denote the next pixel to be encoded, and let X' de-
note the set of values that can be assumed by z. For exam-
ple, X ={0,...,255}. Let Aq,...,N; denote small causal
neighborhoods of z, and let N denote their union. Assume
that {A\;} are disjoint, so that each provides distinct con-
textual information about z. Since the neighborhoods are
small, reliable estimates of p(z|N;) are readily obtained in
a variety of ways, for example by using the cluster-based
probability model[2]. We therefore assume that such reli-
able estimates are available. We wish to estimate p(z|N)
by combining the small-neighborhood conditional PMF es-
timates in a manner consistent with the principles set forth
in Sections 1 and 2.

To this end, we define a measure of agreement by sum-
ming the pointwise geometric mean of the conditional
PMFs over x. This quantity, which we denote p, can be
recognized as the Bhattacharyya coefficient [5]:

o= Y [oten] ™.

zEX j=1

It is easy to verify that 0 < p < 1. When p is close
to unity, all of the conditional PMFs agree. On the other
hand, when p is close to zero, at least one conditional PMF
is in strong disagreement with all of the others. Large val-
ues of p indicate consensus; small values indicate disagree-
ment.

Motivated by our previous discussion, we define an ez-



aggerated consensus estimate p(z|N) as

B(@lN) = C[[] plavy)]™ ",

j=1

where C' normalizes the estimate to make it a valid PMF,
and y(p) is an exaggeration function that increases as p
increases.

A good choice for v(p) can be obtained empirically in
the following way. First, partition the range of p into sev-
eral subintervals, in such a way that p is about equally
likely to fall into each (as determined empirically). Next,
using a test image, compute the average bit rate for each p-
subinterval, using several candidate values of 7. For each
subinterval, choose the value of v which minimizes aver-
age bit rate. The resulting exaggeration function v(p) will
be specifically tailored to that test image. If two-pass en-
coding is permitted, then this image-specific y(p) can be
computed during the first pass and transmitted to the de-
coder as header information, at negligible extra cost in bit
usage. Alternatively, a single, universal exaggeration func-
tion y(p) can be used for all images. Results for both
approaches are presented.

4 Experimental results

Using the four 1-pixel conditioning neighborhoods shown
in Figure 3, we obtained estimates of p(z|N;), j = 1,...,4.
Because of the low dimensionality of the probability space
(each neighborhood has only one conditioning pixel), sim-
ple histogramming was selected as a reliable means of es-
timation, and was used in obtaining all of the results pre-
sented in this section. Empty histogram bins were avoided
by initializing all bins to 1 instead of 0.
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Figure 3: Conditioning neighborhoods for use in lossless
image compression. In each case, the pixel marked ‘x’ is
to be encoded, and the pixel marked ‘e’ is the conditioning
value.

P
Figure 4: Normalized histogram of —Inp, averaged over
all test images.

Had the conditioning neighborhoods been larger, his-
togramming would have been infeasible, and a cluster-

TABLE 1: Estimated Bits per Pixel
IMAGE 0-ENT p(z|]N1) AM  GM EC-1P EC-2P

Al 7.70 4.89 4.74 4.73 4.42 4.41
aero2 7.30 5.04 5.09 5.10 4.74 4.73
b2 7.35 4.71 459 4.60 4.25 4.23

baboon 6.71 6.51 6.02 5.95 5.94 5.91
bank.512  7.66 4.98 4.68 4.74 4.33 4.32
cman 6.90 5,50 4.96 4.93 4.74 4.73
couple 7.08 4.33 4.36 4.37 3.64 3.54
crowd 7.48 6.89 6.14 6.02 6.00 5.97
einsteinB  6.87 4.83 4.77 4.78 4.27 4.24

face 7.30 5.25 4.75 4.75 4.62 459
fruit 6.34 5.44 497 496 4.70 4.66
girl.512 7.08 454 453 451 395 3.92
qurl2k 7.53 5.52 5.19 5.18 485 4.83
hat 7.69 482 464 463 435 4.35
Jet 5.57 4.63 4.45 447 4.08 4.07
kids 7.16 512 4.86 4.83 4.51 4.50
lenna 7.25 492 454 452 421 420

loco.512 591 5.01 4.56 4.55 4.49 4.43
london 7.30 431 449 454 4.07 4.03
mall 7.04 6.04 5.59 5.61 539 537
oleh 7.46 4.73 463 4.62 415 4.12
pyramid  7.33 4.66 4.67 471 4.06 3.93
reagan 7.32 4.76 452 451 413 4.12
tek-boat 7.59 6.08 5.66 b5.61 5.58  5.52
tek-cute 6.96 4.68 471 473 415 4.12
tek-rose 7.41 6.77 6.04 5.87 592 582
vegas 7.49 4.62 448 446 4.23 4.23
wed 7.00 498 495 497 458 4.56

based kernel estimate (as in [1]) would be more appropri-
ate. As a check, we repeated several of the compression
experiments presented in this section using a cluster-based
estimate, and found that the results were about the same.

Different sets of estimates were obtained for each image
being tested. For each image, the training set on which the
estimates were based consisted of all of the other available
images. By carefully excluding the test image from the
training set, the possibility of overtraining was eliminated.
This method of testing, sometimes called the “leave-one-
out method,” provides a relatively conservative estimate of
performance.

The exact choice of p-partition used in determining v(p)
was found to be noncritical; hence, the same partition was
used for all images: {0,.3,.5,.65,.75,.8,.85,.9,.95,.975, 1}.
The finer resolution for higher values of p is justified by the
higher frequency of those values, as evidenced in Figure 4.

Experimental lossless compression results for the ex-
aggerated consensus procedure are given in the last two
columns of Table 1; the test images are shown in Figure 5.
The two-pass variation (EC-2P), which uses a different ex-
aggeration function for each image, performs slightly better
than the one-pass variation (EC-1P), which uses a single
universal exaggeration function for all images. Figure 6
shows the universal as well as three image-specific exagger-
ation functions. For comparison, the zero-order sample en-
tropy (0-ENT) and results for the unexaggerated geomet-
ric mean (GM), the arithmetic mean (AM), and p(z|N7)
alone are also listed. All bit rates are estimated by as-
suming ideal entropy coding for the given model; previ-



Figure 5: The images used in this study. From left to right, row 1: Al, aero2, b2, baboon, bank.512, cman, couple. Row 2:
crowd, einsteinB, face, fruit, girl.512, girl2k, hat. Row 3: jet, kids, loco.512, london, mill, oleh, lenna. Row 4: pyramid,
reagan, tek-boat, tek-cute, tek-rose, vegas, and wed. All are 8-bit monochrome, 512 x 512, except for cman, which is 8-bit

monochrome 256 x 256.

ous experience with arithmetic coding leads us to believe
that these estimates are reliable predictors of actual per-
formance, typically accurate to within a tenth of a bit per
pixel[6].

Note that both the arithmetic and geometric means
provide significant improvement over using p(z|N1) alone.
The geometric mean has a slight advantage over the arith-
metic mean, in accordance with Principle 1. Selectively
exaggerating the shape of the geometric mean results in
substantial improvement, in accordance with Principle 2.
The latter effect is the major finding of the present work.

5 Conclusion

A method for combining several conditional PMFs into a
single PMF estimate has been presented and justified, both
heuristically and by experimental findings in the applica-
tion of lossless image compression. The method involves
exaggerating the shape of the consensus PMF when the
given conditional PMF's agree in shape.

The technique is effective in lossless image compres-
sion, and may perform similarly well in a variety of other
image processing applications, such as lossy compression,
restoration, segmentation, and classification. Its applica-
bility to other domains, such as multi-sensor integration
and decision-making based on accumulated evidence, is a
promising area of research.
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Figure 6: Universal and three image-specific exaggeration
functions used in obtaining the compression results given
in the last two columns of Table 1. The horizontal axis is p
and the vertical axis is . The tek-boat function is unusual
in that the degree of exaggeration diminishes slightly as p
gets very close to 1.
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