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Abstract

The problem of measuring perceptual similarity
between images is addressed using a new image
model based on the Wold decomposition. The
model permits separate treatment of image com-
ponents which correspond approximately to peri-
odicity, directionality, and randomness. We com-
pare its performance in an image search applica-
tion to two other methods — one based on shift-
invariant principle components and one based on
a multiscale simultaneous auto-regressive model.
When textured images are ordered by distances
between their Wold components, the results ap-
pear to be much closer to the human percep-
tion of similarity. We discuss how decoupling
the three components can increase flexibility for
measuring image similarity and can save compu-
tation, permitting the “quickest” matches when
the features are the most perceptually “salient.”

1 Introduction

Measuring similarity in images is an important problem in
image processing, particularly in new applications such as
image search and retrieval. Although our look at the prob-
lem is in a relatively new context, it is not a new problem,
as the need for measures of perceptual similarity has been
present in the image coding community for decades — i.e.,
the need to find a more perceptual measure than signal-to-
noise ratios. There has also been emphasis in extracting
textural features which correspond to human perception of
similarity, notably the work of Tamura et. al. [1], which
has focused on discrimination, without the goal of being
able to synthesize the data. Here, the general problem is
one of identifying a model capable of synthesis, and having
a “perceptual” parameter space so that distances between
images in the parameter space are close when humans per-
ceive the images to be similar, and are not close otherwise.
The model for the database search application is successful
if ordered distances between its parameters correspond to
a human ordering of the images by perceptual similarity.
In pursuit of a more perceptual similarity metric, this
work investigates a relatively new image model based on
the Wold decomposition for regular stationary stochastic
processes [2]. If an image is assumed to be a homogeneous
2-D discrete random field, then the 2-D Wold-like decom-

position is a superposition of three mutually orthogonal
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components: a purely-indeterministic field, a generalized-
evanescent field and a harmonic field [3]. The background
theory as well as some applications of this 2-D Wold-like
decomposition to spectral estimation and modeling of ho-
mogeneous textures can be found in [3] and [4].

It is necessary to note that the Wold-based theory and
applications presented to date in the literature assume the
random field is stationary; this important assumption is
usually violated in natural images. Inhomogeneities may
even arise in homogeneous data simply by viewing it with
perspective or affine transformations, or by viewing it on
the surface of a 3D non-planar object. The work of Francos
et. al. did not attempt to apply this model to inhomo-
geneous data, nor is their implementation designed to be
applied to such data [5]. This paper addresses the problem
of adapting the model for use in natural texture data.

In addition to its significance in random field theory, we
have found that the Wold-based model has an interesting
relationship to independent psychophysical findings of per-
ceptual similarity. Noteworthy is a recent study by Rao
and Lohse where humans grouped patterns according to
perceived similarity [6]. The three orthogonal dimensions
identified were repetitiveness, directionality, and complex-
ity. These dimensions might be considered the perceptual
equivalents of the harmonic, evanescent, and indeterminis-
tic components in the Wold-based model.

2 New Wold implementation

The new model implementation consists of three stages.
The first stage determines if there is strong periodic struc-
ture. Although highly structured textures may contain all
three Wold components, their harmonic components are
usually prominent and provide good features for compar-
ison. Not only is this component more salient than the
random component (agreeing with Rao and Lohse’s order-
ing of the three texture dimensions) but it is the quickest
to compute.

In the first stage, the autocorrelation function of the im-
age is computed by the inverse Fourier transform of the
image power spectrum density function. For periodic pat-
terns, the energy concentrated regions of their autocorre-
lation functions are also periodic and spread over the dis-
placement plane while the random-looking textures have
most of their energy in a small displacement region. Ex-
amples are shown in Figure 1, where D3 was chosen as
highly structured. By computing the ratio between the
small displacement energy and the total energy for a train-
ing set of images, a decision boundary is established and
subsequently applied as a threshold. The threshold found
and used in this work is 18%.



The second stage of processing occurs for periodic im-
ages on the peaks of their Fourier transform magnitudes.
An algorithm is implemented first to estimate the location
of large local maxima and then to extract the fundamental
frequencies of all harmonic peaks. The direction of the har-
monic frequency which is closest to the origin is regarded as
the main orientation angle of the texture. Picking the fre-
quency with the largest amount of energy was found not to
be robust since the energy is a result of many factors such
as lighting and contrast. Instead, the structural arrange-
ment of the peaks appears to be important for perceptual
comparisons. Rotations and other transformations may be
applied to the peaks to align them before comparison. Ap-
plying the transformations to the peaks can be a lot less
computational than applying them to the entire image.

Finally, the comparison of periodic texture images is car-
ried out by matching their harmonic peaks. Let m.(s) and
my(r) be the feature sets of the class image and a test image
respectively, where s = (s1,$2),7 = (r1,72) € 7. Region
T is half of the discrete frequency plane. By the “class
image”, we mean the image selected by a user as a repre-
sentation of what kind of “class” the system should look
for, and by a “test image” we mean one of the database
images whose similarity to the class image is to be mea-
sured. The similarity measure between these two images is

defined as
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where wy,(+) is a weighting function for the frequency de-
viation of two peaks, implemented here as a 5 x 5 mask
with unity at the center and decaying values as a function
of distance from the center. The ratio term measures the
relative value of the peaks since

my(r)

me(s) +me(r)

me(s) .
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reaches its maximum when m.(s) = m(r). For each peak
in the class feature set, this measure looks for peaks in the
test feature set within a neighborhood in the frequency
plane. Peak matching within a small neighborhood is nec-
essary due to the image inhomogeneities and the frequency
sampling effects of the DFT. Note that the larger the value
M4 18, the more similar the two images are.

The third stage of processing is applied when an image
is not highly structural. This is the most computationally
costly part of the procedure, and can be omitted to result
in substantial savings if the previous stage indicates that
the harmonic information is sufficient for a given task. In
this stage we approximate the indeterministic component
and the evanescent “directional” component, which can be
thought of as corresponding to the two less salient dimen-
sions identified in the study of Rao and Lohse.

The most general model for the purely-indeterministic
component is the moving average (MA) model. However,
under certain assumptions, an auto-regressive (AR) repre-
sentation of this part of the random field exists [4]. Various
implementations of auto-regressive models have been used
successfully for segmenting 4-8 textures in an image [7]. In
this work we use the simultaneous auto-regressive (SAR)
model of Mao and Jain [7] for the purely-indeterministic
component, as well as by itself for comparison to the Wold
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Figure 1: From the top row to the bottom: the original
Brodatz textures; their autocorrelation functions; and their
regions used for computing the small displacement energy.
(a) D3: Reptile skin. The energy concentrated regions are
spread over the entire displacement plane. (b) D69: Wood
grain. The small displacement region contains more energy.
(c) D4: Beach sand. Most of the energy is concentrated in
the small displacement region.

model in the image search application. This implementa-
tion cascades second-order AR parameters estimated over
three different scales in the image, for a total of 15 param-
eters per texture.

It is important to note that theoretically in the Wold
model, the AR parameters are estimated after removal of
the harmonic component. The result is the application of
the AR model to a more “continuous” spectrum. (In prac-
tice of course, the implementation is discrete.) This stands
in contrast to the typical application of an AR model di-
rectly to texture, where the low-order model may be in-
sufficient to appropriately capture higher-order behavior
contributed by spectral discontinuities.

The evanescent component can be estimated by fitting a
line in the 2D spectral domain. This is similar to the com-
puter vision problem of estimating global dominant orien-
tations in an image. Here, we approximate the evanescent
information with an estimate of the texture’s dominant ori-
entations. These are found by using a basis set of oriented
bandpass filters and a decision process based on threshold-
ing orientation histograms [8]. To conclude the third stage
of processing, only the textures which possess the same
number of main orientations are compared by examining
the Mahalanobis distances between their SAR parameters.

3 Similarity experiments

In this section we illustrate the performance of the new
Wold model on the Brodatz database, which consists of
1008 texture patches cropped from all 112 images in the
Brodatz Album [9]. Each Brodatz texture provides nine
non-overlapping 8-bit 128 x 128 subimages. This collection
of natural textures exhibits large variety, including many
inhomogeneous patterns; therefore, it provides a challenge



to traditionally homogeneous image models.

The image search environment used here, as well as the
performance of a Karhunen-Loéve (principal components)
based model applied to the database search problem, were
previously discussed in [10]. Here, the performance of the
Wold-based model is illustrated on two examples and com-
pared to the performance of both the shift-invariant prin-
cipal components method of [10] (based on a pooled co-
variance of 100 training images, and a subspace of the 20
principal components with largest eigenvalues) and the 15
parameter multiscale SAR model of [7]. A benchmark com-
parison of these two models was recently conducted [11],
where the SAR model outperformed the principal compo-
nents using traditional pattern recognition criteria. How-
ever, in “playing with the system” we found that the prin-
cipal components were more useful than the SAR for nawvi-
gating through the database. An example which illustrates
this can be seen in Figure 2, where we also show new results
of experiments with the Wold-based model.

Figure 2 illustrates the three different methods applied
to two different images selected by the user. From top to
bottom the methods are the (a) principal components, (b)
multiscale SAR, and (c) new Wold-based model. Six dis-
plays are shown. The image selected by the user is shown
in the upper left corner of each of the displays, and the
“next 26 closest” images found by the computer appear in
raster-scan order after the selected one.

There are two key performance criteria we consider. The
first is quantitative — there are nine samples from the same
original Brodatz image in the database, so “perfect” pat-
tern recognition performance implies that all nine patterns
are found in the first row. The second criterion is more
qualitative — of the other kinds of images found near the
selected one, how many of them “look similar” to it? In
other words, how many of them might be selected by the
user while trying to “navigate” to the image in the upper
left corner?

In the left column of Figure 2 (a) the principal compo-
nents fill the screen with perceptually similar patterns, but
do not find all nine brick images as closest. In contrast, the
SAR finds all nine brick images, but then fills the screen
with images of water which are not useful in navigating to-
ward the bricks. In (¢) the new Wold model succeeds not
only in finding all nine brick images, but also in filling the
screen with perceptually similar images. The Wold order-
ing of the images can be said to be more perceptual than
that of the other two methods.

The second column shows a second case where both the
principal components and SAR models fail, while the Wold
model perfectly finds all nine most similar textures. In
this case, only the structural “most salient” component is
needed, so the computation of the Wold parameters is less
than that of the SAR. With pre-computation of features,
all three models can be used to search the database in real-
time on a DEC 5000 workstation.

4 Summary

We present a Wold-based model which decomposes tex-
tures into three mutually orthogonal components; corre-
sponding approximately to periodicity, directionality, and
randomness. The separate treatment by the Wold decom-
position of continuous and discontinuous spectral compo-

nents avoids the breakdowns usually associated with fitting
auto-regressive models to multidimensional data with dis-
continuous spectral components. A comparison of the new
Wold model to auto-regressive and principal components
models indicates that the Wold-based parameters may be
more relevant for measuring image similarity in a percep-
tual sense.
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(c) New model based on Wold decomposition

Figure 2: Comparison of ordering textures from the entire Brodatz database, using three methods: (a) shift-invariant
principal components (b) multiscale SAR, and (c) new Wold model. The user selected bricks for the displays shown on
the left, and oriental straw cloth for the displays on the right. In each display the images are raster-scan ordered by their
similarities to the image in the upper left.



