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ABSTRACT

Researchers in image processing have long recognized the
importance of modeling the human observer. Although a
full human vision model remains elusive, orientation de-
tection, one of the key components of human vision, can
be directly incorporated into a variety of image processing
algorithms. Orientation detection also provides cues that
allow an algorithm to adapt to inhomogeneities in images.
In this paper we show how the M-lattice system, a new
non-linear dynamical system, can easily incorporate orien-
tation sensitivity for two different types of problems. First,
simultaneous adaptive filtering and non-linear restoration
is illustrated for fingerprint enhancement. Second, con-
strained non-linear optimization is illustrated for halftoning
in a “hand-drawn” style.

1. INTRODUCTION

The physiological evidence for orientation detectors in
the human visual system system [1] has led to widespread
recognition of the importance of orientation for both human
vision and perceptually-based image processing. Not only
is orientation perceptually significant, but image processing
algorithms that sense local orientation are better equipped
to adapt to inhomogeneous data.

In this paper we show how local orientation information
can be smoothly incorporated into two different types of im-
age processing problems, while simultaneously accomplish-
ing a desired image processing goal such as image halfton-
ing.

The computational vehicle for both experiments is the
M -lattice, a non-linear dynamical system recently intro-
duced into the signal processing community for a variety
of applications formulated as constrained non-linear opti-
mization and as pattern-extraction [2]. The M-lattice sys-
tem was derived from the reaction-diffusion model, first
proposed by Turing in 1952 in order to explain mammal
coat patterns [3]. Although primarily explored for biolog-
ical pattern formation [4], reaction-diffusion systems can
perform image processing operations that emphasize ori-
ented patterns [5]. Recently, directional image processing
was performed using anisotropic non-linear diffusion [6].
Yet, the M-lattice system is more flexible than both the
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reaction-diffusion system and the anisotropic non-linear dif-
fusion, thereby providing a common framework for a variety
of image processing problems.

2. BACKGROUND: M-LATTICE SYSTEM

We briefly review the essentials of the M-lattice sys-
tem [2]. Let v;(t) € R be a state variable as a func-
tion of time at each lattice point ¢, where ¢ =1, ..., N.
Let x:(t) be an output variable, obtained from ;(t) via
xi(t) = g(¥i(t)). The “warping” function, g(u), is a sat-
urating piece-wise linear non-linearity with an arbitrarily
large number of segments. The values of x;(t) will cor-
respond to the intensities of the pixels in the output im-
age at the time when the system has converged. Con-
struct () and X(t) by concatenating 11 (t), ..., ¥n(t)
and x1(t), ..., xn(t), respectively into column vectors.

Definition 2.1 Suppose that a given function, ®(X(t)), is
continuous, twice-differentiable, and bounded above. Let the
matriz A be real, symmetric, and negative-definite:
AeRNN A =ay], A=AT, and V i \;[A] < 0. Then
the M -lattice system * is the following non-linear dynamical
system:

dip(t —~ -
WO~ adw) + o (xw). (1)
Notice the right-hand side contains two components — a
linear function of the state variables and the gradient of a
typically non-linear function of the warped state variables.
Compared to reaction-diffusion systems, the linear function,
Az/?(t), generalizes diffusion to any linear filter, while the
gradient term allows many types of the non-linear reaction.
The convergence and stability of non-linear dynamical
systems is an area of much research. We have shown that a
subclass of the M-lattice system possesses asymptotic con-
vergence properties, regardless of the initial conditions [2].
Thus far, no proof of total stability exists for the system
in (1). However, fixed points of the form ¥ € {—1,1}" are
asymptotically stable [7]. In the applications we discuss be-
low, the general M-lattice system exhibited convergence in
computer simulation.
In non-linear optimization, ®(¥) is the objective func-
tion to be maximized. Using the results of Vidyasagar [§],

IThis is the definition adapted for the present paper. The
general M-lattice system is defined in [7].



it can be shown that for certain types of objective func-
tions, the M-lattice system converges to the (appropriately
defined) local maxima of ®({) with respect to X [7]. Thus,
in many situations it is advantageous to use the M-lattice
system for non-linear optimization. Of the two examples de-
scribed in Sections 4 and 5, the first uses a 1-lattice system
for non-linear filtering; the second uses another 1-lattice
system for non-linear optimization. Both employ orienta-
tion sensitivity.

3. ESTIMATING LOCAL ORIENTATION

Rather than compute orientation at all possible angles
and then decide which angle dominates, we employ the
computation-saving “steerable” set of basis filters described
in [9]. Steerable filters have been shown to give a good
match to orientation perception by humans [10]. The out-
put of the steerable filters at each pixel ¢ gives the angle,
0; € [—m, ], and relative strength (or magnitude),

m; € [0, 1], of the dominant orientation present at that pixel.

For the applications that follow, we will use the ori-
entation to guide the action of the M-lattice system. For
example, to design a low-pass adaptive filter that rotates
to the dominant orientation, denote the diagonal matrix of
variances by V; and the rotation matrix by ®;:

2 C_wnn.
Vi:{ai*”” 0 }’ @i:[cosﬁz sm@l}. 2)

0 0i2 v sin 0; cos 0;
)

The relative sizes of Uiz and af,y depend on m; and deter-
mine the skewness of filters with respect to the dominant
orientation:

L
ot = 2(—m), ot =L-db, 3)
where L x L is the size of the filter mask in pixels. Let
i € Z2 be the pixel position. Then the (unnormalized) ori-
ented low-pass filter is given by:

hi(i) = exp{-i' O] V,@;ii}. (4)

4. NON-LINEAR RESTORATION OF
FINGERPRINTS

A typical fingerprint identification system contains a
pre-processing step for binarizing the original scanned fin-
gerprint image. A binary fingerprint image is more
amenable to classification than a gray-scale fingerprint im-
age [11].

For fingerprint images, the binary output can be ob-
tained by a standard halftoning algorithm, but this can ag-
gravate any noise or scratches that are present. We propose
a pre-processing scheme that not only binarizes the original
fingerprint image, but also removes artifacts that can hinder
the identification process. The method uses the ability of
the M-lattice system to excite growing spatial waves, which
are the signature of reaction-diffusion systems. The motiva-
tion for using the reaction-diffusion aspect of the M-lattice
system is that fingerprint images have distinct patterns of
thin curves with bifurcations resembling zebra stripes, and
reaction-diffusion systems have been shown to be capable

of some fingerprint enhancement [5], [12]. Reinforcing the
harmonics that create fingerprint curves will emphasize the
essentials of the fingerprint, while orientation-sensitive fil-
tering will suppress the artifacts due to the image acquisi-
tion.
Let 7 € 22, () and h(7) be FIR filters , and

s(i1) € [—1,1] be the original finely-quantized input image
signal ®. Consider the following version of the M-lattice
system, defined in (1):

% = a(@d) = ¥(i, t) + s(i) — h(7D) * x(7,1). (5)

For notational convenience, we have dropped the subscript
t. Nevertheless, it is implied that each pixel ¢ has its own
a(il) and h(i). Using (5) for the restoration and enhance-
ment of fingerprints is convenient, because it can be de-
signed to produce binary outputs and, as we now show,
possesses the desired pattern-formation properties [7], [13].

Choose a(7t) and k(1) such that the unique interior fixed
point, (i) € (—1,1), of (5) is at s(7). The procedure for
doing this will be given below. Denote the DFT of the filters
by A(k) and H(k). By Definition 2.1, it is necessary for
the matrix A, representing the linear term of the M-lattice
system, to be made negative-definite. For the system in
(5), A is block-circulant and symmetric, containing a(7)
in the first row. Then all the A(k) coefficients must be
negative, because they are proportional to the eigenvalues
of this A matrix. Before (7, t) reaches the clipping levels,
(5) simplifies to:

% _ s(ﬁ)+(a(ﬁ)—%h(ﬁ))*w(ﬁ,t)- (6)

Taking the DFT of both sides of (6) yields:

dw((jliyt) = S(E) + (A(E) - %H(E)) Q/,(Ey t), (7)

whose solution for each k is:

to = s+ 5P e rriiey - SB
vk, t) = [S(k)+F(E)] p{F(k)t}

F (k)

o (8)

- def - 1 -

where F(k) = A(k) — TH(k)’ and the initial condition is

set to S(k), the DFT of the original image. Making F'(k)
positive for a set of spatial frequencies creates the onset of
growing spatially-stationary waves [7], [13].

For fingerprint restoration, filtering should delineate the
ridges, while canceling fluctuations in the DC level and sup-
pressing noise. In fingerprints, the ridges are not collinear,
making it difficult to achieve this enhancement. The prob-
lem is solved here by using the adaptive filters, H (k) and
A(k), which incorporate the orientation information of the
original image, in a way that assigns negative DFT coefli-
cients to the frequency bands corresponding to the ridges.

2 Actually, s(7) is obtained by scaling and shifting the original

I(n
256-gray-level image, I(7): s(7@) = ( 1(272) -1




Starting with (4), the filters are designed as follows.
First, A" (7) is normalized to produce h™(77). Then the in-
termediate forms of a(7) and h(7) are computed:

iy = 8(R) — — b 2 — (7
WG = 60 s () K@), O
o) = —(67) — b (@) = b () - 6(7)
- —1_;n(6) (6(7) — " (7))
1 "o .
= o ) a6, (10)

where §(7) is a unit sample in 2-D.

Based on (9) and (10), h(7) is designed to have nega-
tive DFT coefficients at the spatial harmonics correspond-
ing to the ridges. Since 0 < A" (7) < 1 V i, (10) guarantees
that A’(k) < 0. Then by slightly perturbing o/ (0), A7 (k)
is transformed into A(k) < 0V k, thereby assuring that A
is negative-definite. Substituting the resulting a(#) and
h(7) = 6(i) + a(i) into (5) with T = 1 confirms that the
fixed point of (5) is indeed ¢ (7) = s(7t) as required.

The system goes unstable along the ridges, essentially

1
giving them an infinite boost. The — factor amplifies this

effect as T is gradually decreased during the computer sim-
ulation from its initial value of 7" = 1. The warping keeps
the system variables within the allowable range.

Figure 1(a) contains a typical scanned and finely quan-
tized fingerprint image from the NIST database [14]. The
original image is 512 x 512 pixels and was low-pass filtered
and down-sampled by a factor of 2 in each dimension in
order to speed up the computation. From the figure, it can
be seen that the original fingerprint is corrupted by a num-
ber of scratches, and several regions are obscured by uneven
illumination.

As shown in Figure 1(b), the common fingerprint
halftoning method, based on adaptive median filtering and
thresholding [11], only makes these artifacts more apparent,
because it increases the image’s contrast [7]. The adaptive
threshold is set to the average of the minimum and the
maximum gray levels within some neighborhood surround-
ing each pixel of the original fingerprint image. The opti-
mal size of the window was determined to be 5 x 5 pixels by
trial and error. Other standard halftoning methods, such as
ordered dither or error diffusion, will perform poorly also
because they have no built-in restoration mechanism and
will halftone both signal and noise alike.

Figure 1(c) displays the fingerprint, processed by the
M-lattice. The scratches have been removed and the un-
evennesses in the DC levels throughout the image have been
eliminated. Essential detail such as ridges and bifurca-
tions appear as continuous black curves, distinctly enhanced
against a noise-free white background. Moreover, ridges
and bifurcations have been extended even into the regions
where they are barely detectable in the original image. This
illustrates the celebrated synergetic property of reaction-
diffusion: the emergence from noise of a spatial pattern,
whose qualitative characteristics are pre-determined by the
system’s parameters [3], [4]. Using a Connection Machine
(CM-2), the final image is produced in 25 iterations at the

time step of 0.1 sec for the total time of less than 3 seconds
or 1 minute including the system time and the 1/O.

The use of orientation within the M-lattice system dif-
fers from existing approaches in that it accomplishes restora-
tion and halftoning simultaneously. Alternatively, one might
use a two-stage system consisting of some conventional im-
age restoration algorithm, followed by adaptive-thresholding.
However, there are two arguments in favor of using the
M-lattice system-based approach. First, the attainable
signal-to-noise ratios can be very large. This is due to the
fact that the M-lattice system applies the filters, a(7) and
h(t), a large (infinite in the limit) number of times by the
virtue of being a continuous-time system. Second, no sep-
arate halftoning step is needed, since the M-lattice system
binarizes the image.

5. ORIENTATION-DEPENDENT
HALFTONING AS NON-LINEAR PROGRAM

In this section, we consider the problem of synthesizing
a binary caricature that brings out the directional content
of an image. The resulting halftoning method must yield
an image that appears similar to the original gray-scale im-
age in some indirect sense. A least-squares halftoning ap-
proach is appropriate for this task, because it can employ
an explicit model of perception as the measure of perfor-
mance [15]. Here we show how to implement such an ap-
proach using the M-lattice system.

Suppose 7t € Z%; s(it) € [—1,1] is the finely quantized
original input image signal; y(i) € {—1,1} is the output
halftone image; and h(f) is a 2-D filter (not necessarily the
same as h(7) in the previous section). Let B = H”H,
where H is a circulant matrix with A(7) in the first row.
The problem of halftoning can be stated as a non-linear
program:

min 25" Bjj — (B3)"j (11)
Yy

subject to constraints: y7 —1 > 0, (12)

where the vectors are the standard concatenations of the
corresponding sequences. The particular form of constraints,
(12), forces each pixel to assume binary values.

In order to solve this problem using the M-lattice sys-
tem, we combine the objective function to be minimized,
(11), with the N constraints, (12), into the Lagrangian cost
functional with the help of the Karush-Kuhn-Tucker condi-
tions [16]:

min £(7), where
Yy
—» _ 1 STy~ T > 1 a2
L@ = 7 Bj- BT+ sz(yi —1), (13)
pi < 0, pilyi—-1)=0. (14)

The Lagrange multipliers, p;, are the varying penalty terms
that enforce the constraints according to (14). As a result,
the unconstrained minimization of £(%) in (13) produces
the optimal halftone image.

The optimization problem, (13), is “programmed” onto
the M-lattice system, (1), by setting ¥ equal to ¥, ®(¥) to



—L(¥), and taking partial derivatives. This yields:

WO~ Al +BF B0 -Px0),  (15)
where P = Diag {p1, ..., pn}. The elements of a(7) are
chosen so as to guide the system towards an optimum cor-
responding to a perceptually-pleasant halftone. It has been
shown that A =B —1I is a good choice, because it filters
out objectionable correlated spatial patterns [2].

Halftoning with the Hopfield network [17] would be sim-
ilar, but requires setting b;; > 0. Otherwise, the optimal
values of y; will not be binary [7]. Since no effort is made
here to design H in a way that would result in b;; > 0,
the non-linear constraints provide the only mechanism for
driving the output pixels to the limits of the gray scale.

Treating halftoning as a non-linear programming prob-
lem and solving it with the M-lattice system offers consid-
erable flexibility in the choice of the quality metric and in
the functional form of constraints. In order to demonstrate
this flexibility, we incorporated orientation detection into
the halftoning quality metric. The adaptive filter matrix,
H, was designed using (4) so as to include the information
about the dominant orientation at each pixel of the origi-
nal image, shown in Figure 2(a). Figure 2(b) displays the
result, which exhibits more of the line and curve features
found in hand-drawn “halftones” (such as the Wall Street
Journal portraits) [7]. According to the poster provided by
the Wall Street Journal Classroom Edition program, the
entire process is done by hand and takes an artist from
three to five hours [18]. In contrast, the simulation of the
M -lattice system implementation on the CM-2 takes 3000
iterations at the time step of 0.01 sec for the total time of
approximately 3 minutes including the system time and the

1/0.

6. SUMMARY

Explicit use of local orientation information in image
processing can lead to better adaptive algorithms for en-
hancement as well as to novel image processing such as
“hand-drawn” style halftoning. We have described the in-
corporation of orientation information into two different im-
age processing applications, and shown how the M-lattice
system, a new non-linear dynamical system, can be used
for both implementations. Additionally, the two applica-
tions show how the M-lattice system is well-suited to im-
age processing problems which require either simultaneous
binarization and enhancement, or which perform non-linear
constrained optimization.
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