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Abstract

Cameras with bellows give photographers flexibil-
ity for controlling perspective, but once the picture
is taken, its perspective is set. We introduce ‘vir-
tual bellows’ to provide control over perspective
after a picture has been taken. Virtual bellows
can be used to align images taken from different
viewpoints, an important initial step in applica-
tions such as creating a high-resolution still image
from video.

We show how the virtual bellows, which imple-
ments the projective group, is an exact model fit
to both pan and tilt. Specifically, we identify two
important classes of image sequences accomodated
by the virtual bellows.

Examples of constructing high-quality stills are
shown for the two cases: multiple frames taken
of a flat object, and multiple frames taken from a
fixed point.

1 INTRODUCTION

High-quality still images are mnot yet obtainable from
portable electronic still-image cameras. However, multi-
frame resolution enhancement can be used to provide a high-
quality still image from an inexpensive video camera. The
enhancement relies on the fact that typically there is some
relative movement between the scene and the camera; move-
ment is exploited in some way, using multiple frames of an
image sequence to make a new image with higher resolution.

Tekalp, Ozkan, and Sezan [1] have assumed the movement
between frames is translation: in their model, they assume
that the image sensor has shifted by some small amount
between frames, so one frame may be used to fill in some of
the spaces between the samples of another. They note that
image noise reduction can be applied either after this filling-
in process, or concurrently, to further enhance the image.
Others have assumed affine motion (six parameters) between
frames [2] [3].

Consider an “idea pinhole camera. We identify two
cases where the affine model correctly describes the rela-
tionship between frames of an image sequence: 1, arbitrary
static scene, camera at fived location but free to rotate about
its optical azis, lens free to zoom; 2, single planar scene (e.g.
flat terrain in aerial photography), both center of projection
(COP) and image sensor free to translate (both laterally re-
sulting in tmage shift, or along the optical axis resulting in a
change in magnification) or rotate, provided that the plane of
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! Assumes infinite depth of field, and ignores diffraction.

the tmage sensor remains parallel to the planar scene. The
affine model, however, does not correctly account for camera
pan or tilt.

The projective model correctly describes two broader
cases: 1, arbitrary static scene, camera at fized location,
camera free to rotate about its center of projection, (e.g.
camera free to rotate about its optical axis, and to pan and
tidt ), lens free to zoom ; 2, planar scene free to move ar-
bitrarily, both center of projection and image sensor free to
move arbitrarily.

Tsai and Huang [4] have also explored the group struc-
ture associated with images of a 3-D rigid planar patch, as
well as the associated Lie algebra, although they assume that
explicit features have been located and that the correspon-
dence problem has already been solved.

Previous work has been done to simply blend multiple pic-
tures of a single scene [5], using a 2-D projective model. This
work involved a search over the 8-parameter space to mini-
mize the mean-square error (or maximize the inner product)
between one frame and a 2-D projective coordinate transfor-
mation of the next frame, and did not rely on explicit fea-
ture correspondences. Szeliski and Coughlan [6] have more
recently proposed a similar blending of images using an 8-
parameter projective model.

In this paper we propose a means of resolution enhance-
ment that does not require the tracking and correspondence
of explicit features, yet runs fast enough to be computation-
ally practical.

While our goal is to enhance 2-D projections (images)
taken from a 3-D world, we first consider the problem of ob-
taining an enhanced 1-D “image”, given multiple 1-D “im-
ages” each formed by projection from a 2-D world, where
the “camera” consists of a center of projection and a line
(“film”). The 1-D “images” are confined to a line within
a planar world, which we call “Flatland” after the title of
Abbott’s book [7], which is a story about an alien culture
living in a 2-D world. We explore the underlying group struc-
ture and provide some new insight, first for this simpler 2-D
world; the extension to the 3-D world is then discussed, and
experiments are demonstrated on video from 3-D scenes.

2 BACKGROUND: AFFINE GROUP

The affine model is often used as an approximation to per-
spective projection, and is somewhat adequate when the ef-
fective focal length of the lens is sufficiently large, and the
camera is not panning excessively.

The affine mapping from g € G(IR'), to h € H(IR') may
be described by a change of coordinates: z2 = ax1 4+ b. The
coordinate transformation so described is given by a dilation
by amount a followed by a translation by an amount b. Such
a mapping from function space G to function space H is



known as an operator. This affine operator may itself be
regarded as a function, namely a straight line of slope a and
intercept b (Fig. 3(a)).

The set of all affine-coordinate transformations for which
a # 0 forms a group, the affine group. This group of oper-
ators together with the set of 1-D images (operands) form
a group operation®. The new set of images that result from
applying all possible operators from the group, to a partic-
ular image from the original set, is called the orbit of that
image under the group action. Given a set of images that
lie in the same orbit of the affine group operation, we may
find for each image pair, that element of the affine group,
p = {a,b} which takes one image to the other image. In
practice, due to noise, interpolation error and end effects,
no element of the affine group will take one image to the
other, so we find the parameters that make one image most
closely match another: those parameters identify the desired
group element.

Given corresponding sets of features in both images, we
can derive the parameter, p = {a, b}, that gives the mapping
from z1 to z2 (e.g. find the slope and intercept of the line
in Fig. 3(a) by linear regression).

When the change from one image to another is small,
optical flow [9] is often used. A pair of 1-D images are related
by a quantity, v at each point in one of the images, that
indicates the flow to the next image (e.g. units of velocity):

uly 4+ Fe + hot. =0 (1)

where E, and F; are the spatial and temporal derivatives
respectively, and h.o.t. denotes higher order terms in the
underlying Taylor series representation upon which optical
flow is based.

Assuming the affine model, v = az + b, in (1), summing
the squared error over the whole image, differentiating, and
equating the result to zero, gives a linear solution for both
a and b.

3 PROJECTIVE GROUP

Suppose we take two (1-D) pictures of the same scene from a
common location, where the camera is free to pan and zoom
between taking the two pictures, but it cannot move to a new
location. We define the common COP at the origin of our
coordinate system in the plane. In Fig. 1 we have depicted
a single camera that takes two pictures in succession as two
cameras shown together in the same figure. Let Zp k €
{1,2} represent the distances, along each optical axis, to an
arbitrary point in the scene, P, and let X represent the
distances from P to each of the optical axes. The principal
distances are denoted zg. In the example of Fig. 1, we are
zooming in (increased magnification) as we go from frame 1
to frame 2.

The geometry of Fig. 1 defines a mapping from z1 to z2,
given by [10],[11]:

t2 = oz tan(arctan(zi/z1) —6), Vo1 # oy
= (az1+b)/(cx1+1), Vo1 # 04 (2)
where ¢ = z/z1, b = —ztan(d), ¢ = tan(d)/z1, and
01 = z tan(r/2 + 6) = —1/c, is the location of the sin-

gularity in the domain (‘appearing point®’ [11]). We should

2also known as a group action or G-set [8].
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Figure 1: Camera at a fixed location. An arbitrary scene is pho-
tographed twice, each time with a different camera orientation, and
a different principal distance (zoom setting). In both cases the cam-
era is located at the same place (COP). The dotted line denotes a
ray of light traveling from an arbitrary point, P, in the scene, to the
COP. Heavy lines denote both camera optical axes in each of the two
orientations as well as the image sensor in each of its two pan and
zoom positions. The two image sensors are in front of the camera to
simplify mathematical derivations.
emphasize here that if we set ¢ = 0 we arrive at the affine
group, and that ¢, the degree of perspective, has been given
the interpretation of a chirp-rate [10] — uniformly spaced
points in z; are mapped to “chirped” points in zs.

Let p € P denote a particular mapping from z1 to 2,
governed by the three parameters p’ = [z1, 22, 8], or equiva-
lently by a, b and ¢ from (2).

Proposition 1 The set of all possible operators, P1, given
by the coordinate transformations (2), Va # bc, acting on a
set of 1-D images, forms a group-operation.

Proof: A pair of images produced by a particular camera
rotation and change in principal distance (depicted in Fig. 1)
is an operator that takes any function g on image line 1, to
a function, h on image line 2:

h(z2) g(z1) = g((—w2 +b)/(cwa — a)), Yoo # 0
= gozi=gop o (3)

where poz = (az 4+ b)/(cz + 1) and 02 = a/c. As long as
a # be, each operator, p, has an inverse, namely that given
by composing the inverse coordinate transformation:

(b—x2)/(cz2 —a), Yzz # 02 (4)

with the function k() to obtain ¢ = h o p. The identity
operation is given by g = g o e, where e is given by a = 1,
b=0,and ¢ =0.

In complex analysis, (see for example, Ahlfors [12]) the
form (az +b)/(cz + d) is known as a linear fractional trans-
formation. Although our mapping is from IR to IR (as
opposed to theirs from € to € ), we can still borrow
the concepts of complex analysis. In particular, a simple
group-representation is provided using the 2 X 2 matrices,
p = [a,b;c,1] € IR? x IR?. Closure* and associativity are
obtained by using the usual laws of matrix multiplication
followed with dividing the resulting vector’s first element by
its second element. O

r1 =

* Also know as law of composition [8]



Figure 2: Two pictures of a flat (straight) object. The point P is
imaged twice, each time with a different camera orientation, a differ-
ent principal distance (zoom setting), and different camera location
(resolved into components parallel and perpendicular to the object).

Proposition 1 says that an element of the (az+b)/(cz+1)
group can be used to align any two frames of the (1-D) image
sequence provided that the COP remains fixed.

Proposition 2 The set of operators that take nonsingular
projections of a straight object to one another form a group,

Py

A “straight” object is one which lies on a straight line in
Flatland.

Proof: Consider a geometric argument. The mapping
from the first (1-D) frame of an image sequence, g(z1) to the
next frame, h(z2) is parameterized by the following: camera
translation perpendicular to the object, ¢.; camera transla-
tion parallel to the object, t;; pan of frame 1, #;; pan of
frame 2, 62; zoom of frame 1, z1; and zoom of frame 2, z;.
(See Fig. 2.) We want to obtain the mapping from z; to z».
Let’s begin with the mapping from X»> to z2:

a2 X2 + b

T2 = 2 tan(arctan(Xz/Z2) — 62) = 5 oo
2X>

(5)
which can be represented by the matrix p2 = [az, b2; c2, 1],
so that z2 = p2 0 X2. Now Xz = X3 — ¢, and it is clear
that this coordinate transformation is inside the group, for
there exists the choice of ¢« = 1, b = —t,, and ¢ = 0
that describe it: X2 = p: o X1, where p; = [1,—15;0,1].
Finally, 1 = z tan(arctan(X:/Z1) — 8) = p1 o X;. Let
p1 = [@1,b1;¢1,1]. Then p = p2 op: o p]" is in the group
by the law of composition. Hence, the operators that take
one frame into another, zo = p o z1, form a group. O

Proposition 2 says that an element of the (az+b)/(cz+1)
group can be used to align any two images of linear objects
in flatland, regardless of camera movement.

Proposition 3 The two groups P and Po are isomorphic;
a group-representation for both is giwen by the 2 x 2 square
matriz [a, b; ¢, 1].

Isomorphism follows because P1 and P have the same group
representation. The (az +b)/(cz +1) operators in the above
propositions form the projective group P in Flatland.
Previously we emphasized the fact that the affine operator
that takes a function space G to a function space H may
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Figure 3: Comparison of 1-D affine and projective coordinate transfor-
mations, in terms of their ‘operator functions’, acting on a sinusoidal
image. (a) Orthographic projection is equivalent to affine coordinate
transformation, y = ax + b. In this example, a = 2 and b = 3. (b)
Perspective projection for a particular fixed value of p’ = {1,2,45°}.
Note that the plot is a rectangular hyperbola like 5 = 1/(¢’z1) but
with asymptotes at the shifted origin (-1, 2). Here g(z1) = sin(27zq).
The arrows indicate how a chosen cycle of this sine wave is mapped
to the corresponding cycle of the ‘P-chirp’, h(zs).

itself be viewed as a function. Let us now construct a similar
plot for a member of the group of operators, p € P, in
particular, the operator p = [2,—2;1,1] which corresponds
top’ = {1,2,45°} € P;1. We have also depicted the result of
mapping g(z1) = sin(27z1) to h(z2). When G is the space
of Fourier analysis functions (harmonic oscillations), then H
is a family of functions known as P-chirps [10], adapted to
a particular vanishing point, o2 and ‘normalized chirp-rate’,
¢ = /(b — a) [11]. Fig. 3(b), is a rectangular hyperbola
(e.g. 22 = ﬁ) with an origin that has been shifted from
(0,0) to (01, 02).

3.1 Feature matching

Given at least three correspondences between point pairs
in the two images, we can use a simple “feature matching”
procedure to find the element, p = {a,b,c} € P that maps
the second image into the first. Let z(k),k = 1,2,3,... be
the points in one image, and let u(k) be the corresponding
points in the other image. Then:

u(k) = az(k)+b

ce(k)+1 (6)

can be rearranged into k linear equations in the 3 unknowns,
a, b, and ¢:

[2(k) 1 —u(®)z(k) [[a b ] =[uk)] (7)

and solved using least squares if there are at least three cor-
respondence points.

3.2 A new perspective on optical flow
Applying the projective group model, u = (az +b)/(cz +1),
to the optical flow equation (1), we obtain a set of equations
that is difficult to solve. We may, however, expand u =
(az +b)/(cx +1) in its own Taylor series about the identity
(the point @ = 1,b = 0,¢ = 0), which turns out to give the
same result as the univariate Taylor series about z = 0:

U :b+(a—bc)x+(bc—a)cx2 —|—(a—bc)c2ac3 +... (8

Taking only the first 3 terms, we have a representation for u
that contains enough degrees of freedom to account for the
3 parameters being estimated. Letting ¢ = > (—h.0.t.)? =
Z((b +(a—bc)z + (be— a)cac2)Em + Et)2, and differentiating
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Figure 4: 2-D coordinate transformations. (a) Original, (b) Affine
coordinate transformation leaves parallel lines parallel and peri-
odic structures periodic: an equally-spaced row of windows remains
equally-spaced. (c) The ‘virtual bellwos’ (projective coordinate trans-
formation) does not in general preserve either parallelism or period-
icity. It “chirps” periodic structures. In this example, the spatial
frequency increases from left to right.

with respect to each of the 3 parameters, setting the deriva-
tives equal to zero, and verifying with the second derivatives,
gives the linear system of equations:

Zx4E$ Zjacg’Em Z:afEm (be — a)c Zx2Et
Zjacg’Em Zx2E$ ZjacEm a — bc

Zx2E$ ZjacEm Z:Em b N
3.3 Projective group model for 2-D

The incorporation of perspective into registration and reso-
lution enhancement applies readily to 2-D images and video.
The usual affine model is augmented with an additional pa-
rameter, ¢ = [cz, ¢y], which, again has the interpretation of
mapping a uniform pattern to a “chirp” [10] but now with
two components.

The fixed COP case, Py, extends to a 4-parameter group
based on ¢, rotation about the optical axis by ¢, and zoom
by z.

The planar object case, P2, exists inside an 8-parameter
operator group based on the coordinate transformations:

ae | _Alz,y]"+b _ Ax+b
Tl T T y]T 1T eTx 41

(10)

where the group representationmay be obtained, again using
2 x 2 matrices, p = [A,b;c, 1], but where A € IR**?, and
b,c € R**'. An example of the group-action of (10) is
illustrated in Fig. 4 together with an exemplar affine group-
action.

A useful interpretation of the 8 parameters of this group
are as follows: 6 of the parameters correspond to the affine
group, and the remaining two have the interpretation of
chirp rate [10].

Analogous to the 1-D case, the element p, that maps
one image to another, may be found from explicit feature
correspondences by solving a system of 8 (or more) linear
equations in 8 (or more) unknowns. Four (or more) point
correspondences are required in 2-D.

We may also use (10) to derive perspective optical flow
for 2-D images. In particular, the multivariate Taylor series
expansion of (10) takes on the form:

U=Pu+Pus®+Puyy+Puzy TY+Puzst” +Puyyy’ +. ..
V=py+Poa+PoyY+PoayTY+Purat” +poyyy ... (11)
There are different ways [11] of relating the parameters in

(11) to the three parameters (eight scalar parameters) A b,
and c using a hierarchical and recursive (iterative) approach.

Figure 7: Two pictures of the same object, together with point spread
functions for four samples (pixels). (a) Frame 1 of the image sequence.
(b) Frame 2 of the sequence. (c) Frames 1 and 2 registered. Note
that the periodic pixel lattice from frame 1 (dotted) is “downchirped”
(decreases in spatial frequency from left to right), and the pixel lattice
from frame 2 (dashed) is “upchirped”.

This process amounts to automatically aligning (register-
ing) the various frames without using explicit features. We
should emphasize that while the Taylor series is an approxi-
mation, the recursion [11] is done using the exact projective
model (approximate feedforward, exact feedback) leading to
a system where very large image motions can be estimated
accurately.

4 HIGH RESOLUTION STILLS
FROM VIDEO

We now apply the ‘virtual bellows’ model to resolution en-
hancement for each of the two cases depicted in Figs. 1 and 2.
In the first example, all the images were taken from a video-
tape where the video camera was swung around the center
of a computer room. The camera translation was small com-
pared to the distance to the nearest objects in the scene, so
it fits the model depicted in Fig. 1. A panoramic image was
constructed on the unit sphere, and a Mercator projection
of the enhanced image data is presented in Fig. 5.

The second case, that of a nearly planar object and arbi-
trary camera movement is shown in Fig. 6. Four frames of an
image sequence of a circuit board appear together with the
registered frames and the enhanced image. Since the circuit
board is almost flat, it is a close fit to the model depicted in
Fig. 2, and is well-described by the virtual bellows.

In both cases the method we used was similar to that
of Trani and Peleg [2], except that the proposed virtual bel-
lows (projective group) model was used, instead of the affine
group model.

4.1 The “chirping” point spread function
Estimating and working with the point spread function
(PSF) is an important aspect of resolution enhancement. A
single point in the continuous scene affects a neighborhood
in the image sensor, rather than just a single sensor point.
This blurring effect is characterized by the PSF, and is often
assumed to be independent of location on the image sensor.

In Fig. 7(a) and (b) we show a typical situation in 1-
D where we have a continuous image that is sampled by a
four-pixel camera, with a sampling much coarser than the
details of the image, as is generally the case. The pixel
sampling lattice would remain periodic (equally spaced sam-
ples) under affine coordinate transformations, but the vir-
tual bellows induce a “chirping” that is evident in Fig. 7(c)
where both images have been ‘dechirped’ (registered) to a
frame of reference between the two views. As the images are
‘dechirped’; the PSFs associated with each image become
‘rechirped’ onto the no-longer periodic lattice.

Trani and Peleg [2] have proposed the use of a small dot
to characterize the PSF. We found, however, in attempting
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Figure 5: Mercator projection of resolution enhanced image data from multiple video frames all taken from approximately the same point in
space, namely the center of a typical computer room. The resulting image is more than 4000 pixels across, and the detail is quite well-resolved,

even when enlarged to a width of two or three meters.

-

Enhanced

Figure 6: Example of resolution enhancement applied to a planar object: low-resolution 4-frame image sequence (left and center) is registered
(center). Parameters determined from the registration process are used to map the original unregistered images onto a quarter-pixel grid (right).
For comparison purposes, the first frame of the image sequence is enlarged to the same size as the enhanced image.

to measure the PSF, that the result depended greatly on the
position of the dot relative to the pixel boundary. Further-
more, this method only gives discrete samples of the PSF.
Therefore, we used a different approach. We attached a cir-
cular piece of white paper (filter paper used in chemistry labs
is ideal because it is very neatly cut and is almost perfectly
non-specular) to a piece of black cardboard. A picture of this
was taken under uniform lighting. Thresholding the image,
we determined the boundary of the transition from white
to black. This boundary provided a step edge in all possi-
ble directions, though we used a Fourier-based approach to
integrate all this information into a single continuous 2-D
estimate of the PSF.

5 SUMMARY

Two cases of camera motion have been treated with the ‘vir-
tual bellows’, both of which allow for rotation, zoom, pan,
tilt, and translation of the film plane. In the first case, the
solution is for a planar object and arbitrary COP; in the
second case the solution is for an arbitrary object and fixed
COP. Theory was discussed for 1-D and 2-D, and success-
ful image alignment, overlap-mosaicing, and enhancement
demonstrated on still image and video.
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