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Abstract

Many applications in computer vision benefit from ac-
curate, robust analysis of the coordinate transforma-
tion between two frames. Whether for image mosaic-
ing, camera motion description, video stabilization,
image enhancement, aligning digital photographs for
modification (e.g. ad-insertment), or their compari-
son during retrieval, finding both an estimate of the
coordinate transformation between two images, and
the error in this estimate is important.

Perhaps the most frequently used coordinate trans-
formation is based on the 6-parameter affine model;
it is simple to implement and captures camera trans-
lation, zoom, and rotation. Higher order models,
such as the 8-parameter bilinear, 8-parameter pseudo-
perspective, or 12-parameter ‘biquadratic’, have also
been proposed to approximately capture the two ex-
tra degrees of freedom that a camera has (pan, tilt)
that are not captured by the affine model. However,
none of these models exactly captures the eight pa-
rameters of camera motion. The desired parameters
are those of elements in the projective group, which
map the values at location x to those at location
x'=(Ax+ b)/(cTX + 1), where the numerator con-
tains the six affine parameters, and the denominator
contains the two additional pan-tilt or “chirp” pa-
rameters, C.

This paper presents a new method to estimate these
eight parameters from two images. The method
works without feature correspondences, and without
the huge computation demanded by direct nonlinear
optimization algorithms. The method yields the “ex-
act” eight parameters for the two no-parallax cases:
1) a rigid planar patch, with arbitrary 3D camera
translation, rotation, pan, tilt, and zoom; and 2) an
arbitrary 3D scene, with arbitrary camera rotation,
pan, tilt, and zoom about a fixed center of projection.

We demonstrate the proposed method on real image
pairs and discuss new applications for facilitating log-
ging and browsing of video databases.

Contents

1 Introduction

Many computer vision problems require finding the coordinate
transformation between two images of the same scene or object.
Whether trying to relate photographs taken from two different

*This work sponsored in part by Hewlett-Packard Research
Labs and by BT, PLC.

cameras, trying to align images for mosaicing and enhancement,
trying to recover camera motion between video frames, or try-
ing to stabilize video images, it is important to have both a
precise description of the coordinate transformation between
any given pair of images or video frames, and some indication
as to how accurately this coordinate transformation accounts
for the differences in the two images.

Much of the research to recover this coordinate transforma-
tion has been conducted within the framework of motion anal-
ysis of a static scene where the camera is assumed to have
moved slightly between two frames. However, a solution to this
“motion analysis” problem has broader applications, since the
same class of coordinate transformation also exists between any
two still pictures taken of the same scene using different cam-
eras. Solutions to this coordinate transformation can therefore
be used not just for motion, but also for applications such as
recognition of scenes photographed from different angles, align-
ment and mosaicing of images taken with different cameras, or
computation of depth with respect to a planar surface in a 3D
scene.

1.1 Camera motion analysis: common
assumptions and terminology

Two common assumptions are typically adhered to in solving
for the coordinate transformation between two images. The
first assumption is that the scene is constant — changes of scene
content and lighting are small during the time that elapses be-
tween successive frames of the image sequence. The second
assumption is that of an ideal pinhole camera® which has eight
degrees of freedom in 3D space — translation (X,Y]7), zoom
(scale in each of the image coordinates z and y), and rotation
(rotation about the optical axis, pan, and tilt. These two as-
sumptions are also made in this paper.

The diverse communities addressing camera motion analysis
use a variety of terminology. In this paper, an “uncalibrated
camera” refers to one in which the principal point® is not nec-
essarily at the center (origin) of the image and the scale is not
necessarily isotropic®. We also suppose that the zoom is con-
tinually adjustable by the camera user, and that we do not
know the zoom setting, or whether it changed between record-
ing frames of the image sequence. We assume that all cameras
(calibrated or not) map straight lines in 3D space to straight
lines in the 2D image, and that each element in the camera
sensor array returns a quantity that is linearly proportional to

!That is, we assume unlimited depth of field — everything is
in focus (infinite resolution); and straight lines map to straight
lines.

2The principal point is where the optical axis intersects the
film.

*Tsotropic scale means that magnification in the z direction
is equal to magnification in the y direction.



the quantity of light received®.

The concept of parallaz is also relevant to this paper. To
briefly review, when imaging a flat scene (like a whiteboard, or
when the camera is far from the scene relative to the depth of
the scene, as in aerial photography) then regardless of how the
camera moves, there is no parallax (and consequently, no appar-
ent occlusion). However, when imaging an arbitrary 3D scene,
translation of the camera causes parallax®. The cases which are
exactly solved in this paper do not include parallax, but their
accurate solution is an important first step in compensating for
parallax [3].

1.2 Coordinate transformations:
terminology

Terms like affine, perspective, and projective have become con-
fused as they are used differently by people from different back-
grounds. For example, in the field of projective geometry [4],
perspectiveis often used to imply a mapping to a lower dimen-
sion (e.g. 3D to 2D), while projective implies a mapping to the
same dimension (e.g. 2D to 2D). Many others, however, use the
term perspective to denote a projective mapping from 2D to 2D
(e.g. Wolberg’s [5] perspective mapping, which is so commonly
used that it is incorporated into many software applications
packages, such as Adobe Photoshop.) The projective coordi-
nate transformation, for example, could also be described as
affine or Fuclidean in 3D, or linear in 4D (using homogeneous
coordinates, writing x' = Ax, x,y € R*).

We find that adopting the point of view of the image coordi-
nates, X = [x,y]T simplifies matters; in this paper we describe
coordinate transformations from x to a new set of coordinates,
x' = [z, y']T. The coordinate transformations used in this pa-
per are presented in Table 1.

An example of each of these coordinate transformations is
shown in Fig. 1.

The 6-parameter affine model is frequently used as a sim-
ple description of the coordinate transformation between two
pictures of the same scene, but it has too few degrees of free-
dom to account for the eight degrees of freedom of the desired
exact projective coordinate transformation. However, because
the desired projective parameters have traditionally been too
mathematically and computationally intractable to estimate, a
variety of approximations have been proposed. Later we will
construct a linear system of equations involving an approxi-
mation to the projective coordinate transformation (although
this will only be an intermediate step for solving for the exact
projective parameters.) It is helpful to discuss a few of the
commonly used approximate models before proceeding.

Going from first order (affine), to second order, gives the
12-parameter ‘biquadratic’ model. This model captures both
the “chirping” and converging effects of the projective group,
though despite its larger number of parameters, there is still
considerable discrepancy between a projective coordinate trans-
formation and the best-fit biquadratic coordinate transforma-
tion. Why stop at 2nd order? Why not use a 20-parameter ‘tri-
quadratic’ model? While an increase in the number of model
parameters will result in a better fit, there is a tradeoff, where
the model begins to fit “noise.” Since the physical camera

*This condition can be enforced over a wide range of light
intensity levels, by using the Wyckoff principle [1][2].

®For example, as you translate the camera to the left, you
may see the left side of an object that previously you only saw
the front of.

model fits into the 8-parameter projective group, we know that
“eight is enough.” Hence, it is appealing to find an approximate
model with only eight parameters. Let’s briefly show how the
bilinear and pseudo-perspective models can be obtained from
the biquadratic model®

The bilinear model is perhaps the most widely-used [5] in
the fields of image processing, medical imaging, remote sensing,
and computer graphics. This model is easily obtained from the
biquadratic by removing the four 2> and y* terms. Although
the resulting bilinear model captures the effect of converging
lines, it completely fails to capture the effect of “chirping”.

The 8-parameter pseudo-perspective model [6]) does, in fact,
capture both the converging lines and the “chirping” of a pro-
jective coordinate transformation. This model may be thought
of as first, removal of two of the quadratic terms (g,/,2 =
qyrz2 = 0), which results in a ten parameter model (the ‘q-chirp’
of Mann [7]) and then constraining the four remaining quadratic
parameters to have two degrees of freedom. This model may
be thought of as first, removal of two of the quadratic terms
(¢y1y2 = Gyi1p2 = 0), and second, constraining the four remain-
ing quadratic terms to have two degrees of freedom.

These constraints force the “chirping effect” (captured by
¢y 52 and g,,2) and the “converging effect” (captured by ¢,/
and ¢,r.,) to work together in the “right” way to match, as
closely as possible, the effect of a projective coordinate trans-
formation. By setting ¢a = ¢,/,2 = ¢y/4y, We force a chirping
in the z-direction to correspond with the converging of par-
allel lines in the z-direction. A similar result holds for the
y-direction. Therefore, of the 8-parameter approximations to
true projective, we would expect the pseudo-perspective model
to perform the best, and, indeed, this appears to follow from
experiments.

1.3 Camera motions and the projective
group

This paper will show a new way to get the parameters for the

“exact” projective model. This model exactly captures the co-

ordinate transformation resulting in camera motion for two in-

teresting “no-parallax” cases outlined in Table 1.3

The second case is sometimes referred to as “computing the
motion of a rigid planar patch.” This paper is not the first
to provide a means of calculating the motion of a rigid pla-
nar patch; Tsai and Huang [8] solved this problem when fea-
ture correspondences were available and stressed the signifi-
cance of group theory. Faugeras and Lustman [9], Shashua
and Navab [10], and Sawhney [11] have considered the problem
of computing the motion of a rigid planar patch, as part of a
larger problem of finding 3D motion and structure using par-
allax relative to an arbitrary plane in the scene. Kumar et al.
[3] have also suggested registering frames of video by comput-
ing the flow along the epipolarlines, for which there is also an
initial step of calculating the gross camera movement assum-
ing zero parallax. Others have taken different approaches to
the problem of image registration as well [12]. We propose a
new approach to this problem of tracking large motions of a
rigid planar patch (e.g. tracking the global image coordinate
transformation with the zero-parallax assumption) without us-
ing explicit features, where one of the approximate models (such
as pseudo-perspective) is used to update the exact model (pro-
jective) as part of an iterative (feedback) process.

Tn the same spirit, other interesting approximate models
can also be derived, but space restricts us to those used in this
paper.
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Figure 1: “(MODEL), number of parameters” is shown below each example of a planar coordinate transformation. (ORIGINAL) Original image
(with no change in appearance under translation). (AFFINE) Result of affine coordinate transformation applied to original. Note parallel lines
remain parallel, and periodicity remains unchanged (e.g. the 4 evenly spaced windows remain evenly spaced). (BILINEAR) Bilinear coordinate
transformation captures the essence of converging lines but fails to capture the ‘chirping effect’ of perspective; the windows change in shape, but
remain equally spaced. Straight lines that were parallel to the coordinate axes in the original image remain straight, but other lines become “warped”.
(PROJECTIVE) Projective coordinate transformation captures the increasing of spatial frequency toward the point where parallel lines meet (vanishing
point.) Thus, periodic patterns are no longer periodic, but “chirped” — the windows get closer, but straight lines still map to straight lines. The eight
parameters of the projective coordinate transform are exactly the eight desired camera parameters. (PSEUDO-PERSPECTIVE) The essence of both
the chirping phenomenon and the converging lines are not only captured, but are also constrained to work together in the “right” way, with the
“correct” number of parameters (eight). However, straight lines are not preserved. (BIQUADRATIC) The ‘biquadratic’ coordinate transformation has
too many degrees of freedom for a rigid planar patch. It can independently model the ‘chirping effect’ and the converging of parallel lines. To show
this independence, we have constructed an example with a high degree of chirping, and no convergence of parallel lines.

Model | Coordinate transformation from x to x’ | Parameters
Translation x'=x+b b € R?
Affine x'=Ax+Db A cR*2 becIR?
Bilinear = GuiayTY + o T + GuryY + G
1
Yy ZQy’myxy'i'Qy’mx'i'Qy’yy'i'Qy’ qx cER
Projective x' = % A €cR?**? b,c cIR?
Pseudoperspective | o' = qu,% + quryy + qu + Got + qary
V' = qya® + 4y + 4y + Gazy + 4y g« €R
Biquadratic z' = Qz! 2 $22 + Qo' 2y Ty + Q$’y2y22 + 4 2® + 42y Y + 4
1
Y = qye2® + QyleyTY + 42 Y @y + ¥ + a0 | ¢ €ER

Table 1: Image coordinate transformations used in this paper

Scene assumptions Camera assumptions
Case 1: arbitrary 3D fixed center of projection (e.g. free to rotation about optical axis, pan,
tilt, and zoom).
Case 2: planar free to move in any way: translate, rotate, zoom, pan, tilt.

Table 2: The two cases where there is no parallax



2  ‘Video Orbits’ and group operations on
images

2.1 Review: Groups, Operators, and Orbits

Three of the models presented so far, translation, affine, and
projective, each form a group.” Thinking about the projective
model as a group leads to some useful concepts which we exploit
in the rest of this paper.

2.1.1

A group [13] is a collection of objects upon which there is
defined the structure:

Definitions: group, group operation

1. Closure: a law of composition allowing us to combine two
members of the group into a single object of the same kind.
For example, if g, h are images, and p1, p2 are operators
in the group, then under closure, applying p1 and p2 to g,
h = p2 0 p1 0 g implies that the new operator p = p2 0 p; is
also in the group.

2. Identity: there is a member of the group which combines
with any other element to leave the other element un-
changed. For example, the 2-parameter translation group
contains the identity operator [0, 0].

3. Inverse: for every member of the group we can find some
other member that combines with it to produce the iden-
tity. For example, the 2-parameter translation group con-
taining operator [bs, by] also contains the inverse operator

[_bf’ _by]'

4. Associativity: when 3 elements of the group are combined,
only the ordering matters — it does not matter whether
the first two are combined to produce some other element
which is then combined with the third, or the first is com-
bined with the result of combining the last two.®

When the elements of a group are operators, considered to-
gether with a set of operands, then a structure known as a
group operation® results. In this paper, a group operation con-
sists of a group of coordinate transformation operators together
with a set of images. For simplicity, these images (operands)
will be regarded as real-valued functions of real variables (e.g.
discretization will be ignored).

2.1.2 Definition: orbits

Two operands of a group operation are said to be in the same
orbit if and only if one can be made to take the place of the
other by an operation of the group [13]. The orbit of a given
operand is the set of all results that can be obtained allowing
any operator from the group to act on the given operand'®.

2.2 “Video Orbits’

The ‘video orbit’ of a given image is defined to be the set of all
images that can be produced by applying operators from the
projective group to the given image. For example, a camera
zooming, panning, and tilting while photographing a static 3D

Tt is interesting to note that of the models shown, only these
three correspond exactly to “physical” situations arising from
camera motions.

8Note that commutativity is also present for the translation
group, but not for the affine or projective. Although commu-
tativity is not required by the group definition, its presence
greatly simplifies parameter estimation — see Sec. 3.4.

®also known as a group action or G-set [13].

1%Two operands of a group operation are also said to be con-
gruent if they lie in the same orbit [4].

Figure 3: Video orbits form an 8D subspace of the coD space of the image
(depicted here as 1D subspaces of the 2D page). In this example, frames
1 to 6 lie in orbits that are approximately the same (the orbit of frame 1
is depicted). Frames 7 and higher lie in a different orbit, corresponding
to the second scene. The higher frames all lie close to the orbit of frame
7, the first frame after the scene change (the orbit of frame 7 is depicted).

(a) (b)

Figure 4: Video orbits. (a) The orbit of frame 1 is the set of all images
that can be produced by acting on frame 1 with any element of the op-
erator group. Assuming that frames 1 and 2 are from the same scene,
frame 2 will be close to one of the possible projective coordinate transfor-
mations of frame 1. In other words, frame 2 lies near the orbit of frame 1.
(b) By bringing frame 2 along its orbit (which is nearly the same orbit as
the orbit of frame 1), we can determine how closely the two orbits come
together at frame 1.

scene will produce many frames that lie in the same 8D or-
bit. All the possible coordinate transformations induced by the
camera are described by the 8-parameter projective group.

A hypothetical video sequence is illustrated in Fig. 2, where
the camera is zooming, tilting, and panning, and there is one
scene change. Frames lie in the same orbit if the only frame-
to-frame change is camera movement, and in different orbits if
there is a scene change.

Fig. 3 illustrates the idea of the video orbit. Although one
continuous image may be thought of as a single point in an infi-
nite dimensional space'!, the eight parameters of the projective
coordinate transformation acting on this image move it along a
trajectory in 8D space. Since these dimensions are difficult to
visualize, Fig. 3 shows only a 1D orbit in a 2D space.

Given a set of images that lie in the same orbit of the group,
we may wish to find for each image pair, that operator in the
group which takes one image to the other image (e.g. makes
any one image look exactly like any other). For example, af-
ter finding the coordinate transformation between these two
frames, we can begin to answer questions such as “did the cam-
era move, and how?” or “did the scene change?”. (Many other
applications are also possible; a few will be addressed in Sec. 5.)
Fig. 4 illustrates the operator p acting on frame 2, f>, to move
it nearest to frame 1, fi: fs = po f2. If the two frames are in
the same orbit, then the mean-squared error (MSE) between fi
and f; will be zero, indicating that the coordinate transforma-
tion described by p is an exact explanation of what happened
between frames 1 and 2.

In practice, however, we find which element of the group

1 Similarly, a spatially discrete image of, for example, dimen-

sions 480 x 640, may be thought of as a point in IR*8*640 =
TR207200



(a)

Figure 2: Hypothetical video sequence with a scene change from frame 6 to frame 7. (a) Original sequence. (b) Temporally subsampled sequence.

takes one image “nearest” the other, for there will be a cer-
tain amount of parallax, noise, interpolation error, edge effects,
changes in lighting, depth of focus, etc. The problem of find-
ing the 8-parameter operator that maps one image into another
is now the problem of parameter estimation for the projective
group.

3 Parameter estimation for coordinate
transformations

In this section we discuss some existing methods of estimating
the parameters for a coordinate transformation, and present
some new results for the projective case.

We break the existing methods into two categories: feature-
based, and featureless. Of the featureless methods, we con-
sider two subcategories: 1) methods based on minimizing MSE
(generalized correlation, direct nonlinear optimization) and 2)
methods based on spatiotemporal derivatives and optical flow.

These categories of methods are briefly described in the rest
of this section, in an effort to highlight some of their advantages
and disadvantages, and to point out a couple of important sim-
ilarities that do not seem to have been noticed before. More
emphasis is placed on methods that provide background for the
new algorithm. Note that variations such as multi-scale have
been omitted from the list above; multiscale analysis can be ap-
plied to any of these methods. The new algorithm we develop
in this paper (with final form given in Sec. 4) is featureless,
based on spatiotemporal derivatives, and multiscale.

Some of the methods described below will be presented in
a lower-dimensional space, with “1D images”. Although 1D
images are not of direct use for the applications that interest
us, the corresponding equations sometimes yield a clearer pre-

(b)

sentation of the similarities and differences in the estimation
methods. In a 2D world, the “camera” consists of a center of
projection (COP) and a line (“film”). We will call this 2D world
“Flatland”'?, and 1D images in this world, “flatland images” to
distinguish them below. When the parameter estimation meth-
ods for the 1D and 2D cases are conceptually different, then we
will note these differences.

3.1 Feature-based methods

Feature-based methods [15][16] assume that point correspon-
dences in both images are available. Given these features we
can derive the parameters of the coordinate transformation that
gives the mapping from the coordinate = to the coordinate z’
by using least squares. (in the affine case, this will amount to
linear regression; in the projective case, to a fit to an offset
rectangular hyperbola).

In the projective case, given at least three correspondences
between point pairs in the two flatland images, we will find the
element, p = {a, b, c} € P that maps the second image into the
first. Let 25,k = 1,2,3,... be the points in one image, and let
z}, be the corresponding points in the other image. Then: z} =
(azk+b)/(cxr+1). Re-arranging yields azx+b—zrz)c =z}, s0
that a, b, and ¢ can be found by solving k > 3 linear equations
in 3 unknowns:

[xk l—xkak][abc]T:[xfk] (1)

using least squares if there are more than three correspondence
points. The extension from flatland images to 2D images is
conceptually identical; for the affine and projective models, the

12after the title of Abbott’s classic book [14], which is a story
about an alien culture living in a 2D world.



number of correspondence points needed are at least six and
eight respectively.

The major problem with feature-based methods is, of course,
finding the features. These features are often hand-selected, or
computed, possibly with some degree of human intervention
[17]. If the motion is to be tracked automatically (e.g. us-
ing features that are found computationally), then most of the
computation involves feature selection. Once the features are
found, and are known to lie on a rigid planar patch, the com-
putation of the motion of that patch is straightforward [8].

A second problem with feature-based methods is their sen-
sitivity to noise and occlusion. Even if reliable features exist
between frames (e.g. line markings on a playing field in a foot-
ball video, see Sec. 5.2) these features may be subject to signal
noise and occlusion (e.g. running football players blocking a
feature). In video applications (browsing, query, manipulation)
of large general databases (movie archives, home video, news
footage, etc.), one can not rely on the availability of robust fea-
tures; hence, the emphasis in the rest of this paper will be on
featureless methods for parameter estimation.

3.2 Featureless methods based on
generalized cross-correlation

We present generalized cross-correlation in flatland first, and
then briefly discuss its adaptation to 2D images.

Generalized cross-correlation is based on an inner-product
formulation which establishes a similarity metric for two func-
tions, say, ¢ and h, where h &~ po g is a coordinate-transformed
version of g (in practice, with some “noise”, making the rela-
tionship approximate'® rather than exact), but p is unknown.
We can find, by exhaustive search (applying all possible oper-
ators, p, to h), the “best” p as the one which maximizes the

quantity:
o p~' o h(z)
| o) = 2)

where we have normalized the energy of each coordinate-
transformed h before making the comparison.

Equivalently, instead of maximizing a similarity metric, we
can minimize some distance metric, such as MSE, given by
fjooo(g(x) —p~' o h(2))*dz. Solving (2) has an advantage over
finding MSE when one image could be an amplitude-scaled ver-
sion, as well as a coordinate-transformed version of the other (as
happens when there is an overall change in scene illumination,
for example).

Just as the cross-correlation recovers translation, generaliza-
tions of cross-correlation can be used to recover both the affine
and projective coordinate transformations.

In flatland, the affine model permits only stretching and
translating. Given h, an affine coordinate-transformed ver-
sion of image g, generalized correlation amounts to estimating
the parameters for stretch, ¢ and translation, b by exhaustive
search, trying all possible dilations (1D zooms), and transla-
tions. The collection of all possible coordinate transformations,
when applied to one of the images (say, h) serves to produce a
family of templates to which the other image, g, can be com-
pared. If we normalize the whole family of templates to have
the same energy, by expressing the family as:

1
Va
*In the presence of additive white Gaussian noise, this

method, also known as “matched filtering”, leads to a maxi-
mum likelihood estimate of the parameters [18].

hap(z) = h(az +b) (3)

then the maximum likelihood estimate corresponds to selecting
the member of the family that gives the largest inner product:

(9(2), hap(2)) =Y g(2)hap() (4)

x

This result is known as a cross-wavelet transform. A com-
putationally efficient algorithm for the cross-wavelet transform
has recently been presented [19]. A good general review article
dealing with the use of the wavelet transform for the estimation
of affine coordinate transformation is presented in [20].

The cross-wavelet transform provides a mapping from a pair
of 1D images to a parameter space that is a function of two vari-
ables — stretch and translation. This parameter space may be
sampled on any desired 2D lattice of parameters. Rather than
testing every possible a and b value, we may apply a coarse-to-
fine search strategy — computing a coarse grid, observing which
point on the grid has the highest ‘correlation score’; and then
computing more points (a finer grid) in that vicinity. Alter-
natively, we may apply some form of gradient-based iterative
procedure to maximize the inner product (or minimize a cost
function such as the MSE.)

Note that in the full 2D cross-wavelet transform, there is
also rotation and shear, in addition to stretch and translation,
although some implementations of the 2D wavelet transform do
not use all six affine parameters.

Just like the cross-correlation for the translation group, and
the cross-wavelet for the affine group, the “cross-chirplet” can
be used to find the parameters of a projective coordinate trans-
formation in flatland, searching over a 3-parameter space. The
cross-chirplet is based on a generalization of the wavelet [21]
known as the “p-chirplet.” A p-chirplet has the form:

) (5)

where h is the ‘mother chirplet’, analogous to the mother
wavelet of wavelet theory. Members of this family of functions
are related to one another by projective coordinate transforma-
tions.

With 2D images, the search is over an 8-parameter space.
A dense sampling of this volume is computationally pro-
hibitive. Consequently, combinations of coarse-to-fine and iter-
ative gradient-based search procedures are required. Adaptive
variants of the chirplet transform have been previously reported
in the literature [22].

ar + b
cr +1

ha,b,c = h(

3.3 Featureless methods based on
spatiotemporal derivatives

This section addresses featureless methods which are motivated
by the original optical flow equations of Horn and Schunk for
the case of translational motion. After a brief review of that
case, two cases for affine motion are discussed, and two cor-
responding new cases for projective motion are presented. A
detailed new algorithm for applying the last case is given in
Sec. 4.

3.3.1

When the change from one image to another is small, optical
flow [23] may be used. In flatland, the traditional optical flow
formulation assumes each point z in frame ¢ is a translated
version of the corresponding point in frame ¢ + At, and that
Az and At are chosen in the ratio Az/At = uy. The image
brightness E(z,t) is described by:

Optical flow: translation (review)

E(z,t) = F(z + Az, t + At), Y(z,1), (6)



where uy i1s the translational flow velocity of the point in ques-
tion. In the case of pure translation, uy is constant across the
entire image. More generally, though, a pair of 1D images are
related by a quantity, us(z) at each point in one of the images.

Expanding the right hand side of (6) in a Taylor series, and
canceling 0th order terms gives the well-known optical flow
equation: uyFy+ Ey+h.o.t. = 0, where E, and FE; are the spa-
tial and temporal derivatives respectively, and h.o.t. denotes
higher order terms in the Taylor series representation. Typi-
cally, the higher order terms are neglected, giving the expres-
sion for the optical flow at each point in one of the two images:

The derivation for translational optical flow in 2D follows di-
rectly [24], although its solution won’t be addressed until Sec. 4.

“Affine fit” and “affine flow”: a new
relationship

3.3.2

We now address the following problem: given the optical flow
between two images, ¢ and h, we wish to find the coordinate
transform to apply to h to make it look most like g. We describe
two approaches: (1) finding the optical flow at every point, and
applying linear regression to the optical flow field to estimate
the affine motion (‘affine fit’), and (2) estimating the motion
directly, using a generalized optical flow model (‘affine flow’).

Wang and Adelson have proposed fitting an affine model to
an optical flow field [25] of 2D images. We briefly examine
their approach with flatland images; the analysis in 2D is the
same but with more notation. Coordinates in the original im-
age, ¢, are denoted by z, and those in the new image, h, are
denoted by #’. Suppose that h is a stretched and translated
version of g, so #' = ax +b for every corresponding pair (z,z").
Equivalently, the affine model of velocity (normalizing At = 1),
um = 2’ — z, is given by um = (a — 1)z +b. We can expect a
discrepancy between the flow velocity, us, and the model veloc-
ity, #m, due to either errors in the flow calculation, or to errors
in the model assumption (e.g. an image pair where k is not
exactly a stretched and translateed version of g). However, we
can apply linear regression, to get the best (in the least-squares
sense) fit by minimizing the quantity:

Efit = Z(um - uf)2 = Z(um + Et/E$)2 (8)

x

The constants @ and b that minimize ey;; over the entire patch
are found by differentiating (8), and setting the derivatives to
zero. This results in equations for the model we call “affine fit:”

%2, L a—1 1] _ Z zF/FEy
RNl IR R BN I
Alternatively, the affine coordinate transformation may be
directly incorporated into the brightness change constraint
equation (6). Bergen et al. [26] have proposed this method,
which we will call ‘affine flow’, to distinguish it from the ‘affine
fit’ model of Wang and Adelson above. Let us show how ‘affine

flow’ and ‘affine fit’ are related. The generalized brightness
change constraint equation may be written:

BE(s' 1) = E(az + b,t + At) = E(z,1) (10)

where At has been normalized to 1. Expanding the left hand
side in a Taylor series about the identity (a = 1,6 =0, A; = 0)
gives:

E(az+b, t+At) = E(z,t)+((a—1)z+b) Es+ At Er+h.ot. (11)

Combining (10) and (11), then canceling E(x,t) and ignoring
higher order terms gives:

((e—Dzx+bE,; + Fy =umEs+ By =0 (12)

We could have also obtained (12) by substituting u,, = (az +
b) — x directly into (7) in place of uy.
Summing the squared error:

Eflow = Z(umEm + Et)2 (13)

over the whole image, differentiating, and equating the result
to zero, gives a linear solution for both a and b:

S R Y, o F ] [ a1 ] __ [ Yoe o B L ] (14)

To see how this result compares to the ‘affine fit’ proposed
by Wang and Adelson, we rewrite (8)

um Py + F
cpie=y () (15)

x

and observe, comparing (13) and (15) that ‘affine flow’ is equiva-
lent to a weighted least-squares fit, where the weighting is given
by E2. Thus the ‘affine flow’ method tends to put more em-
phasis on areas of the image that are spatially varying than
does the ‘affine fit’ method. Of course, one is free to separately
choose the weighting for each method in such a way that ‘affine
fit’ and ‘affine flow’ methods both give the same result. Both
our intuition and our practical experience tends to favor the
‘affine flow’ weighting, but, more generally, perhaps we should
ask “What is the best weighting?” (e.g. maybe there is an
even better answer than the choice among these two). Lucas
and Kanade [27], among others, have considered weighting is-
sues.

Given a choice of weightings that make the two methods
equivalent, there is another important difference. The ‘affine
fit’ method provides more flexibility in defining the boundaries
of the patch because, in addition to simply fitting the optical
flow field to the affine model, we can test each point individually
to see how well it fits the model, and reject those points that
do not fit the model. This gives us a means of segmenting the
image into regions that have similar affine motion [25].

Another approach to the ‘affine fit’ of Wang and Adelson
involves computation of the optical flow field using the hierar-
chical and iterative method of Lucas and Kanade, and then a
fit to the affine model. An analogous variant of the ‘affine flow’
method involves iteration and hierarchy as well, but in this case
the iteration and hierarchy are incorporated directly into the
affine estimator [26]. When they are implemented hierarchi-
cally, the two methods differ in additional respects. In situa-
tions where the boundaries of the patch are explicitly known,
our intuition and experience indicates that the direct hierarchi-
cal ‘affine flow’ method of Bergen et al. performs better than
the ‘affine fit’ to the hierarchical flow. The hierarchical opti-
cal flow makes the assumption that small blocks of the image
are moving with pure translational motion, and then, paradox-
ically, the affine fit refutes this assumption. However, when we
wish to determine the boundary of the patch, the ‘affine fit’
method has a clear advantage, for it gives us, essentially free of
computational cost, the ability to test each pixel, whereas the
Bergen et al. method would require that we try every possible
region shape, which is computationally prohibitive. Since there
is an assumption of small motion involved in optical flow, there



is generally only a small performance loss in using the hierar-
chical ‘affine fit’ as opposed to the ‘affine flow’, because when
the motion is small, each block may be described reasonably
by a pure translation, and still give accurate enough informa-
tion to contribute to the overall estimate of the affine model.
However, when the motion is a little larger, the blocks that are
square or rectangular in one frame will be some other shape in
the other, and will not likely match. Fitting an affine model to
blocks that do not match is not as good an approach as finding
the affine flow directly.

3.3.3

For the affine coordinate transformation, the graph of the
range coordinate as a function of the domain coordinate is a
straight line; for the projective coordinate transformation, the
graph of the range coordinate as a function of the domain co-
ordinate is a rectangular hyperbola [28]. Thus the affine case
used linear regression; in the projective case, we wish to use
‘hyperbolic regression’ to fit the optical flow field to a rectan-
gular hyperbola by considering the flow velocity given by (7)
and the model velocity:

“Projective fit” and “projective flow”

um:x/—x:ax—i—b—x (16)
cr +1

and minimizing the sum of the squared difference:

e= YA,y Ty (1)

cr +1 F.

Differentiating with respect to parameters a, b, and ¢, then
setting derivatives to zero gives the system of equations:

ar + b on T _
Z(cx—l—l_x—i—E_m)cx—l—l =0
ar + b on 1 _
Z(cx—l—l_x—i—E_m)cx—l—l =0
ax +b E; (az + bz .
Z(cx+1_x+Em)(cx+l)2 =0 (18)

which may be solved using various iterative strategies.

A simpler, more direct solution is to expand u.,, in its own
multi-variate Taylor series about the identity, a = 1,b=0,c =
0 (same result as univariate Taylor series about z = 0). This
approach is justified because we know that we must be near the
identity — nearness to the identity is the very assumption we
made when we used optical flow to begin with.

Um + 2 =b+ (a —bc)x + (b — a)cac2 + (a — bc)c2ac3 + ... (19)
and then fit the optical flow field to the first three terms:

e=Y (b+(a—be— Do+ (be—ajex® + Bt/ Ea)*  (20)

Differentiating with respect to g2 = (bc — a)c, ¢1 = a —bec — 1,
and ¢o = b, (which, given the constraints of the camera motion,
are independent near the identity) and setting to zero gives the
equations for what we call “projective fit”:

Zsz.r ZCEEE.’E Z$2Em q2 CE2Et/E.r
Zx F, Zx F, ZjacEm g |=—- zF/FEy (21)
Zx2E$ S xEe Y Es qo S Ei/Es,

Thus, given two functions (images), say, g and h, we can
use (21) to find the parameters of the approximate quadratic
model, q = [g1, ¢2,¢2]7, and then relate the parameters of the
quadratic model to the projective model, to obtain a, b, and ¢

that indicate to what extent we need to stretch, translate, and
“chirp” h to make it similar to ¢.'*

In Sec. 4 we will extend the algorithm to 2D images and also
present an important part of the algorithm that is omitted here,
namely a procedure for finding the parameters, p, of the exact
projective model iteratively, by using a feedback system that
has (21) in the feedforward loop.

As we did for affine flow, we can also apply the projective
group model, ' = (az +b)/(cx + 1), directly to the optical flow
equation (7), and obtain a set of nonlinear equations:

ar + b T
Z(cx—l—lEm_xEm—i—Et)cx—l—l =0
ar + b 1
Fy—zFE, + F = 0
Z(cx—l—l v + t)cx—l—l
ax +b (az + b)z .
Z(cx —+ lEm —ok Et) (cx—l— 1)2 =0 (22)

x

which differ from (18) only in the weighting. Szeliski and
Coughlan [29] suggest a good framework for solving this nonlin-
ear optimization problem, which they applied to image mosaic-
ing [30]. (Their method could also be applied to the “Projective
fit” equations in (18)).

The approach presented here, however, is different. Rather
than solving (22) using nonlinear optimization, we may, again
(as we did for affine flow) use the Taylor series of u,, (19) and
again use the first 3 terms, obtaining enough degrees of freedom
to account for the 3 parameters being estimated. Letting ¢ =
Z:(—h.o.t.)2 = Z((b + (a —be — 1)z + (be — a)cac2)Em + Et)2,
and differentiating with respect to each of the 3 parameters
of q , setting the derivatives equal to zero, and verifying with
the second derivatives, gives the linear system of equations for

“projective flow”:
$2E$Et
il O e’E2 S zEl @1 |=— rE. F; (23)
Zx2Ei Zin ZEi qo ZEmEt

In Sec. 4 we will extend this derivation to 2D images and show
how an iterative approach may be used to compute the param-
eters, p, of the exact model, by using a feedback system where
the feedforward loop involves computation of the approximate
parameters, q in the extension of (23) to 2D.

As with the affine case, ‘projective fit’ (21) and ‘projective
flow’ (23) differ only in the weighting assumed, and so ‘projec-
tive fit’ provides the added advantage of enabling the bound-
aries of a moving patch to be easily found, although we will
see that in a multiscale implementation, it is better to use the
projective flow, if we know a-prior: the boundary of the patch
(e.g. when it is the whole image).

PR O

ZxSEi Zx2Ei q2

3.4 Exploiting commutativity for parameter
estimation

There is a fundamental uncertainty [31] involved in the simul-
taneous estimation of parameters of a noncommutative group
of coordinate transformations, which is akin to the Heisen-
berg uncertainty relation of quantum mechanics. On the other

“Note that in 1D the approximate quadratic model and the
desired projective model both have 3 parameters; in 2D, there
will be several possible approximate models that can be used
to get the 8 projective parameters.



hand, for a commutative'® group of coordinate transformations
(in the absence of noise), we can obtain the exact coordinate
transformation. Estimating the parameters of a commutative
group of coordinate transformations is computationally effi-
cient, through the use of Fourier cross-spectra [32]. We describe
an algorithm which exploits this commutativity for estimating
the parameters of the non-commutative 2D projective group in
Sec. 4.3 and propose it as an optional pre-processing step.

4 Estimating the parameters of the
projective group in 2D

The brightness constancy constraint equation for 2D im-
ages [23] gives us the flow velocity components in each of the
z and y directions (analogous to (7)):

UfEm—i—’Uny—I—Et%O (24)

As with the 1D case, we may derive two variants of the gen-
eralized optical flow: the ‘projective fit’ to the optical flow and
the direct ‘projective flow’. However, as is well-known [23],
the optical flow field in 2D is underconstrained'®. The model
of pure translation at every point has two parameters, but there
is only one equation (24) to solve. To deal with the 2D transla-
tion problem, it is common practice to compute the optical flow
over some neighborhood, which must be at least two pixels, but
is generally taken larger than this minimum size. The block is
analogous to the window of signal processing (e.g. Fourier the-
ory). Typically blocks are square neighborhoods, 3 x 3,5 x5, or
sometimes larger. In order to obtain a better localization trade-
off between spatial domain certainty and velocity certainty, a
somewhat Gaussian-shaped (e.g. separable binomial) window
is often used instead of a rectangular window.

Our task is not to deal with the 2D translation case, but with
the 2D projective case, estimating the eight parameters in the
coordinate transformation:

Ay + Gy yy + by/
ca® +cyy + 1

CE/_ a.r’.rx'i'a.r’yy'i'b.r’ '
ca® +cyy + 1 ’ y

or, in matrix form,

!
' T
X = | =

The desired eight parameters are denoted by p = [A, b;c, 1],
A eR**? beIR**, and ¢ € IR**!,

Suppose we compute the optical flow field at every pixel,
using a 5 x 5 pixel binomial window, obtaining two parameters
at every pixel location: uy and vy. We wish to fit this flow field
to the projective group model given in (25), establishing the
best “projective fit” by minimizing the error:

_ A.X+b 2
€= sz(ﬁ —x —ug) (26)

This minimization results in a set of eight scalar equations
in eight scalar unknowns, similar to (18). Since we have made
assumptions about the extent of the motion in use of optical
flow (by the Taylor series underlying optical flow itself), it is
reasonable to make similar assumptions in expanding (25) in

Alz,y]" +b  Ax+b
cTle,y]T +1 eTx+1

(25)

15 A commutative (or Abelian) group is one in which it does
not matter what order two elements of the group are ap-
plied, for example, translation along the x-axis commutes with
translation along the y-axis, so the 2D translation group is
commutative.

1%Optical flow in 1D did not suffer from this problem.

its own Taylor series, analogous to (19). If we take the Taylor
series up to 2nd order terms, we obtain the biquadratic model
that we have already presented.

As mentioned in Sec. 1.2 several approximate models arise by
constraining the twelve parameters of the biquadratic model. In
the derivations below we use the bilinear model as the “approx-
imate model” in an intermediate step to get the true projective
group parameters.!” First we will incorporate the approximate
model directly into the generalized fit or generalized flow. The
Taylor series for the bilinear case gives:

Um + & = Qo' zyTY + quia® + qz'yY + o
Um+y:Qy’myxy'i'Qy’mx'i'Qy’yy'i'Qy’ (27)

Incorporating these into the flow criteria yields a simple set of
eight linear equations in eight unknowns, for “bilinear flow”,
appearing in (28). where the summations are over the entire
image (over all z and y) if we are computing global motion, or
over a windowed patch if we are computing local motion. This
equation looks similar to the 6 x 6 matrix equation presented
in Bergen et al. [26].

In order to see how well the model describes the coordi-
nate transformation between 2 images, say, ¢ and h, one might
warp'® h to g, using the estimated motion model, and then
compute some quantity that indicates how different the resam-
pled version of h is from g. The MSE between the reference
image and the warped comparison image might serve as a good
measure of similarity. However, since we are really interested in
how the exact model describes the coordinate transformation,
we assess the goodness of fit by first relating the parameters
of the approximate model to the exact model, and then find
the MSE between the reference image and the comparison im-
age after applying the coordinate transformation of the exact
model. A method of finding the parameters of the exact model,
given the approximate model, is presented in Sec 4.1.

4.1 ‘Four point method’ for relating
approximate model to exact model

Any of the approximations to the projective model described
above, after being related to the exact model, will most likely be
good in the neighborhood of the identity, A =I,b = 0,c = 0.
In Flatland, we explicitly expanded the model Taylor series
about the identity; here, although we do not explicitly do this,
we shall assume that the terms of the Taylor series of the model
correspond to those taken about the identity. In the flatland
case (18) we solved the 3 linear equations in 3 unknowns to es-
timate the parameters of the approximate motion model, and
then related the terms in this Taylor series to the exact pa-
rameters, a, b, and ¢ (which involved solving another set of 3
equations in 3 unknowns, the second set being nonlinear, al-
though very easy to solve).

In the extension to 2D, the estimate step is straightforward,
but the relate step is more difficult, because we now have eight
nonlinear equations in eight unknowns, relating the terms in
the Taylor series of the model to the desired exact model pa-
rameters. Instead of solving these equations, we now propose
a simple procedure for relating the parameters of the approxi-
mate model to those of the exact model, which we call the ‘four
point method’:

1"Note that use of an approximate model that doesn’t cap-
ture chirping or preserve straight lines can still give us the true
projective parameters as long as the approximate model cap-
tures all eight degrees of freedom.

'8 Here the term warp is most appropriate, as the approximate
model “warps” straight lines into curves, as seen in Fig 1.



Equation 28

1. Select four ordered pairs (e.g. the four corners of the
bounding box containing the region under analysis, or
the four corners of the image if the whole image is under

analysis). Here suppose, for simplicity, that these points
are the corners of the unit square: s = [s1, 82, 83,84] =
[(0,0)", (0, )7, (1,0)", (1,1)"].

2. Apply the coordinate transformation using the Taylor se-
ries for the approximate model (e.g. (27) for the bilinear
choice) to these points: ¥ = u,,(s).

3. Finally, the correspondences between r and s are treated
just like features. This results in four easy to solve linear
equations:

xﬁe _ xkaykalaoaoaoa
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where 1 < k < 4. This results in the exact eight parame-
ters, p.

Note that the ‘four point method’ will work with any of the
approximate models having eight or more parameters. For ex-
ample, with the biquadratic model, twelve parameters, q are
estimated from a pair of images, and then the twelve parame-
ter model is allowed to act on the corner points, causing them to
move to some new location. The parameters of the exact model
are then chosen as the eight parameters, p, which explain this
change in position of the four control points. In almost all sit-
uations, however, we have found that the pseudo-perspective
model is the best of the approximate models. The biquadratic
model, for example, in addition to requiring more computa-
tional effort, tends to be unstable, responding to “noise” by
“overfitting” the true projective coordinate transformation.

We remind the reader that the four corners are not fea-
ture correspondences as used in the feature-based methods of
Sec. 3.1, but, rather, are used so that the two featureless models
(approximate and exact) can be related to one another.

It is important to realize the full benefit of finding the ex-
act parameters. While the “approximate model” is sufficient
for small deviations from the identity, it is not adequate to de-
scribe large changes in perspective. However, if we use it to
track small changes incrementally, and each time relate these

(Yo e®y By, S alyBL, Sowy’Er, SoayFa, 3 @'y EyBa, Y a’yEy B Y ey’ EyEr, Y Eyry B\ g,
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small changes to the exact model (25), then we can accumu-
late these small changes using the law of composition afforded
by the group structure. This is an especially favorable con-
tribution of the group framework. For example, with a video
sequence, we can accommodate very large accumulated changes
in perspective in this manner. The problems with cumulative
error can be eliminated, for the most part, by constantly prop-
agating forward the true values, computing the residual using
the approximate model, and each time relating this to the exact
model to obtain a goodness-of-fit estimate. We now describe
this iterative strategy.

4.2 Overview of new algorithm for

‘projective flow’

The algorithm is summarized in this section, with details on
each of the steps given in subsequent sections.

Frames from an image sequence are compared pairwise to
test whether or not they lie in the same orbit:

1. A Gaussian pyramid of three or four levels is constructed
from each of the two frames from the sequence.

2. The parameters p are estimated at the top of the pyra-
mid, between the two lowest-resolution images, using the
iterative method depicted in Fig. 5.

3. The estimated p is applied to the next higher-resolution
(finer) image in the pyramid, p o g, to make the two im-
ages at that level of the pyramid nearly congruent before
estimating the p between them.

4. The process continues down the pyramid until the highest-
resolution image in the pyramid is reached.

4.2.1

Optical flow is based on a Taylor-series formulation, which
implicitly assumes smoothness. However, typical images have
many sharp edges and contours which violate this assumption.
Therefore, the performance is improved if the images are blurry.
Since we desire sharp images in general, we blur the images as
part of the estimation process, but then use the original (un-
blurred) images when applying the final coordinate transforma-
tion.

Bergen et al. suggest a coarse-to-fine strategy, implemented
by first constructing a Laplacian pyramid. An image motion

Multiscale iterative implementation
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group
operation

Figure 5: Method of computation of eight parameters p between two
images from the same pyramid level, ¢ and h. The approximate model
parameters q are related to the exact model parameters p in a feedback
system.

of several pixels at the lower (finer) levels of the pyramid may
amount to a sub-pixel motion at the higher (small-image) levels.
We use a similar strategy, but have found that the performance
is actually quite a bit better if we don’t downsample the images
after blurring. This method involves more computation than
the fully downsampled pyramid scheme, so we often draw a
compromise which involves partial downsampling at each layer
of the pyramid.

4.2.2

The strategy we present differs from the iterative (affine)
strategy of Bergen et al. in one important respect beyond sim-
ply an increase from six to eight parameters. The difference
is the fact that we have two motion models, the ‘exact motion
model’ (25) and the ‘approximate motion model’, namely the
Taylor series approximation to the motion model itself. The
approximate motion model is used to iteratively converge to
the exact motion model, using the algebraic law of composi-
tion afforded by the exact model. In this strategy, the exact
parameters are determined at each level of the pyramid, and
passed to the next level. The steps involved are summarized
schematically in Fig. 5, and described below:

Iterative calculation of ‘projective flow’

1. Initialize: Set ho = h and set po,o to the identity operator.
2. Tterate (k=1...K):
(a) ESTIMATE: Estimate the 8 or more terms of the

approximate model between two image frames, g and
hr—1. This results in approximate model parameters
k-

RELATE: Relate the approximate parameters qx to
the exact parameters using the ‘four point method’.
The resulting exact parameters are ps.

RESAMPLE: Apply the law of composition to ac-
cumulate the effect of the px’s. Denote these com-
posite parameters by pox = Pk 0 Po,k—1. Then set
hi =po,koh. (This should have nearly the same ef-
fect as applying px to hr_1, except that it will avoid
additional interpolation and anti-aliasing errors you
would get by resampling an already resampled im-

age [5])."°

Repeat until either the error between hyx and ¢ falls below
a threshold, or until some maximum number of iterations is
achieved. We find that two or three iterations are usually suffi-
cient for frames from nearly the same orbit. After the first itera-
tion, the parameters g2 tend to be near the identity since they
account for the residual between the “perspective-corrected”
image hq and the “true” image g. The algorithm (in Matlab on

(b)

19The general resampling process is sometimes called “warp-
ing” but we refrain from that terminology, as the resampling
here takes straight lines to straight lines — lines do not end up
curved as might be implied by “warped”.
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an HP 735) takes about six seconds per iteration for a pair of
320x240 images®°.

4.3 Optional first step: commutative
initialization

As per the discussion in Sec. 3.4), we can achieve better per-
formance with parameter estimation by first estimating the pa-
rameters that commute. For example, we find better perfor-
mance if we first estimate the two parameters of translation,
then correct for the translation, and then proceed to estimate
the eight projective parameters. Similarly, if image h is merely
a rotated version of g, then if we apply a log-polar coordinate
transformation to both g, and h, then they become related by a
translation in the plane. Thus we can simultaneously estimate
isotropic-zoom and rotation about the optical axis by applying
a log-polar coordinate transformation followed by a translation
estimator. Alternatively, this process may be achieved by a di-
rect application of the Fourier-Mellin transform [33]. Similarly,
if the only difference between g and h is a camera pan, then the
pan may be estimated through a coordinate transformation to
cylindrical coordinates, followed by a translation estimator.

In practice, we have found that it is computationally bene-
ficial to run through the following ‘commutative initialization’
before estimating the parameters of the projective group of co-
ordinate transformations:

1. Assume that h is merely a translated version of g.

(a) Estimate this translation using the method of Girod
[32].
Shift A by the amount indicated by this estimate.

Compute the MSE between the shifted h and ¢, and
compare to the original MSE before shifting.

If an improvement has resulted, use the shifted & from
now on.

2. Assume that h is merely a rotated and isotropically
zoomed version of g.

(a) Estimate the two parameters of this coordinate trans-
formation.

(b) Apply these parameters to h.

(c) If an improvement has resulted, use the coordinate-
transformed (rotated and scaled) h from now on.

3. Assume that h is merely an “x-chirped” (panned) version
of g, and, similarly, ‘x-dechirp’ h. If an improvement re-
sults, use the ‘x-dechirped’ h from now on.

4. Assume that h is merely a “y-chirped” (tilted) version of
g, and ‘y-dechirp’ h. If an improvement results, use the
‘y-dechirped’ h from now on.

Tt is quite likely that accounting for the rotation will cause a
change in the translation that would best match the two images.
Thus it might seem desirable to run through the commutative
estimates iteratively. However, our experience on real video
indicates that a single pass usually suffices, and, in particu-
lar, will catch (as is often the case) situations where there is a
pure zoom, a pure pan, a pure tilt, etc, both saving the rest
of the algorithm considerable computational effort, as well as
accounting for simple coordinate transformations such as when
one image is an upside-down version of the other. (Any of these
pure cases corresponds to a single parameter group, which is al-
ways commutative.)

2°This is not optimized software yet.



It is interesting to note that without the ‘commutative ini-
tialization’ step, the upside-down image would likely get caught
in a local optimum and never converge to the corresponding
right-side-up image. A similar argument can be made when one
image is an extreme zoom of the other — the algorithm would
simply not work without the ‘commutative initialization’ step.

5 Applications and experimental results

We now suggest some of the many possible applications of the
proposed new ‘projective flow’ algorithm.

5.1 ‘Video orbits’ and scene change

detection

Scene change detection and motion description are important
problems in “video understanding” for efficient logging and re-
trieval. Scene change detection can be thought of as a “tem-
poral edge detection” problem, with early approaches based on
statistical differences and thresholded filter outputs [34] [35].
Although the current statistics and filter-based methods tend
to be low in computation and work 80-90% of the time, they
tend to fail when there is lots of camera motion such as pan.

We make the assumption that for most video sequences, there
is a large portion of static background included in the images,
and that while the camera may pan, tilt, rotate about its opti-
cal axis, or zoom substantially between successive frames, that
it will not translate substantially between two successive frames
(Case 1 in Sec. 1.3). This assumption is particularly valid for
cameras on tripods or cameras that are hand-held®'. Our re-
search defines a shot boundary or scene change in terms of a
distance between orbits of the projective group. Therefore, if
the two frames in question belong to the same scene, they will
lie in the same orbit (or nearly so.)

As previously mentioned, in practice, even if there is only a
pure pan or zoom across a static scene, all of the frames from
a given scene will not lie in exactly the same orbit, because
of imperfections such as sensor noise and quantization noise
(Fig. 3). Therefore our task is one of, say, finding the element
of the projective group that takes the second frame nearest the
first, along, say, the orbital path of the first (Fig. 4). If this
element is found quickly (usually 2-3 iterations until the MSE
is sufficiently small) then the algorithm moves along to the next
pair of frames. If after ten iterations the MSE is not sufficiently
small, then the algorithm terminates and concludes that a scene
change has occurred. This idea is illustrated in Fig. 6. In most
video sequences, there are far more frame pairs belonging to
the same scene than there are transition pairs (scene cuts), so
the computational savings in terminating early have a profound
improvement on the average computation time.

The initial results on small amounts of real video (subsam-
pled temporally at 3 frames/second) are very accurate for this
method. Some example frame pairs demonstrating the robust-
ness of the new algorithm under a variety of conditions are
shown in Fig. 7.

5.2

How does one “browse” video? Omne way to speed up the pro-
cess is to have the computer pull out similar shots, where again,
we define a shot as a collection of frames lying in the same or-
bit. Although typically one might extract a “keyframe” as the
first, middle, or last frame from a shot, we propose instead
building up a “summary frame” from a shot. The summary

Generation of video “summary frames”

2'Tn 1/30 second, most people can turn their head (pan/tilt)
further than they can run (translate).
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Figure 6: Terminating iteration prematurely. Here we show a frame pair
from the same orbit (frames 1 and 2) where the iteration is terminated
prematurely after the distance falls below the threshold, and a frame
pair from different orbits (frames 6 and 7), where iteration has gone to
completion, and the distance remains above the threshold. Since frame
7 is in a different orbit than frame 6, there is no plane projective coordi-
nate transformation that will make frame 7 look like frame 6, and so the
algorithm reports frames 6 and 7 as crossing a scene change boundary.

frame includes not only the content of (at least) one keyframe,
but also captures the nature of the motion in the shot. By
glancing at a single summary shot, we can see if the camera
dwelled in one spot (summary frame has small spatial extent,
high resolution in region of main interest), panned left-to-right
(summary frame is horizontally elongated) and so forth. Build-
ing a summary frame by mosaicing images using the projective
group parameters preserves or enhances the resolution in the
composited frames (in contrast, continuous addition of many
affine-transformed frames will begin to blur the mosaic, as the
affine model can not undo all of the physical camera motion.)

This idea of mosaicing from sequences of images has been
done before with the affine model [36] for making “salient stills”
and [37] for resolution enhancement, and with the projective
model [7][29][30] for mosaicing and enhancement. The use of
the new projective flow algorithm brings new accuracy and
speed to this application.

Many games such as football or soccer, are played on a flat
field so that the playing field forms a rigid planar patch over
which the analysis may be conducted. When all of the frames
are ‘dechirped’ with respect to the first frame, then when play-
ing back the sequence, only the players and the image bound-
aries move around. Markings on the field (such as numbers
and lines) remain at a fixed location, which makes subsequent
analysis and summary of the video content easier. Despite the
players moving in the video, applying the above scene change
detector to the output of a broadcast television receiver will
classify all of the shots of the football field as belonging to the
same ‘video orbit’. Furthermore, images that lie in the same
orbit of the projective group can be mapped into a single high-
resolution image mosaic of the entire playing field, because,
even if the entire field might not have been visible in any one
image, collectively, the image sequence will likely reveal every
square yard of playing surface at one time or another. An ex-
ample of running the new algorithm on noisy football video is
shown in Fig. 7.
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