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Abstract: The Gibbs random field (GRF) has become a pop-
ular image model with applications in restoration, segmen-
tation, reconstruction, edge detection, compression, and mo-
tion estimation. Its synthesis of natural-looking texture using
only a small number of parameters is a key motivation for its
widespread use. However, its wide use belies a number of diffi-
culties inherent in the application of the model. In particular,
it has proven difficult to control scale and patterning within
the GRF framework, and to estimate parameters for a given
pattern. The image processing literature has largely ignored
the role of the temperature in the GRF, a parameter that ap-
pears in the original statistical mechanics formulation of the
GRF. In applications such as simulated annealing, tempera-
ture is known to control scale, and in nature, temperature plays
a critical role in multiresolution pattern formation, e.g., crys-
tallization. Consequently, examination of GRF temperature
parameters provides important insight into problems of scale
and pattern formation. This paper presents (1) useful tools
for characterizing temperature effects and points of “phase”
transition, (2) characterization for the autobinomial GRF, (3)
explanations of how temperature affects parameter estimation,
segmentation region size, and various scale and pattern-forming
behaviors of the model. The results allow more accurate and
flexible control when the GRF is used as an image model.

1 Introduction
Gibbs random fields (GRF), and their equivalent Markov ran-

dom fields, have recently been applied to image segmentation
[1], [2], [3], [4], [5], [6], [7], edge detection [8], restoration [9],
[10], [11], [12], [13], reconstruction [14], [15], coding [16] [17],
and motion estimation [18]. Underlying these applications is
the notion of representing an image as a random field of primar-
ily local interactions, i.e., using the GRF as an image model.

However it has proven difficult to control scale and pattern-
ing within the GRF model. Meanwhile, alternate models that
provide multiscale representations such as wavelets, pyramids,
quadtrees, etc. have achieved noteworthy success. Although
there are recent efforts [10], [6], [19], [20], to develop multi-
scale random fields or to combine them with another multiscale
model, these methods assume a discrete number of scales. None
facilitate continuous control over scale.

In nature, however, multiresolution pattern formation does
not occur by discrete quadtrees or pyramids but by mechanisms
such as variations in temperature. For instance, the process of
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annealing to obtain a regular crystal structure without defect
requires extremely slow lowering of temperature. The intuition
is that at high temperature the components of the crystal can
move freely over large scale, whereas at low temperature the
mobility is less and restricts changes to small scales. As the
temperature changes, so does the scale.

These temperature effects are well studied in physical sci-
ences such as crystallography, and have a counterpart in math-
ematical modeling and image processing via techniques such
as simulated annealing. For instance, in the now classic pa-
per of Kirkpatrick et al. [21], they state “the temperature dis-
tinguishes classes of rearrangements, so that rearrangements
causing large changes in the objective function occur at high
temperatures, while the small changes are deferred until low
temperatures.” The use of temperature to control scale is the
key motivation behind the use of simulated annealing for solv-
ing large optimization problems.

Temperature also appears directly as a parameter, T, in the
original statistical mechanics formulation of the GRF. Thus
examination of GRF temperature provides a way to estimate
and control scale, a critical problem in image processing and
understanding.

1.1 The GRF as an image and texture
Model: Importance of T

When applied to problems in image processing, it is typically
assumed that the GRF is a prior for the original image which
contains regions of various textures. The resulting posterior
distribution is then maximized (maximum a posteriorior MAP
solution). Although conceptually elegant, in practice, use of
the GRF has encountered many problems.

For example, in the MAP framework when a GRF is used
as a prior, 1/T controls the strength of the prior relative to
the strength of the data. It has been observed that varying the
range of 1/T over certain ranges has little effect on performance
in some cases [1], [22], [23], [24], [25], [7], and drastic effect on
stability of a solution in other cases [26], [14]. The potential
applications of this framework are enormous in number. It is
not the goal of this paper to present yet another MAP applica-
tion, but rather to begin to clarify the confusion surrounding
the choice of the 1/T parameter. In this paper we show how
to characterize temperature ranges where fundamental changes
in model behavior occur. We propose several helpful tools for
characterizing these changes.

In texture synthesis, textures are drawn from samples of the
GRF probability density function. The methods used to sam-
ple the GRF tend to involve decreasing a given energy function,
and sometimes minimizing it. During the synthesis, a given set
of fixed GRF parameters can produce many different patterns.
This leads to confusion in relating a given set of parameters
to a given texture. Since the range of parameters is directly
related to the range of temperature, understanding the effects



of temperature is essential.

Synthesis examples will be shown in this paper for both
isotropic and anisotropic homogeneous GRF’s. The applica-
tion of both cases to natural textures was studied by Cross
and Jain [29]. Applications of GRF textures to more compli-
cated natural scenes can be found in the list of references in
the first paragraph of this paper. Although studying the ap-
plication of the GRF to natural scenes is very important, the
intentions of this paper are different. Here, the goal is more
fundamental — understanding the role of temperature in image
pattern formation.

In their overview paper on GRF’s; Dubes and Jain [27] raise
important questions to clarify the outstanding problems in
Markov/Gibbs modeling. The first is “what regions of the pa-
rameter space lead to valid models?” and the second is “what
regions in the parameter space put the process into phase tran-
sition?” In this paper we will argue that answers to these
questions require a full understanding of the GRF tempera-
ture. Temperature effects have been carefully studied in the
literature of physics and of optimization, but mostly ignored in
image processing. Moreover, the importance (and difficulty!)
of choosing and estimating GRF parameters has been noted
in almost every field of application, but the close relationship
between these problems and temperature has rarely been ac-
knowledged.

Perhaps the foremost problem is understanding the effects
of temperature parameters on pattern and scale, particularly
at phase transitions (which are analogous to physical phase
transitions such as freezing or boiling). This paper presents
a characterization of temperature effects and a new method
for analyzing significant points of transition for Gibbs texture
modeling. This analysis allows us to provide some answers to
the questions of Dubes and Jain and to more appropriately
determine in which range of temperature to operate the GRF.
These results ultimately allow more accurate and flexible con-
trol when modeling images with the GRF.

2 Background

2.1 GRF notation and assumptions
This paper focuses on the discrete Gibbs random field (GRF),

defined as follows. Let an image be represented by a finite
periodic M x N lattice § with neighborhood structure N =
{N:, s € S} where N, C & is the set of sites that are neighbors
of the site s € §. Every site has a gray-level value z. € A =
{0,1,...,n — 1}. Let x be the vector (z.,1 < s < |S|) of
site gray-level values. A neighborhood structure is said to be
symmetric if Vs,r € 8, s € N, if and only if r € N-.

Given the symmetric neighborhood structure, one can de-
fine a Gibbs energy E(x) on the lattice. A joint probability
distribution is assigned to the Gibbs energy yielding the Gibbs
random field,

P@x) = exp (-2 F()) (1)

where 7 is a positive normalizing constant known in the physics
literature as a partition function and T is the “temperature”
of the field. There are many ways to define a Gibbs energy.
The simplest and most popular for image region modeling is
the Potts model,

Definition 1 The energy for the homogeneous Potts GRF is

Ba)==> | D 8:(2600, = 1) |,

SES \renN;

where the model parameters are given by B,, and 65 -, = 1
when v. = x, and 0 otherwise.

Potts patterns resemble a high-level image segmentation (see
Fig. 1). Typically, this model is combined with another one
that models the texture within each region. The autobinomial
Gibbs energy of [28], has been shown to synthesize a variety of
natural looking image textures [29], [30].

Definition 2 The energy for the homogeneous autobinomial

GRF is
E(X) = —Z ars + Z Brrswe |, (2)

SES réN;

where the model parameters are «, the external field, and 3,,
the bonding parameters.

In the case where n = 2, both the autobinomial and Potts
model become the Ising model, a well-known model in statis-
tical mechanics.

In studies of autobinomial GRF’s as texture models,[31],
[29], [30], the temperature parameter was absorbed into the
bonding parameters. The latter have been assumed to be the
parameters that characterize image texture.

2.2 Synthesis and annealing

GRF image data is typically synthesized iteratively, using a
Monte Carlo method such as the Metropolis exchange algo-
rithm [32]. Tn this algorithm a new state is formed by ex-
changing or “swapping” pairs of values in the current state.
No new values can be created and none are removed, so the
system is “closed” — its histogram remains constant. In this
closed system it can be shown that the external field cancels
[33], [30], leaving only the bonding parameters. The Metropo-
lis exchange performs stochastic relaxation, which allows the
energy to increase at a given step, as opposed to always de-
creasing it; this aims at preventing the pattern from getting
“stuck” in a local minima.

In many applications the temperature parameter is lowered
gradually during the Monte Carlo optimization or synthesis.
This is called “annealing” after the physical process with the
same name. The temperature is lowered and iterations con-
tinued until the pattern reaches its “ground state,” defined by
equilibrium at 7' = 0, or equivalently, the global minimum en-
ergy pattern. The number of iterations required to reach the
ground state is usually astronomical; hence, there is a great
need to identify ways to speed up the annealing process. One
way to speed things up is to identify where the important re-
gions of change are as a function of temperature, so that the
temperature annealing can spend more time at these temper-
atures. The results of this paper show how to determine these
regions. In this paper the Metropolis exchange was used for all
the experiments. Experiments were conducted both with and
without annealing; these cases will be clarified in the appropri-
ate sections.

There is presently no known optimal choice for what schedule
to use to decrease the temperature. The form used in this paper
is that of the lower bound derived by Geman and Geman [9],

the log form:
c

"= g+ D o

where ¢ = 0, 1, ... is the iteration number, 1.4 is the number
of iterations it takes for the distribution to reach equilibrium
at the current temperature, i.e., to approximate a sample of
the Gibbs distribution at that temperature, and | | indicates
truncation. This form is commonly used in the literature with
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Figure 1: Potts GRF’s synthesized with different annealing rates c¢. All images are 64 x 64 with n = 4 gray levels. All were
synthesized for 20,000 iterations with the temperature lowered every 20 iterations according to the annealing schedule in (3).

the scale factor in the numerator typically chosen in the range
¢ € (0,10]. Although its choice is ad hoc, its behavior is un-
derstood as a rate constant that is proportional to how slowly
the annealing progresses.

Fig. 1 shows four GRF images made with different annealing
rates using the Potts energy'. Notice in the progression of im-
ages for ¢ = 1,5, 10, that the pattern appears to be zooming in
scale. At ¢ = 50 the zooming no longer appears. There is some
correspondence between temperature and scale as noted by
many [35] [36], [22] [3]. But what is it? And for which region(s)
in the model space? We have found that the temperature-scale
correspondence is true only up to a critical point. In later sec-
tions we will demonstrate some ways to identify these points
of critical changes.

In Fig. 1 the case with ¢ = 10 has the least energy of the
four cases — in other words, this particular choice of ¢ resulted
in the fastest progress to the minimum energy configuration,
even though this was not the “fastest” rate. Here is an example
where going slower (at ¢ = 10 vs. ¢ = 1,5) saves time, where
“slower” is controlled by temperature. What is the best range
of temperature for a given model? Solutions can be found much
faster if we first determine the best range of T' to use.

The “best” range of temperature will of course depend on
what is desired in the final image. For example, if the Potts
model is used for image segmentation, and the leftmost sample
in Fig. 1 best matches the desired region sizes, then synthe-
sizing at T = .15 is best. To find a segmentation when the
average region size is known in advance, choose a tempera-
ture that “prefers” that region size. Many have remarked that
choosing the right temperature at various temporal or spatial
positions can speed up and improve the solution in their ap-
plication e.g., [36], [37], but none have shown how to go about
finding these temperatures. We present some tools below for
characterizing temperature, and apply them to autobinomial
patterns. But the ideas behind the tools are general enough to
be used for many other kinds of patterns.

2.2.1 Synthesis at constant temperature vs.

annealing

As mentioned, a sample from the GRF, e.g., a texture,
is synthesized iteratively by a stochastic relaxation method.

'Tt is an interesting phenomenon to notice in these images
that only three gray levels come together at most vertices. This
requires less energy than four gray levels coming together, and
is very common in nature, e.g. the facets on a stick of chalk
most frequently meet in 3’s. It also shows up in a variety
of GRF models applied to image segmentation, e.g., see the
segmentations of [34].

Whether or not T' is varied, i.e., whether or not there is simu-
lated annealing, the iterations aim to lower the energy function
E(x). At a constant T, with an initially random configuration,
the energy will typically start out high, and gradually lower
with each iteration until some equilibrium is reached. The be-
havior is similar when annealing is used; in either case one can
generate similar patterns. For example, running the Metropo-
lis exchange at a constant value T' = 7.2 for 20,000 iterations
makes an image with a visually similar texture to that of Fig. 1
for the case ¢ = 50. For high T' equilibrium arrives soon; for
such patterns it can be faster to sample at constant 7' than to
use annealing. For low T, it can take forever to reach equilib-
rium. What constitutes “low 7% or “high 7” can be determined
using the tools presented in the following sections.

2.3 Relation between Gibbs energy,
co-occurrences, and A matrices

The significance of pairwise gray-level information for visual
texture discrimination was advocated in 1962 by Bela Julesz
[38]. Since then, co-occurrences, or equivalently, histograms of
pairwise gray-level occurrences, have become a standard tool
for processing images involving texture [39, 40]. In [41] it was
shown that a class of Gibbs energy functions could be expressed
in terms of “aura measures” which are closely related to co-
occurrences.

This result will be useful for characterizing visual pattern
changes caused by temperature. To proceed, we need to define
a few terms. First, a neighborhood can be partitioned into K

subneighborhoods, N¥:
K
No=| Nt vses, (4)
k=1
where N* AN =0, VI #E.

Also, the image sites can be partitioned into sets having the
same gray level:

Sg={s€Slz. =g}, Vg €A (5)

Now, an alternate form for the autobinomial Gibbs energy
(without external field) can be obtained using the results of
[42]:

K
E(x)=— Y 94> Bm"(g,9") (6)
9,9’ EA k=1

where
m*(g,9') = Y INEN S|

SESy



is known as the “aura measure over A’*.” The “aura measure”
satisfies the properties of a measure over a dilated region sur-
rounding a pixel®>. Here, the dilated region is A¥, a subneigh-
borhood of the Markov neighborhood. Intuitively, the aura
measure indicates how much of each gray level is contained in
that neighboring region.

From [42], we know that the aura measure over a set is equal
to a sum of the co-occurrences taken over the displacements
which can exist in that set. Hence, by relating the Gibbs energy
to aura measures, it is related to co-occurrences.

The aura measure also has an interpretation as a “miscibil-
ity” measure. Thinking of gray levels as fluids, if m(0,1) is
large, then gray levels 0 and 1 are “mixed”; if small, they are
“separated”. This interpretation allows one to visualize types
of patterns corresponding to high or low aura measures: if the
measures m(g,g'),g # g are low, then the gray levels tend to
cluster. Tn Fig. 1, the measures m(g,g'),g # ¢’ are lowest for
¢ = 10 and highest for ¢ = 50.

By grouping the aura measures into an » X n matrix A | and
setting g = [0,1,...,n — 1], the energy in (6) can be written
as

K
E(x)=-> fg"A"g, (7)
k=1

where A* has as elements mk(g, g"). Therefore, the anisotropic
energy will be a linear sum of isotropic energy terms with
weights equal to the bonding parameters. When the model
is isotropic then f; = 3 and,

K

E(x) = —Bg"Ag, where A =) A" (8)

k=1

Let C(d) be the co-occurrence matrix at displacement d. Then,

A=) C).

s+dEN;

Using the above relationship, the energy is equivalent to the
texture’s auto-correlation formed over just the displacements
occurring in the Markov neighborhood N [33]. Later, we will
measure the effect of temperature T' on the Gibbs energy, which
by this relationship, will lead to a characterization of T relative
to local correlation.

Notice that two textures with the same co-occurrences will
have the same Gibbs energy (and textures with different co-
occurrences may or may not have different energies.) Energy
is the sole quantity measured during the texture synthesis, but
examining energy alone will not discriminate textures as well
as will examining the structure of the matrix A | and hence of
the co-occurrence matrices.

3 Some problematic behaviors of the

GRF

There are a number of applications where a model is needed
which is invertible, e.g. image coding, or where a model is
needed which has a reasonably unique mapping between pa-
rameters and a given pattern, e.g. image recognition. It is also
critical in these applications to answer questions such as “how
stable” are the parameters — does a small perturbation in pa-
rameter space lead to a small change in the resulting pattern,
and vice-versa?

2The aura measure is nonnegative, monotonic, and subad-
ditive [42].

(a) (b)

Figure 2: Similar patterns made with different parameters.
Pattern (a) has anisotropic parameters 31 = —1, f, = —2. Pat-
tern (b) was made with isotropic parameters, 1 = 2 = —1.
The only other difference is the annealing rate: (a) ¢ = 2.7 and
(b) ¢ =0.27. Both images are binary, 64 x 64.

For texture modeling with the GRF, the bonding param-
eters, Bk, have been assumed by many in the literature to
characterize a texture. In this section we illustrate that these
parameters do not characterize a texture pattern in the way
that has often been assumed. We also show that the texture
may vary dramatically when a small change is made, such as
increasing the number of gray levels in the random field. Later
we will also show that over certain regions of parameter space,
big changes in the parameters lead to small changes in the
image (robust for image coding), while over certain other re-
gions of parameter space, small changes in parameters lead to
big changes in images (instability). The observations in this
section are supported empirically; more formal analysis will
follow.

3.1 Parameter non-uniqueness; image
coding and recognition

As mentioned in the background, there is freedom in choosing
energy functions; it is certainly possible to choose two different
energy functions with the same minima, or to choose a single
energy function with multiple minima. Since “ground state”
refers to the global minimum energy configuration, it is no sur-
prise that a given GRF can produce different looking patterns
in its ground state. In the literature, it has also been the case
that texture samples are drawn from a GRF at constant tem-
perature that is not in equilibrium, even though it might look
like things have stopped changing from iteration to iteration.
In this case, even though the parameters are constant, numer-
ous visually dissimilar patterns are produced as was illustrated
n [43]. This poses a problem in texture synthesis of determin-
ing which pattern to associate with the parameters.

Fig. 2 shows an additional problematic example, this time
where two visually similar patterns are made by dissimilar pa-
rameters. The isotropic A matrices differ by less than 0.1 % for
the two patterns. Hence, two entirely different sets of parame-
ters, one isotropic and one anisotropic, can generate the same
type of pattern. In this case, recognition tests which looked at
only the parameters might say these patterns are more different
than they look.

An explanation of this latter non-uniqueness is easily ob-
tained by considering the functions maximized for each set of
parameters. Using the linear aura measure of (7), the energy
minimized for (a) is

m'(1,1) +2m>(1,1), (9)



1 = 1000

n=16

Figure 3: Number of gray levels effects pattern formation. The
number of gray levels is n = 2,4,16 from left to right and
the number of iterations is 2 = 10, 100, 1000, from top to
bottom. Note there is more going on than a change in perceived
resolution as you look from left to right. Meanwhile, looking
down the columns, for n = 2 there is no change and for n =
4,16 the pattern looks like it is being “zoomed” in scale. All
twelve 64 x 64 textures have isotropic first order parameters

g=1.

and for (b) is:
m'(1,1) +m”(1,1). (10)

A checkerboard pattern satisfys both m'(1,1) = m*(1,1) = 0
and the uniform histogram constraint. Hence the checkerboard
configuration minimizes both (9) and (10), although neither
pattern shown here has reached that minimum.

Nor is this a particularly special example; in the equilibrium
GRF there is a condition of positivity which states that for
all configurations, x, the probability P(x) > 0. Thus, unless
we are in the ground state (equilibrium at 7' = 0), all config-
urations are possible even though some are more likely than
others.

3.2 Sensitivity to number of gray levels

Many times it is desirable to work with a reduced number of
gray levels. Fewer gray levels means fewer possible configura-
tions, and less work for an optimization search. Ideally the
number of gray levels, n, can be reduced without significantly
destroying the percept of the texture — the resolution should
only look a little worse. Similarly, increasing n should improve
the resolution without changing the basic texture that is per-
ceived. With the GRF, however, changing n, like changing T,
can lead to very different behavior.

Consider the behavior when n is changed in the autobino-
mial GRF, as illustrated in Fig. 3. In Fig. 3, all the patterns
have the same T' = 1 and only the n is varied, left to right.
For ¢+ = 10, one sees the desired effect from left to right, but
for ¢+ = 100, 1000, the isotropic pattern does not merely look
“smoother” with increasing n. For anisotropic textures the
complexity of the behavior is even greater.

4 Temperature and application to
parameter estimation

We have now seen several examples where texture pattern and
scale are influenced by changes to the model parameters or
changes in the number of gray levels. By including tempera-
ture in the model and studying its effects we will develop new
explanations for the above phenomena which will help charac-
terize and control texture formation for image modeling.

4.1 Model parameters as temperature
annealing rates

In the temperature annealing schedule given in (3) the constant
¢ is understood to be proportional to how slow the annealing
progresses. From substituting the iteration-dependent temper-
ature of (3) into (1) we obtain,

) log(|=] +1)
P(x) = — €XP —fE(X) , (11)
or equivalently,
Plx) = 1 1 B(X) B B(X)
Z\TZI+ 0 7

teq

where B = exp(—1/T) is the new base of the exponent. For a
given energy, notice that changing the temperature is the same
as merely changing the base of the exponent. As the number
of iterations 7 increases, T decreases: lim;_., B = 0. However,
the larger the value of ¢, the slower the rate at which B goes
to zero. Nature also exhibits a variety of behavior which can
be attributed to a change of base in a power-law scaling model
[44].

Dubes and Jain [27] pointed out that predicting pattern be-
havior from parameters is difficult; both the absolute and rela-
tive sizes of the parameters affect the pattern. We now derive
results that help explain the behavior of patterns as a function
of the relative sizes of the parameters. The importance of the
absolute size of the parameters will be addressed subsequently.
Both have direct impact on the modeling of images.

The formulation here is for the autobinomial model although
a similar procedure can be followed for many other Gibbs mod-
els. Tet E*(x) = —gT A¥g be the portion of energy in the kth
isotropic subneighborhood. Also, let temperature be a func-
tion of both iteration ¢ and subneighborhood k. The bonding
parameters, i can be grouped to scale the annealing rate,

resulting in
Tik = /B

Tlog([2] 1)

te
Substituting into (11) gives an alternate expression for the
anisotropic GRF in terms of “anisotropic temperatures”:

P(x) = % I e (- Tjk Ek(x)) . (12)

If Z could be factored, then (12) would become a product of
independent fields. The analytic form for 7 is not known in
general, greatly complicating most work with GRF’s. Except
for 7 however, each of the k directions acts like an isotropic
field: each field has its own annealing rate constant, which
controls its progress toward its ground state.

Let’s revisit the analogy between fluids and gray levels,
where patterns can be described by mixing and separation. The




Figure 4: High temperature 7' impedes pattern formation and
low temperature speeds it (over increasing iteration, 7). All the
samples are first order GRF’s, 64 x 64, with n = 32 gray levels
and isotropic § = 1.

rates can be thought of as controlling the progress of mixing
or separation between gray levels in each direction. A person
can watch the progress as the pattern is synthesized — or look
at snapshots in time such as shown in Fig. 4.

Characterizing the “rates,” i.e., finding changes to which
they are proportional, is very difficult. The above manipu-
lation shows that estimating the rates is like estimating the
parameters. The latter is a notoriously difficult problem for
this model.

4.1.1

Consider Fig. 4 for an example of what happens if we syn-
thesize using the same bonding parameters, but at several dif-
ferent temperatures. Since the parameters in this example are
isotropic, synthesizing at different values 7' =1000, 100, .01
could be equivalently accomplished by setting T'= 1 and syn-
thesizing at 2/7T = .001,.01,100. In the left column we see that
the temperature is too hot for the pattern to form. Notice the
similarity between Figs. 3 and 4. A decrease in temperature
behaves like an increase in gray levels.

Several parameters might be of interest during GRF mod-
eling, not just temperature. Nonetheless, studying the effects
of temperature helps characterize the effects of changing the
other values. Decreasing the temperature increases the abso-
lute value of log(P(x)), the magnitude of the exponent of the
random field, in a way that is similar to several other parame-
ter changes — namely, increasing the magnitude of the bonding
parameter, increasing the number of gray levels, and increas-
ing the model order (i.e., the neighborhood size). Hence, these
other parameter changes will influence the system in a way that
can be characterized by temperature.

Low and high temperature pattern formation

4.1.2 Equilibrium

Recall (3) where i.4 1s the number of iterations required to
allow the pattern to reach equilibrium. Equilibrium is a desired
state for the GRF — when it is reached, then we can obtain a
valid sample of the GRF density P(x). In simulated annealing,
this “equilibrium” implies that the energy levels off, i.e., the
mean energy decrease is zero. A measure of the energy during

synthesis of Figs. 3 and 4, shows that the energy is essentially
constant for n = 2 and T = 1000, and decreases at various
rates for the other cases (details are available in [33]).

Empirically the behavior we observed was always the same
for higher n or for lower T: the GRF takes longer to reach
equilibrium. Hence, if sampling textures with parameters that
are large (corresponding to low values of T'), then more itera-
tions are needed; the same is true for images containing a large
number of gray levels, n.

Using energy constancy as a measure of equilibrium, it is
reasonable to conclude that in Fig. 3 equilibrium occurs in col-
umn n = 2 after 10 iterations, and in column n = 4 after 100
iterations. After about a thousand iterations the n = 16 en-
ergy decrease is also near zero, though not shown here. Even if
the energy level is constant, the texture can still change in ap-
pearance; equilibrium does not imply the pattern has stopped
changing.

4.1.3 Anisotropic interaction and equilibrium

Anisotropic patterns have a curious impact on equilibrium.
According to (12) the anisotropic field cannot be completely
decoupled into isotropic subfields unless 7 is factorable, which
is unknown (as is a closed form for Z). Consequently, this
analysis is difficult and must be conducted empirically. Let’s
consider an anisotropic example, which gives some interesting
behavior.

Example 3 We wish to compare anisotropic behavior with its
constituent isotropic behaviors. Suppose n = 32 as before, but
now simulate T' = 100 in the vertical direction and T = 0.01
in the horizontal. This can be achieved by setting T = 1 and
f1 = 100, B2 = 0.01. We let the synthesis run 1000 iter-
ations without annealing. The two images for the isotropic
cases T = 0.01,100, and image for the combined anisotropic
f1 = 100, B2 = 0.01 are shown in Fig. 5. Features of its A
matriz are discussed below.

In Fig. 5 we see pattern clustering at low T on the left,
a noisier pattern at high 7 in the center, and the result of
combining these two effects on the right. However, instead
of seeing the same amount of clustering as in the constituent
directions, we see exaggerated horizontal clustering and vertical
noisiness. The behavior is much more extreme than in the
corresponding isotropic cases.

This “exaggerating” behavior can be captured quantitatively
by features of the A matrix such as entropy [33]. If the entropy
is computed for the isotropic A matrices of Fig. 5(a) and (b),
and for the anisotropic A matrix of Fig. 5(c), then we find that
the vertical anisotropic component has the highest entropy, the
horizontal has the lowest, and the two isotropic components
lie in between. Additionally, the sum of the two anisotropic
components is close to the sum of the two isotropic components,
suggesting that the average entropy is conserved.

With anisotropy, the horizontal direction (colder temper-
ature, faster rate) takes advantage of the vertical direction
(higher temperature, slower rate); the horizontal achieves lower
entropy at the expense of the vertical — by moving faster, it
“steals” correlation from the slower moving direction. This
phenomenon manifests the non-separability of this model —
the resulting effect is more exaggerated than its constituent
isotropic effects.

Also, the horizontal anisotropic component changes more
rapidly than the isotropic component at the same temperature.
This behavior may imply that the anisotropic pattern is further
from equilibrium. Other features of the A matrix [33] have also
been studied, and shown to result in similar behavior.
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Ty = .01, T, = 100

Figure 5: The first two patterns are isotropic and synthesized at constant cold 7' = .01 and hotter T" = 100. The third is
anisotropic, with bonding parameters set to simulate 7' = .01 in the horizontal direction and 7' = 100 in the vertical direction.

All three are first order GRF’s; 64 x 64, with n = 32 gray levels.
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Figure 6: As the temperature decreases from right to left, en-
ergy drops. The normalized mean energy is shown for five
different gray levels.

The ground states of all three textures in Fig. 5 can be shown
to be identical, i.e., the same configuration minimizes both en-
ergy functions. If simulated annealing were used for their syn-
thesis, eventually they would all look the same. It is here in
their non-minimum energy states that their appearances vary
so dramatically. To summarize, we have seen that bonding pa-
rameters can be interpreted as annealing rates, and patterns
taken from non minimum-energy states exhibit exaggerated ef-
fects of interacting directional annealing rates.

4.2 Energy, temperature, and parameter
estimation

Energy is what the synthesis algorithms measure; it depends
on all the model parameters except temperature. When a pat-
tern is in equilibrium at a given temperature then its average
energy is constant. Energy is easy to measure, and its char-
acterization is a common part of statistical mechanics. In this
section we will explore energy as a function of temperature,
and discuss its significance for the application of GRF image
parameter estimation and for determining regions of desirable
model behavior.

How does the mean energy change during long term synthe-
sis of isotropic GRF’s? Empirical results are shown in Fig. 6,
where we allowed 10,000 iterations for the system to enter equi-
librium (much more than necessary in most cases), and then

computed the mean energy over the next 40,000 iterations.

Some details are in order. FEnergy grows with number of
gray levels, n. Hence, the following normalization was made so
that all the gray level cases can be easily compared. Assum-
ing uniform histogram level, |S|/n and constant neighborhood
size, |[N| = v, at high temperature the A matrix will be uni-
form. From the A matrix properties each row or column sum
equals |S|v/n. Thus, the energy at highest temperature can be
expected to be

n—1 n-—1
. ISy . . Sy (n—1)n(n—1)n _ |Slv(n —
D DD D T
=1 =1

In the results shown here, the mean energy was normalized
by (n — 1)? so that the high temperature values align for all
gray levels. If lattices differ in the number of sites, |S|, and
neighborhood size, v, then scaling by these is necessary to align
the ranges. In Fig. 6 the normalized mean energy is plotted for
T € {0.01, 0.1, 0.27, 0.57 ,1, 2.7, 10, 100, 1000, 10000} and for
n € {2, 4, 8, 16, 32}. Most applications of GRF’s have only
operated on a few values of T, those near the middle of the
large range shown here. Similarly, their bonding parameters
have corresponded to the middle of this range.

We extended the temperature range much further than ex-
isting studies, to both hotter and colder temperatures until
plateaus appeared in the energy vs. T plots at each end of the
T axis. In addition to energy, we also measured four features
of the A matrices, trace, entropy, correlation, and bandwidth,
and found that all the features exhibited similar plateaus over
the same temperatures. The empirical results held over sim-
ulations with several different “seeds” (for the Metropolis ex-
change). To our knowledge, this behavior has not previously
been noticed in the image processing community, even though
it has important implications for practical problems such as
parameter estimation. The rest of this section focuses on ap-
plying these results.

4.2.1

These results provide a new way to estimate the temperature
of a given texture, and an easy way to see why the estimation is
hard. For a given image region (with some number of gray lev-
els, n), one can compute the energy and use it to index into the
energy vs. temperature curves of Fig. 6. Consider the energy
for n = 2. The plot is monotonic around the values T = 0.27,
0.57, 1, 2.7, making temperature estimation straightforward in
this region of “transition.” However, for temperatures outside
these values, the energy is constant. A similar behavior is vis-
ible for other values of gray level, n. Thus, we would expect

Application to parameter estimation



energy-based estimation to work well around the transition re-
gion, but not at the plateaus on each end.

For the isotropic GRF, the temperature estimation just de-
scribed is equivalent to estimation of the GRF bonding param-
eters. Bonding parameter estimation is known to be difficult;
it is nonlinear and the many methods that exist have been
noted to have serious shortcomings. We discuss briefly a few of
the problems, summarizing some of the ways the temperature
results here can be applied.

Problem 1: uniqueness of the estimate. Assume there
is a temperature 7T, such that 7' > T, characterizes the right
plateau. Since the energy and many other features of the A
matrix are constant for all T' > T, the variety of patterns
that form there will be limited. If you measure the energy of a
pattern and it maps to T > T}, then there are an infinite num-
ber of parameters T'= 1/8 to which it could correspond, e.g.,
there are cases where the same-looking data is synthesized with
the parameter 8 and the parameter 1003. This “saturation”
seems to have first been noted in the meterology literature by
Garand et al. [30]. The plot of Fig. 6 shows a similar nonlinear
pattern saturation occurs for low 7. Saturation at high tem-
perature is analogous to steam well above the boiling point; it
doesn’t change. A similar analogy holds at low T' for ice. This
concept is easily grasped with temperature, but is somewhat
surprising for model parameters, 3 = 1/T.

Problem 2: equilibrium. Most of the patterns synthesized
in the texture modeling literature do not appear to have been in
equilibrium or in their minimum energy configurations. Hence,
the parameters estimated for them will generally not corre-
spond to the parameters used to synthesize them. Sometimes
this may be the reason why a particular estimation method
is “not working”. To help prevent these problems, the tools
and results discussed in this paper can be used to character-
ize equilibrium and to determine regions of valid parameter
estimation.

Problem 3: insufficient training data. Most methods re-
quire all clique configurations to not only be represented in the
samples presented for estimation, but to be represented in large
number for accuracy in estimation. In comparing performance
of estimation methods, Chen [45] noticed many autobinomial
patterns did not contain enough of the different clique config-
urations to conduct estimation. This problem grows with the
order of the cliques and with the number of gray levels; it is a
case of the famous “curse of dimensionality.”

The results above also indicate that the estimation problem
gets worse at low temperature, where the energy tends to be
near its minimum. For models such as the autobinomial GRF,
minimum energy values are known [43] to correspond to ze-
ros appearing in the A matrix, signifying the lack of existence
of some clique configurations. Estimation algorithms that re-
quire all configurations to be present will thus fail below the
temperatures where the zeros begin to appear in the A matrix.

An alternate route with estimation is to not count frequency
of occurrence of clique configurations, but rather to consider
the energy or the A matrix features. All of these are mono-
tonic functions of temperature during the transition region.
They can be used for recovering temperature even when all
the configurations are not represented. The key limitation is
that as long as the partition function is unknown for the gen-
eral GRF, these regions must be determined empirically. This
is a commonly accepted way to proceed in the natural sciences,
but not in image processing, despite its easy implementation
by look-up table.

Our results on temperature can be applied to some com-
mon problems with parameter estimation. For instance,
Garand et al. [30], during Maximum Likelihood parameter esti-
mation, reported that the parameter estimates were low when
n > 2. They found they could fix the problem by scaling
their Metropolis decision rule by a factor of 0.5. When this
was done, their parameter estimates were closer to the param-
eters used for synthesis. This “ad hoc fix” has an appropriate
explanation in terms of temperature. Pre-multiplication with
their arbitrary scale factor is equivalent to setting 7' = 0.5,
i.e., synthesizing at a lower temperature than the “no temper-
ature default”, T = 1. Decreasing the temperature has the
same effect as increasing the parameter 3, hence patterns are
produced with higher effective parameter values.

Tt is insightful to also compare this estimation problem to
the behavior pictured in Fig. 4. Allowing 100 iterations for
equilibrium puts us in the second row of samples for the tem-
peratures shown. When /T is estimated for samples such as
in Fig. 4, it will likely be accurate for the first two columns,
but too low for the third column. When synthesis is stopped
before equilibrium, the estimates tend to run low.

5 Phase transitions and application to
texture modeling

Important changes in physical systems are characterized by
their critical temperatures. This is well known in chemistry and
physics, but has yet to be exploited in image modeling. Most
people are familiar with the critical temperatures at which ice
becomes water and water becomes steam, i.e., the points of
phase transition. Very useful changes also occur in substances
such as purified mercury where the critical temperature marks
where the metal’s resistivity goes to zero — it becomes super-
conducting.

For image processing, an important critical point is where
a random pattern suddenly becomes structured. The chemical
analogy is crystallization; the critical temperature is where the
solution solidifies. The reconfiguring of a random arrangement
of particles into a regular arrangement is a sought-after chal-
lenge for the random field texture model. Several people have
suggested the importance of exploring phase transition phe-
nomena for the GRF in image processing [2], [27], [46]. Phase
transitions do not occur in a 1D GRF [47].

Technically, the critical points are the zeros of 7, the par-
tition function. When Z is known, which it is for the Ising
model and the Gauss Markov random fields (GMRF’s), then
the critical temperature(s) can be found analytically. For the
Ising model there is one critical temperature, T, = 2.27, which
is the maximum value of T at which the center of the lattice
is affected by the boundary conditions [47]? Above T, there is
no long-range structure. For the GMRF, 7 is the well-known
normalizing factor involving the determinant of the covariance,
and there is a critical point only if the covariance is singular.
The valid GMRF parameter range can be found by imposing
positive definite conditions on the Covariance matrix [49]. Lak-
shmanan and Derin [50] have recently found the valid parame-
ter space for the GMRF on an infinite lattice. Valid parameters
do not lead to singularities in Z; therefore, they do not yield
phase transitions.

For the non-binary autobinomial GRF, 7 is not known;
therefore, its singularities and critical points must be found em-
pirically. Strictly speaking, one dimension of the lattice needs

*This is obtained by letting kp = 1 in the original formula-
tion of Onsager [48].
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Figure 7: Ising model: Specific heat and patterns corresponding to above, near, and below critical temperature. Each image is

64 x 64, with 2., = 100.

to go to infinity for a phase transition to exist. Thus, we can
not find true “critical temperatures” for finite images. Even an
approximate solution is difficult to simulate since the number
of possible parameter combinations is infinite. Nonetheless, fi-
nite image data synthesized by a GRF can still exhibit abrupt
changes in behavior that appear similar to phase transitions.
We denote temperatures where the behavior changes signifi-
cantly by Tk.

We discuss two methods for finding 7%, the first borrowed
from the physics literature, the second newly proposed here.
Both methods are implemented and illustrated below.

5.1 Specific heat to find 7,

In physics, the specific heat measures the change of energy with
respect to temperature at a given volume or pressure. In simu-
lated annealing this quantity has been approximated and found
to have a large value when the state of order of the system
was changing — as during phase transition. At a genuine crit-
ical temperature the specific heat would be infinite; however,
for images, at T the peak of the specific heat is finite. We
briefly review the formulation of specific heat for images, and
show simulations running on a first order isotropic autobino-
mial GRF, with g = 1.

5.1.1 Formulation of specific heat

The specific heat is formulated as follows. In statistical me-
chanics the average energy is

—dInZ

<E(T) > = W

The rate of change of the energy with respect to temperature
gives the size of typical fluctuations in the energy at a given T
[21],

d<E(T)> < E(T)?>—<E(T)>?
dT - kpT? '
This quantity is used in physics to approximate the specific
heat. For texture measurements we normalize by the lattice
size and omit the Boltzmann constant (kg = 1), obtaining

(< B(T)’ > — < BE(T) >?)
T2|8] ’

C(T) =

the specific heat for an GRF sample. The evaluation of the
mean of the energy at T', < F(T') >, is the sum
et (T
< E(T) > = 2ih BT,
leq

where E;(T) is the Gibbs energy at the current temperature
and iteration, and 7.4 is the number of iterations performed at
each T during annealing.

Simulation: Ising model A simulation (see Fig 7) was first
performed on the Ising model, to verify the method in a case for
which the critical temperature is known (Onsager [48]) to be T,
such that sinh(2/T.) = 1. The variables in our implementation
can be mapped to theirs, so that

7=l 0.567,
4

which is close to the peak of the specific heat found at T =
0.569. Example patterns are shown below the plot of specific
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Figure 8: Specific heat (coarsely sampled) for five different
numbers of gray levels, n. Peaks correspond to transition re-
gions.

heat. A quick glance reveals that above Ty the pattern does
not develop much, whereas below Ty separation of black and
white occurs. One physical analogy is that the system is a gas
at high temperature and a solid at low temperature.

In alternate applications, the peaked region has been found
to be the place where freezing begins and where the process
should be cooled most slowly to improve optimization [21] [51].

5.1.2 Problems: specific heat for non-binary images

The specific heat was successful in locating Ty for the binary
case n = 2. However, three basic problems were found with
using the specific heat when the image is not binary.

Problem 1: Peak depends on c. In simulations, the peak
of the specific heat depends on ¢, the annealing rate. If ¢ is not
big enough, then the pattern will change extremely rapidly at
the start of the process, causing a false peak. We determined
empirically that if ¢ > (n — 1)2 for a pattern of gray level n,
then the specific heat will behave like the binary case — low at
high temperature and peaked around T.. It would be useful if
a tighter lower bound could be placed on this value.

Problem 2: Peak too broad. The sharp peak in the bi-
nary case looses its sharpness as the number of gray levels is
increased, making the beginning of the transition region hard
to detect. Also, as can be seen in Fig. 9 the specific heat is
very noisy.

Problem 3: Too long to reach equilibrium. Higher ¢
implies a slower annealing rate and consequently, a longer time
to reach equilibrium. A typical example is the bottom curve
in Fig. 9 for an n = 8 texture. In this example after 100,000
iterations of annealing the specific heat has only been measured
down to T'= 7.1, midway in the transition region. To lower to
T = 0.5 at this rate would take on the order of ¢®® iterations —
absurd. The difficulty of doing a thorough characterization is
immense.
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Figure 9: As the specific heat begins to increase, the bandwidth
of the A matrix drops. This simulation is with n = 8 and
ieq = 100.

To characterize behavior relative to temperature, it was nec-
essary to find an alternative to the slow annealing. To do so, we
sampled the temperature scale more coarsely, measuring spe-
cific heat at constant 7' for several values shown in Fig. 8. The
values are normalized by (n—1)* and plotted on a log-log scale
for closer comparison among different cases of n. Averages of
the specific heat over 50,000 iterations and multiple seed values
contribute to the final value shown at each point. (This is an
excessive number of iterations for most cases, but was an effort
to insure equilibrium measures.) The specific heats are shown
in Fig. 8 normalized by (n —1)* and plotted on a log-log scale
for closer comparison.

For all n, the specific heat is minimum at high temperature.
For n = 2,4 log,, C(T') is not shown because the energy vari-
ance is zero. For n < 32 the increase in C(T) is linear from the
minimum at the right to the first peak moving left, a case of
“self-similarity” as found in fractal processes. On the far left
C(T) drops, except for n = 16 and n = 32. These two extreme
points probably do not correspond to equilibrium conditions.

The results indicate that the specific heat method for find-
ing Ty works fine for n = 2 but not for n > 2 since the
peaks broaden with increasing n. The results also indicate that
adding more gray levels raises Ty; this was recently verified by
Flfadel [41] using a correlation approximation method in which
the raise is by the factor % The changing of the critical
temperature by adding something to a solution is not new; a
familiar example is the addition of salt to lower the freezing
point of ice on slippery Winter streets.

In the next section we illustrate a different reason why the
peak broadens with the number of gray levels — the presence
of a new transition for each new gray level, and correspond-
ingly new regions of distinct pattern behavior. The specific
heat method fails to detect these separate transitions, but we
introduce a new method which can detect them.
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Figure 10: Patterns and their A matrices, undergoing bandwidth transitions. At the top the pattern has bandwidth four with
m(0,5) = 0; hence no black and white pixels occur in the same neighborhood. The bottom image has minimum bandwidth for a
six gray level image; hence neighboring pixels will not differ by more than one gray level.
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5.2 Bandwidth transitions to find 7,

Many have studied critical phenomena for the Ising model [52],
such as Pickard’s study [53] using correlation. Tt has been
shown [54] that co-occurrences give more discriminatory infor-
mation than correlation for comparing image textures. The A
matrix is built out of co-occurrences, so it can provide several
second-order features in addition to correlation. These features
do not appear to have been previously examined for critical
phenomenon studies. In [33] four features of the normalized
A matrix were studied during pattern formation: correlation,
entropy, trace, and bandwidth. Of these, the bandwidth was
found to be most useful for detecting temperatures that cor-
respond to significant changes in autobinomial patterns when
n > 2. Experiments below are for the same GRF parameters
as in the previous section, to facilitate comparison between
the specific heat method and the new bandwidth transition
method.

Definition 4 The bandwidth of a symmetric n X n matriz is
the number of consecutive super-diagonals that have a non-zero
entry. For a bandwidth of k, all elements (i,j) with |1 — j| > k
must be zero.

When n = 2 the bandwidth cannot be decreased, for if
m(0,1) = 0 then the two gray levels in the image would never
be neighbors, and hence could not lie in the same image*. We
found that for n > 2 the bandwidth changes throughout the
regions where the specific heat was high. This suggests that
the temperatures at the bandwidth discontinuities might also
be “critical temperatures” ®. The top curve in Fig. 9 shows the
first three bandwidth transitions for the n = 8 example.

5.2.1

What do bandwidth drops correspond to in the visual pat-
tern? Consider an example with six gray levels shown in
Fig. 10. From top to bottom, the patterns undergo four drops
in bandwidth. Each drop corresponds to a physical difference
in the image, where pixels of one gray level cease to “mix”
with pixels of another gray level. If each gray level is thought
of as a different chemical substance, then at high temperature
(random image, full bandwidth A ) all the substances are “in
solution”. As the temperature is lowered, one by one the sub-
stances “precipitate” out of the solution.

If the image could physically break into separate images, at
each precipitation point a different gray level would leave the
image and form a new image of only that gray level. (An image
with only one color minimizes the Gibbs energy.) The final
minimum energy configuration would be n unicolor images.

For a texture of n gray levels, our empirical results indicate
that there are » — 1 bandwidth drops, and thus n regions of
temperature where a pattern can behave differently. These
results allow use of temperature as a “control knob” for texture
design, in much the same way as it is used chemically as a
control for solubility.

Fig. 10 shows a first-order isotropic autobinomial GRF with
B = 1. For isotropic fields with negative bonding parame-
ters, the bandwidth decreases in the same way, but relative to
the anti-diagonal. The theory for why the bandwidth becomes

Precipitation in pattern formation

Tt is possible to define a non-connected neighborhood and
then obtain a diagonal A | but we adhere in this paper to the
commonly used neighborhoods for GRF’s. Hence, the mini-
mum bandwidth is 2.

®To avoid new terminology, we will go ahead and use
the terms “critical temperature” and “phase transition” even
though, to be precise, they only apply to a finite lattice.
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Figure 11: The bandwidths descend from n at high tempera-
ture to 1 at low temperature.

tridiagonal or anti-tridiagonal at minimum energy has been
shown earlier [43]. Here the focus is on use of temperature to
index into the pattern formation at non-minimum energy.

Relation to vector quantization The precipitation pro-
cess also seems to be closely related in behavior to that de-
scribed by Rose et al. [55] where the temperature is inversely
related to the Lagrange multiplier in an optimization prob-
lem designed to find a vector quantizer. In that problem, as
the temperature is lowered, the system passes through phase
transitions which correspond to splitting of clusters. Here, the
cluster-slitting is analogous to precipitation of the gray levels.

5.2.2 Empirical characterization: transition regions

We can see the patterning effects that correspond to different
A bandwidth. How does bandwidth change as a function of
temperature? We can answer this empirically with the results
shown in Fig. 11 for n = 2, 4, 8, 16, 32. Each point was
found by synthesizing at constant temperature and constant
gray level for ¢+ = 50,000 iterations, more than necessary for
most cases. Notice that cases n = 2,4,8 reach the minimum
possible bandwidth, 1. Cases n = 16 and n = 32 have not yet
attained this bound.

The individual regions are not sufficiently resolved in Fig. 11.
Finer resolution can be obtained by combining temperature
sampling and annealing. Results using log annealing with ¢ =
(n — 1)2, iy = 100, for 50,000 iterations and 64 x 64 samples
are shown in Fig. 12. All the bandwidths are normalized by
their maximum, n — 1 for comparison on the same plot.

Consider Fig. 12 for n = 32 gray levels. The unnormalized
bandwidth drops from 31 to 20 over the temperature range
2.2 < log 10(T) < 3.2 in 11 visible levels. The downward trend
is clear, although the bandwidth fluctuates along the way. As
more time (relative to n) is spent at each temperature, sharper
resolution is obtained. For n = 16 the 5 drops from bandwidth
15 down to 10 are sharper, and so forth.
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Figure 12: Bandwidths of aura matrices changing with tem-
perature.

5.2.3 Specific heat vs. features of A

The two methods have their advantages and disadvantages.
The specific heat method can be applied to any model. The
bandwidth method is based upon some known results with the
autobinomial model, although slightly different bandwidth re-
sults can be found for other models [43]. We mentioned that
one problem with the method of specific heat for determining
T, is that the peaks of C(T) change with the annealing rate,
¢. Similarly with the bandwidth method, it is important to
choose ¢ sufficiently large.

The bandwidth method has the advantage over the specific
heat in that it associates distinct regions of behavior with dis-
tinct temperature regions. Thus it helps answer one of Dubes
and Jain’s questions, finding regions of temperature which put
the process into transition. When the model is isotropic, these
regions correspond directly to the parameter regions which
cause transitions. The regions also correspond to perceptu-
ally distinct kinds of patterns — described as a sort of digital
“precipitation.”

5.3 Applications

Looking directly at aura measures (elements of A ) instead of
specific heat can also be used to characterize segmentation re-
gion sizes which occur at different temperatures. The diagonal
terms of A give the amount of “mixing” of a color with itself;
the off-diagonal terms give an approximation to the boundary
length between regions. If the expected region size, or aver-
age edge boundary length between regions is known, then the
known values can be compared to the aura measures during
synthesis. For example, the traces of the A matrices for the
Potts model examples of Fig. 1 monotonically increase from left
to right with ¢, except for a sharp dip at ¢ = 50. Hence, run-
ning the GRF while monitoring just the trace of the A matrix
can find the desired size regions.
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5.3.1

Convergence criteria have been largely ad hoc in the image
processing literature, and the question of equilibrium has been
mostly ignored. Part of the reason for this stems from the lack
of clear definitions of convergence and equilibrium, and part
from a lack of understanding of temperature. If synthesizing a
pattern in image coding or image reconstruction, the practical
question is “when do you stop the iterations?”

For texture synthesis it is intuitively satisfying to stop the
iterations and declare “convergence” when the pattern has
“stopped changing.” But this is a problematic definition for
reasons involving both perception and measurement. In prac-
tice, “convergence” is usually defined as the meeting of some
desired mathematical optimality criterion, the arrival at a
global minima.

A state of “equilibrium” is similarly hard to define and to
confirm. When annealing is done, the synthesis algorithm
should be iterated 1.4 times at the current temperature so that
it will approximate an “equilibrium” sample of the Gibbs dis-
tribution at that temperature. In thermodynamics, a system
is in equilibrium if no further changes occur in it when it is iso-
lated [56]. At this point all its properties are homogeneous —
there is no turbulence or pressure gradient, no diffusion, no re-
action, no temperature gradient. The presence of any of these
is the study of non-equilibrium states, often called “irreversible
thermodynamics.” Although non-equilibrium states are a rich
source of texture patterns, it is difficult to characterize them
with the current understanding of the GRF. In practice, we
look to see when the energy stops changing, and declare this
to be equilibrium.

Detecting equilibrium by measuring changes from iteration
to iteration is tricky. In practice, the changes can be at such a
slow scale, that even though they are proceeding relentlessly,
the pattern will appear to have reached equilibrium. Fig. 3
shows such slow changes along the vertical axis — with rate of
change more visible at higher n.

Since at an energy minima the energy stops changing, con-
vergence to a minima implies equilibrium. Equilibrium can also
imply convergence to the global minima if it occurs at T' = 0.
Also, it is a common trap to forget that even when the GRF
is in equilibrium it will be constantly changing until it reaches
its 7' = 0 equilibrium state. At T # 0, equilibrium does not
imply convergence.

Convergence and equilibrium

Convergence criteria in the literature The texture stud-
ies in the literature have stopped the synthesis process after
ten to twenty iterations claiming “convergence” has occurred.
These pioneering studies [31], [29], [30], defined convergence as
either of the two following criteria being met:

e The number of pixels swapping in the Metropolis algo-
rithm is sufficiently small;

o The estimated parameters of the synthetic texture are
close to the desired parameters.

These definitions of “convergence” are not the same as the one
described above. We now know that the amount of change in
a pattern, and hence the percent of pixels swapping, depends
on temperature and gray level. Hence, the first criteria is af-
fected by temperature. Textures that are cooler have a smaller
number of pixels swapping, and images with more gray levels
(as with a lower temperature) have fewer pixels swapping at
each iteration. Also, if a texture gets “stuck” in a local mini-
mum, the number of pixels swapping will satisfy the first crite-
rion even though the GRF has not converged to its maximum
probability configuration.



The second criterion suffers from the problem that the bond-
ing parameters do not uniquely correspond to a given texture
sample. We illustrated this in Section 3, and showed in (12)
that each parameter 3 controls the rate of mixing or separa-
tion in a particular direction.

For the autobinomial model, where the ground state config-
uration is known in terms of the A matrix, the bandwidth of
the A matrix can be measured to monitor convergence. Us-
ing the results above, one can locate the temperature where
the desired bandwidth lies, and speed up the synthesis process
by iterating to equilibrium at that temperature. Furthermore,
using connections recently established [42] between A matrix
components and mathematical morphology, one can implement
a computationally efficient algorithm for measuring the band-

width.

5.3.2 Non-minimum energy texture synthesis

We have shown that qualitatively different textures corre-
spond to temperatures above and below the temperature at
the specific heat peak. Patterns which are far left of the peak
correspond to minimum energy configurations. However, these
patterns are not of interest in all applications; one may wish in-
stead to synthesize non-minimum energy patterns. The results
above provide tools to help control this synthesis.

For texture modeling, the above results bound the regions
where the texture undergoes its abrupt bandwidth changes,
and corresponding abrupt pattern changes. To synthesize a
desired autobinomial pattern, one can measure its bandwidth
structure and index into its most likely temperature region.
Knowing the desired temperature range saves time by avoiding
slow annealing in all the other regions. For the isotropic GRF,
the temperature region dictates the valid parameter region.
Hence, noting the locations of these “phases” is important be-
fore performing parameter estimation, helping avoid problems
such as in Section 4.2.1.

Finding the critical temperatures for a given GRF is impor-
tant for locating where long range structure can appear, i.e.,
below the critical point. In MAP applications, one typically
wants to stay above this point, so that shortcomings of the
prior are not introduced. Although the results reported here
are for the case of zero or constant external field, the tools pre-
sented here are quite general, and can be used to investigate a
wide variety of related GRF problems.

Periodic patterns with temperature variations Al-
though the focus of this paper is on temperature, and not on
texture synthesis or other applications of GRF’s, a few syn-
thesis examples do help illustrate the role of temperature. For
example, suppose one wanted to synthesize a periodic texture.
The obvious way would be to tesselate the plane with the tex-
ture primitives. In practice this gives a texture that looks too
perfect to be natural. Nonlinear warping can help modify the
periodicity, but it is a costly alternative and does not mitigate
the artificial boundaries imposed by the tesselation.

Using temperature with the GRF gives an elegant solution
to both these problems. Since the GRF is formulated on a
periodic lattice there are no artificial boundaries induced by
tesselating with Gibbs samples. With annealing or other tem-
perature scaling, the samples can be taken at slightly different
temperatures, or sometimes even at the same temperature, so
that they are not perfect replicas of each other. Note that
sampling at different temperatures can give a greater variety
of effects than just taking different stochastic samples of the
same state.

Fig. 13 shows two textures formed by replicating Gibbs sam-

ples with annealing and temperature scaling. The effect is more
natural than perfect replication of a texture primitive. In addi-
tion the texture patterning can be controlled to duplicate many
interesting effects. For instance, by introducing a temperature
gradient from top to bottom (as was done in the right-hand
image of Fig. 13) one can produce a perspective type of scal-
ing. In other words, one can vary scale smoothly, with the
“temperature control knob”.

Note that although the examples in Fig. 13 are synthesized
with replication, it is possible to have the random field produce
the periodicity by partitioning it into independent regions prior
to running the Monte Carlo synthesis. Each region is then its
own “closed” system synthesizing its own random field. One
could also construct hierarchies of such closed systems, building
up increasingly complex textures.

6 Conclusions

The effect of temperature, T, in the GRF has been character-
ized and applied to problems in image and texture modeling.
We have shown that:

1. There exists a transition region and outer plateau regions
in the autobinomial energy as a function of temperature,
T. In the transition region, 7' can be used to smoothly
control changes in properties such as pattern scale.

2. For GRF models such as the Potts and autobinomial, tem-
perature scaling varies the size of the regions most likely to
occur in equilibrium. This has applications in image seg-
mentation and region modeling. The Gibbs energy and/or
the proposed A matrix features can be found as a function
of temperature, and used to control these tradeoffs.

3. Above or below the transition region, the parameters can
be changed by orders of magnitude and still correspond
to visually similar patterns. This has applications to pa-
rameter estimation.

4. The GRF energy is not unique; hence, the GRF can not
be applied to recognition, classification, or coding with
the expectation that the model parameters correspond
uniquely to the appearance of the synthesized pattern.

5. Within the transition region, the model parameters act
as rates which affect the patterning. Certain choices of
temperature and model parameters can speed synthesis
when the desired pattern properties are known.

6. For anisotropic patterns, pattern formation in the direc-
tion of the faster rate can “steal” from the direction of the
slower rate, causing quicker formation than would occur
in an isotropic pattern forming at either of the constituent
rates.

7. The method of specific heat is an effective tool for char-
acterizing critical temperature in the binary model, but
gives too broad of peaks for the general gray-level cases.

8. A new tool was demonstrated for finding temperatures
of phase transition by looking at the bandwidth of the A
matrix. This finds n—1 critical temperatures for a texture
with n gray levels.

9. The regions between critical temperatures correspond to
non-minimum energy patterns with a certain amount of
“mixing” between gray levels. Temperature can be ad-
justed to give patterning with a desired mixing behavior.

10. Temperature can be used as a “control knob” to give va-
riety to patterns for more natural replication, scaling, and
perspective effects.
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Figure 13: The use of temperature to create a “natural-looking”, i.e., not perfectly periodic texture. Both patterns were made
by replicating a 4 x 4 array of 64 x 64 samples of Gibbs distributions.
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