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Abstract

The efficiency of the Orthogonal Least Squares (OLS) method for training approximation networks is examined
using the criterion of energy compaction. We show that the selection of basis vectors produced by the procedure
is not the most compact when the approximation is performed using a non-orthogonal basis. Hence, the algorithm
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1 Introduction

A number of feed-forward networks with one hidden
layer of processing units have been proven to possess the
ability to approximate any continuous function arbitrar-
ily well [1], [2]. One such approximation scheme, the Ra-
dial Basis Function (RBF) network, has been used as a
classifier [3], [4], [5], [6], [7]. The training problem for an
RBF network can be viewed as interpolation and solved
by inverting a matrix. But this approach often causes
numerical problems, because the matrices involved are
typically large. This problem has led to several alterna-
tives aimed at reducing the training complexity without
significant losses in approximation accuracy [8], [9], [10].

This report analyzes the efficiency of one such
method, Orthogonal Least Squares (OLS), proposed by
Chen et al [11], [10]. Since its original publication, the
OLS technique has found use in several applications,
such as automatic control [12], [13], [14], fuzzy logic net-
works [15], [16], and others. However, none of these pa-
pers discuss the method’s efficiency. The present study
suggests that the OLS algorithm is ineflicient in its se-
lection of significant basis functions.

Section 2 reviews the RBF approximation problem
and the OLS algorithm for solving it. Section 3 presents
the compaction criteria, which are subsequently used in
Section 4 to analyze the efficiency of the OLS method.
Examples using Gaussian RBF's are also given in Sec-
tion 4. Finally, Section 5 summarizes the present study.

In a more detailed report, we address the issue of using
the OLS method in order to judge the overall efficiency
of the RBF expansion for image coding [17].

2 Background

2.1 Radial Basis Functions

A non-linear function h(Z, ¢), where & is the indepen-
dent variable and ¢ is the constant parameter, is called
a Radial Basis Function (RBF) when it depends only
on the radial distance r = ||& — &]|, where ¢ is its “cen-
ter”. The RBF method is one of the possible solutions
to the real multivariate interpolation problem, stated as
follows [18], [8], [19], [2], [20], [21]:

Interpolation Problem: Given N different points
{#; €e R4 |i=1, ..., N}, where d is the num-
ber of dimensions, and N real numbers {y; € R |
i=1, ..., N}, find a function F from R% to R
satisfying the interpolation conditions:

F(fz‘):yi, 1=1, ..., N. (1)

The RBF approach consists of choosing the function

F' to be an expansion of the form
N
F(@) =Y w;h(|Z - I, (2)
7j=1

where the centers of the expansion ¢; = @ must
be the the known data points, and {w; € R | j =
1, ..., N} are the corresponding weights.

The unknown weights can be recovered by impos-
ing the interpolation conditions. An RBF matrix H €

RN*N is constructed by evaluating h(||#; — ¢||) at each
z;and ¢j5 ¢, j=1, ..., N:
H = [hig), hij = (|75 = ). (3)

In other words, each column of H is a basis vector cor-
responding to a particular center. The resulting linear
system
Hi = (4)
can be solved if H~! exists:
W= H"'§. (5)

From (5), a necessary and sufficient condition for the ex-
istence of a unique solution to the interpolation problem
is the invertibility of the matrix H. The RBF matrix
will be invertible if the column vectors of H form a ba-
sis in R™V. This condition is satisfied for a number of
RBFs [19].

Figure 1 shows a realization of (2) in the form of a
network with one layer of hidden units [10]. Since each
radial hidden unit defines a (d + 1)-dimensional hyper-
surface, the RBF network interpolates by reconstruct-
ing the data with scaled hypersurfaces. The examples
in this report employ a special case of RBFs: Gaussians
of constant variance.

2.2 Training RBF Networks

In most applications, N is large, deeming the direct
use of (5) impractical. However, a well-known result
allows dimensionality reduction to M < N. Starting
with H € RY*N_ which is a basis in RY, H is ob-
tained by selecting M = N —k, k =1, ..., N basis
vectors from H, such that H e RN*M Then the prod-
uct (HTH) € RM*M jg an invertible matrix and thus a
basis in RM [22]. Using this result, an approximation
to (4) can be formulated and solved by the method of
Linear Least Squares Estimation (LLSE) [8]:

RNXM

Approximation Problem: Given H € and

7€ RYN, related by

§=Hé+¢, (6)
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Figure 1: Schematic of an RBF network. The sub-
scripts denote the indices of RBF centers; the super-
scripts denote the components of the input vector.

find an optimal coefficient vector ¥ € RM such
that the error energy €' € is minimized. This can
be equivalently stated as: Find {wy € R | j =

L, ..., M} such that w; = w} solves
M
min (gi— Y wib(|& =& i=1, ..., N. (7)
j=1

In contrast with the interpolation problem, the ap-
proximation problem does not require the centers ¢; to
coincide with 77, so one may choose any ¢; € R¢. How-
ever, the centers are commonly chosen to be a subset of
data points [10].

The data is subsequently approximated using

;lja = FIW

(8)

or, equivalently, using

M
Fo(#) =Y wih(|@ = &), M<N, (9)
=1

where 7, and F, (%) are the approximated values of the
data samples and the generalizing function, respectively.

The well-known LLSE optimal solution is in the form
of (5): .
7 = g, (10)

where H™ is the pseudoinverse of H:

H* =(HTH) 'HT. (11)

If an RBF network with M << N centers adequately
approximates the data, then the above approach pro-
vides a computationally efficient procedure for deter-
mining the weights. However, arbitrarily selecting the
centers from data points often results in poor perfor-
mance in a sense that the networks end up with more
nodes than necessary for a desired accuracy of approxi-
mation [10].

2.3 Orthogonal Least Squares

In order to improve the performance of an RBF net-
work trained by solving the approximation problem, a
judicious selection of centers is needed. It has been re-
ported in [10] that the approximation problem, stated in
(6), lends itself to the Orthogonal Least Squares (OLS)
method, which is a recursive algorithm for selecting a
suitable subset of data points as centers. A basis vector
produced at each step of the procedure maximizes the
increment of the explained energy of the desired output.

We now review the process of center selection per-
formed by OLS using the concept of permutation matri-
ces.

Definition 2.1 A permutation of H € RVN*N is H' €
RN*N such that each column vector of H' is identical
to exactly one column vector of H. Formally,

H' =HP,

where P € RYN*N is a permutation matriz comprised of
the column vectors of the identity matriz, whose posi-
tions are arranged in one of N! possibilities.

Definition 2.2 A selection matriz S € RN*M s ob-
tained by selecting M = N —k, k=1, ..., N column
vectors of a particular permutation matric P € RN*N.

In OLS, a selection of the original RBF matrix H is
obtained and orthonormalized using the classical Gram-
Schmidt process (GS). Let a; be the column vectors of
A= HS. The GS process finds A = QR, where the ma-
trix Q € RV*M consists of orthonormal column vectors,
and the right-triangular matrix R € R™*M contains
projection and normalization coefficients computed by
GS L.

1For a detailed treatment, consult a standard linear algebra
text, such as [22], [23], etc.




Using the selection matrix notation, the approxima-
tion problem, stated in (6), takes the following form:

7 = HSW+Eé, (12)
HS = QR, (13)
j = QRW+§, (14)

where & € RM ig the coefficient vector and € € RV is
the error vector. By defining

J = R, (15)

we obtain an orthonormal expansion of the data vector:
F=QjF+é (16)

Since (16) is a special case of the approximation prob-

lem, due to the orthonormality, its LLSE solution is par-
ticularly simple (and well-known):

= Q"7 (17)

Qy

from which @ can be recovered by back substitution:

R =g (18)

Since QTQ = I, the M-dimensional identity matrix,
then

g

M
7'y = §lg+éle = Zg]z+é’T€
j=1
M
= > @'y +ée (19)
j=1

The OLS algorithm begins with H consisting of
M = N RBF vectors h_;, j=1, ..., N and produces
Q consisting of M < N orthonormal regressors 2 ¢; as
well as the selection matrix S. In fact, the key difference
between OLS and GS is the computation of the selection
matrix §. The OLS method finds S so that GS maxi-
mizes g2 = (" )2 at each step. In other words, on each
iteration ¢+ = 1, ..., M of the GS orthonormalization
procedure, the OLS method selects Erom the remaining
N — i+ 1 choices the values j and h; such that the re-
sulting regressor ¢; will give the largest possible energy
g?. The algorithm keeps track of the order in which the
original basis vectors are selected to form H S by setting
5j; = 1. The selection procedure is terminated when the
error energy has been reduced to the specified tolerance.

2We follow the terminology in which “regressor” denotes the
orthonormal columns of @, and “basis vector” is reserved for the
columns of H.

3 Efficiency Using the Energy
Compaction Criterion

Before giving the numerical examples, it is helpful
to distinguish two approaches aimed at finding efficient
bases: one is “variational”, while the other is not. The
variational approach allows the components of the basis
vectors to depend on the data, and finds the optimal
set of basis vectors, corresponding to some criterion and
constraint. In contrast, the non-variational approach
starts with fixed basis vectors and searches for a combi-
nation that best approximates the data.

In the context of the approximation problem, the cri-
terion is typically the minimization of the mean-squared
error, and “smoothness” of the solution is a possible
choice for the constraint [21]. Alternatively, using the
same criterion, but constraining the basis matrix to be
orthogonal, and applying the variational approach leads
to the method of “principal components”.

3.1 Principal Components Analysis is
Variational

It is well-known that the eigenvectors of the covari-
ance matrix of the data are the “principal components”,
which form the basis that possesses the best energy com-
paction properties [24], [25]. This basis constitutes the
Karhunen-Loéve Transform (KLT), which decorrelates
the data and maximizes the incremental energy (or vari-
ance, in the statistical sense) explained by each regres-
sor. The KLT basis vectors are orthonormal, allowing
the approximation problem, (6), to take the form of (16):

7=QjF+eé (20)

Let E[y] be the expected value of a random vector ¥.
Then for a general stochastic vector, the principal com-
ponents are the eigenvectors of the covariance matrix,
Cjy, sorted in the order of decreasing eigenvalues A; (vari-
ance or energy):

Cy = EBl(7 - EGG - El7)"]
= QAQT,
A = diag(A1 ... An).
Since§g = Q7Ty,
C; = Bl(7- Elg)(G - Ela)"]
= Q'C;Q = A.

Even though trace(Cy) = trace(Cy), meaning that the
total energy is preserved by @, the distribution of energy
in Uy is more skewed towards the first few eigenvalues.
This is a direct consequence of the fact that the KLT ex-
pansion is the solution of the variational problem with



the mean-squared error criterion and the orthogonality
constraint. Thus, the KLT is the most compact orthog-
onal basis, because it produces the most skewed Cj.

The significance of the KLT is in its energy efficiency,
and networks that “learn” the principal components of
the data need the smallest number of processing units
for a given amount of error [26].

3.2 OLS is Non-Variational

The objective of the OLS method is to find the small-
est subset of a fixed original basis (while not exceeding
the allowed approximation error); therefore, the choices
available to the procedure are restricted to various com-
binations of the original basis vectors. Since the number
of candidate subsets is finite, it is natural to view effi-
ciency as a relative measure. Thus, we will adopt the
following definition of energy compactness in order to
evaluate the efficiency of the OLS method:

Definition 3.1 Consider the following two schemes for
approximating the same data:

= BiSiuwi+e€  and

= DBySuin + é3,

<=

where By and Bs are bases (i.e., each has an inverse
and is capable of interpolating the data). Let S1 and S
be the selection matrices (according to Definition 2.2)
with My and My columns, respectively. Assume

T T >

ST -
€1 €1 = ey €.

Then By is more compact than By if My < Ms.

3.3 Deterministic KLT

In order to judge the energy compaction properties
of the OLS method, it is helpful to consider the degen-
erate or “deterministic” case of the KLT. In the deter-
ministic case, the “covariance matrix” of the data (after
the sample mean has been removed) is Cy = 7§’ and
is of rank 1. The entire KLT basis is reduced to only
one principal component, which becomes the normal-
ized version of the data vector itself. Thus the energy
compaction properties of any orthogonal basis can be
judged by how well its vectors align with the data vec-
tor. The i-th regressor’s energy, g2, is related to the
alignment via g2 = (¢;* 7). Using this measure, a basis
with good energy compaction properties will need only
a small number of its vectors to be retained in order
to explain the required percentage of the data energy.
The remaining basis vectors, which align poorly with
the data, can be discarded.

3.4 Orthogonality

A convenient property of an orthogonal basis is that
the energy contributions of the component vectors are
decoupled. A maximally compact permutation of an or-
thogonal basis matrix can be formed by computing the
projections of the basis vectors onto the data and rear-
ranging the column vectors in the order of decreasing
energy. In this new matrix, the energy, g7, of a basis
vector (which, due to orthogonality, is also a regressor)
as a function of its index, 2 =1, ..., M becomes mono-
tonically decreasing. As €7@ in (12) decreases, the basis
vectors of progressively smaller energy become involved
in the approximation process as needed. It follows that
a permutation of an orthogonal basis is the most com-
pact if and only if ¢? is monotonically decreasing; no
other permutation of the original basis matrix can yield
the same error with a smaller M.

In the case of both GS and OLS, determining the en-
ergy efficiency is more complicated, because the start-
ing basis is non-orthogonal and the basis vectors can-
not be treated separately. A permutation of the basis
matrix, whose regressors have monotonically decreasing
g?, no longer assures maximal energy compaction. As a
consequence, for different error allowances different per-
mutations of the original basis matrix will be the most
compact. This will be illustrated with examples in Sec-
tion 4.2.

4 Energy Compaction Provided
by OLS

The most compact permutation produces the small-
est possible RBF network for a given error tolerance.
Therefore, it is interesting to find out whether or not
the selection performed by the OLS procedure is the best
in terms of energy packing. It has been stated in [10]
that the OLS algorithm can be used to select centers so
that adequate and parsimonious RBF networks can be
obtained. However, the OLS method is not “optimally-
parsimonious”. Given a required level of unexplained
energy, an optimally-parsimonious training method will
pick no more basis vectors than needed, and thereby pro-
duce an RBF network with fewer nodes than one with
randomly selected centers. We show that the selection
made by OLS is not guaranteed to contain the smallest
number of centers.

4.1 OLS is not Always Efficient for Non-
Orthogonal Bases

If the RBF basis is non-orthogonal, the energy con-



tributions of different basis vectors are mixed (i.e., not
independent). Hence, for a general data vector, every
step of the OLS procedure is unable to locate the re-
gressor with maximal alignment in the global sense. In
other words, even though every step yields a regressor
with the largest possible alignment, “the largest” may
not be large enough. Since the data vector is the princi-
pal component, the OLS algorithm is effectively trying
to approximate this principal component as closely as
possible at each local step, with no regard for the global
energy distribution properties. In a sense, this method
is analogous to pursuing “short term profits” as opposed
to “long term profits”.

Evidently, as the examples below indicate, it is possi-
ble to benefit from relaxing the restriction of maximal
alignment between the regressor and the data at each
step of GS. Admitting some basis vectors that produce
regressors with poor alignment may steer GS toward fu-
ture basis vectors that produce regressors with excellent
alignment, such that the overall energy compaction is
improved. However, there is no mechanism in OLS to
decide ahead of time what the optimal permutation of
H should be for a specified error value.

4.2 Examples Using Gaussian RBF's

The goal of this section is to illustrate some cases
where the OLS procedure does not select the optimal
subset of basis vectors in the energy compaction sense.
For clarity, the following examples use one-dimensional
data and a 3 x 3 Gaussian RBF matrix with variance
o=1

1 0.606531 0.135335
0.606531 1 0.606531
0.135335 0.606531 1

H =

4.2.1 Example 1

Let
190
y= 80
200

, which gives the total energy ¢ 7 = 82500.

In the first step, the OLS procedure selects the second
column of H, because it gives the largest projection onto
ij. After one step of GS, performed on the remaining
columns of H, the third column produces a regressor
with the largest alignment. In the third step, the first
column must be selected. Combining these steps yields
the following permutation of H:

0.606531 0.135335 1
HPors= 1|1 0.606531 0.606531 |,
0.606531 1 0.135335

which produces regressors with the energies:
g7 = 57728.1, g5 = 3447.38, and g2 = 21324.6,

respectively, and

For a given data vector, the OLS method always se-
lects the same sequence of regressors, regardless of the
desired error. In this case, all three basis vectors are
needed in order to approximate as much as 75% of the
total energy. However, if OLS were able to select the
following permutation of H for this data:

0.135335 1 0.606531
HP,, = | 0.606531 0.606531 1 ,
1 0.135335 0.606531

which produces regressors with the energies:
g7 = 54253.2, g5 = 17759.4, and g2 = 10487.4,

respectively, and

only two basis vectors would be needed in order to ap-
proximate up to 87% of the total energy. Note that even
though this permutation of H produces regressors with
monotonically decreasing energies g7, it still may not
be optimal if it is desired to satisfy (i.e., just exceed) a
different error value.

4.2.2 Example 2

In the following example, the first column vector of
H is nearly orthogonal to /. Therefore, one of the other
two basis vectors (in this case, the second) must pro-
duce a regressor that is nearly parallel to ¥, resulting in
a large value of the energy. The OLS misses this oppor-
tunity, because it searches for the largest alignment at
each step. Let

—100
100 |, which gives the energy 7 ¢ = 30000.
100

<y
Il

The OLS procedure selects the following permutation of
H:

0.135335 1 0.606531
HPors = | 0.606531 0.606531 1 ,
1 0.135335 0.606531



which produces regressors with the energies:
g7 = 15614.1, g3 = 8019.76, and g3 = 6366.17,
respectively, and

9i + 95
gty

~ 0.79.

However, the following (identity) permutation of H:

[ 1 0.606531 0.135335 -|
HP,,; = | 0.606531 1 0.606531 | ,
[ 0.135335 0.606531 1 J

which produces regressors with the energies:
g7 = 480.691, g5 = 29305.3, and g5 = 213.976,

respectively, and

9i + 95

qy

~ 0.99,

is clearly superior in case 80% or more of the energy is
needed. The OLS will require all three basis vectors,
while the other permutation will need only two. Again,
note that the optimality is error dependent. If we only
needed a 52% accuracy, the one-vector subset chosen by
OLS would be optimal.

4.3 Sorting Regressors does not Im-
prove Efficiency

Since the energy function of the orthonormal regres-
sors produced by OLS is not monotonic in general, a
seemingly obvious next step would be to sort the re-
gressors in the order of decreasing energy and delete
the ones with the smallest g7 contributions, without ex-
ceeding the allowed error. However, such a parsimonious
sorting of the regressors alters the specific permutation
adhered to by the GS process.

The premise of OLS is that the chosen selection of
the original RBF vectors can be recovered by reversing
GS, a forward recursion procedure. If the columns of Q
and R are sorted without deleting any ¢;, A can still be
recovered. However, deleting any regressors, no matter
how insignificant their g? may be, upsets the consis-
tency of the GS process, thereby precluding the recov-
ery of A and destroying the connection to the original
RBF weights. Since every permutation of the original
RBF matrix leads via GS to a different set of orthonor-
mal regressors, their energies are meaningful only in the
context of a particular permutation selected by OLS.
In other words, the sorted regressors cannot be used to
train the RBF approximation network.

5 Conclusions

While the OLS method has been believed to find a
more efficient selection of RBF centers than a random-
based approach [10], it does not produce the small-
est RBF network for a given approximation accuracy.
Simple examples were constructed to provide intuition
about the sources of inefficiency.
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