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Abstract

We discuss the problem of modeling structured tex-
tures and 1mage data with random field models. Ran-
dom field models have recently been applied to a vari-
ety of problems such as image enhancement, segmen-
tation, and coding. The models have been shown to
successfully reproduce a variety of stochastic patterns,
but have not been successful for capturing structure in
patterns. Two possible solutions to the structured pat-
tern problem are examined wn this paper. The first
solution s based on the structure present in the initial
state of the random process, and the second is based on
a relationship between “internal” random field inter-
actions and coupling to a set of “external” constraints.

1 Introduction

Structure from randomness is a tantalizing process.
The ability of a random field model to organize itself
into any pattern, structured or random, would be ben-
eficial to build into a practical model. Such a model
could theoretically represent all kinds of image data,
assisting a huge variety of applications in image under-
standing, coding, reconstruction, and enhancement.

To identify a good image model it helps to define
the criteria for “good”. Two of the most common cri-
teria include: 1. the ability to faithfully reconstruct
the data, and 2. parameter efficiency, i.e., the size of
the model parameters compared to the size of the data.
Note that in many applications it is not necessary that
the model converge pointwise to the data to satisfy the
first criterion. “Visual similarity” is often a sufficient
criterion. Also, within the second criterion it is impor-
tant to consider not just the number of parameters,
but also the accuracy (bits of precision) to which they
must be determined. Other criteria for a good model
may include: 3. low computational complexity and 4.
“semantic” efficiency. A semantically efficient model
is one where pattern parameters take on attributes
such as “orientation,” “periodicity,” or “randomness,”

making 1t easy for the layperson to interact with the
signal through its parameters. Most physically-based
models can be considered semantic, e.g., the tempera-
ture parameter to control regular structure formation
in crystals.

2 Structured pattern modeling

To date, the most popular image “models” are or-
thogonal sets of sinusoidal basis functions, e.g., the
discrete cosine transform (DCT), perhaps combined
with a subband decomposition. These linear models
satisfy the first three criteria nicely in smooth regions
of an image. The fourth criterion is rarely satisfied,
however. The second criteria also tends to break down
where there is texture or inhomogeneous structure. In
these regions, the number of parameters may grow sig-
nificantly.

For modeling textured image data more efficiently,
a variety of autoregressive or linear predictive models
have been considered. However, the basic assumption
of the autoregressive model, i.e., a continuous spectral
density, 1s almost always violated when structure ap-
pears in the data, introducing singularities in the pe-
riodogram. The autoregressive model is theoretically
inappropriate for textures which are nonhomogeneous
or nonstochastic, 1.e., where the spectral density does
not exist (strictly speaking) due to non-stationarity or
due to the presence of singular components.

By contrast, the Markov random field model can
theoretically synthesize any pattern, structured or
stochastic, with nonzero probability. Cross and Jain
[1] showed that this model is capable of synthesizing
a variety of stochastic-looking textures. However, in
studies applying this model to structured patterns,
the resulting synthesized patterns were not visually
similar to the originals [1, 2]. The structural compo-
nents were not reconstructed. The use of only pair-
wise statistics in the model is one limitation; better
results are to be expected with higher order statis-
tics [3]. However, it is generally impractical to get an
accurate estimate of the statistics as their order is in-



creased. In general, 1t is hard to find a model which
represent both structure and randomness efficiently.

A brief discussion on the definition of “structure” is
apropos before proceeding. In 1D, it is easy to imagine
three cases as illustrated by the following character
strings:

sh ysSTehtignaSio m
CellCellCellCelllCell
This Says Something

The first string represents a sample of a stochastic
process. It has relatively low information content and
is analogous in 2D to a random texture pattern. The
second string also has low information content; it is
specified by a primitive element, a replication rule,
and perhaps a noisy perturbation. Its structure is the
harmonic components of a deterministic random field.
In 2D its analogue is a periodic texture. Combinations
of these first two strings, in higher dimensions, e.g.,
periodic in one direction and random in the other like
a plowed field, periodic in both like a checkerboard,
or random in both like a pile of leaves, span the basic
categories typically used for texture classification [4].

The third string 1s quite different from the first two
strings. Although an anagram of the first string, the
third string has a specific structure. Consequently, it
has the most information content of the three cases.
Its 2D analogue is typically an object with carefully
arranged components, e.g. a building or a chair.

These three cases and everything in between them
may occur in images. The first two are generally con-
sidered “textures”, characterized by collective proper-
ties, and hence full of redundancy. The third tends to
be classified with the “objects” or items where speci-
ficity of arrangement is important. The latter two can
both be considered “structured”. It is both of these
kinds of structure that are addressed in this paper.

3 Gibbs random fields

The random field model considered here is the dis-
crete Gibbs random field (GRF). There exists a now
well-known equivalence between certain Gibbs and
Markov models. We focus on the Gibbs which is tech-
nically more accurate when the histogram of the image
is constrained.

The following assumptions are made in the defi-
nition of the GRF. Let an image be represented by
a finite rectangular M x N lattice § with a neigh-
borhood structure N = {N;,s € 8} where N, C 8

is the set of sites which are neighbors of the site

2

s € 8. Every site has a nonnegative graylevel value,
z; € A = {0,1,...,n — 1}. Let x be the vector
(x5,1 < s < |8]) of site graylevel values and Q be
the set of all configurations taken by x. A neighbor-
hood structure is symmetricif Vs, r € S, s € N, if and
only if r € N.

For the finite periodic lattice & with a symmetric
neighborhood structure one can define a Gibbs energy.
There are many ways to define the energy; the one
used in this paper is the autobinomial energy origi-
nally defined by Besag [5], and used for texture by
Cross and Jain [1] and Garand and Weinman [6]. The

autobinomial energy is

Ex)=-— Z (asxs + Z ﬁsrxsxr) , (1)

SES reN;

where the model parameters are «;, the possibly spa-
tial varying exzternal field, and [, , the possibly spatial
varying bonding parameters for the internal field. In
this paper the internal field is always homogeneous so
that 35, = B.. The homogeneous internal field may
also be isotropic, in which case 8, = 3. A joint prob-
ability distribution is assigned to the Gibbs energy
yielding the Gibbs random field,

Pix) = gexp (~ 3509 ) 2)

where Z is a positive normalizing constant known in
the physics literature as a partition function and T is
the “temperature” of the field. A GRF image pattern
i1s a sample from this probability distribution.

The Gibbs distribution is easily incorporated into a
Bayesian framework, and frequently used as an image
model in the context of maximum a posteriori (MAP)
estimation [7]. In this context, one may be interested
in finding samples from this probability distribution
which maximize the probability P(x), consequently
minimizing the Gibbs energy.

To minimize the energy, Monte Carlo stochastic re-
laxation algorithms such as the Metropolis exchange
[1, 6] are often applied. These algorithms are iterative,
making typically small changes at each iteration in an
effort to minimize the global energy function. An it-
eration of the Metropolis exchange algorithm swaps
pairs of elements in the current state (image) accord-
ing to a probabilistic rule. Unlike gradient descent
methods, stochastic relaxation permits small increases
in the energy at any given iteration. In the Metropolis
exchange, since the new state 1s formed by swapping
elements in the previous state, the histogram of the
initial image is also preserved. Samples taken after
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Figure 1: All these images are 128 x 128 with 120 graylevels. Tmage (a) is the original fabric texture. Tmage (b)
is a reconstruction of (a) keeping the largest 16 components from its DCT and rescaling linearly to the original
dynamic range. Tmages (c) and (d) were synthesized using a GRF with internal field parameters estimated from
(a), and initial state image of (b). Tmage (¢) ran for 50 iterations, and image (d) for 225 iterations, both at

temperature T' = 17.

only a small number of iterations usually correspond
to patterns from non-minimum energy configurations
of the distribution.

4 Structure from initial state

The first method we consider for incorporating
structure into the random field i1s based on putting
structure into the initial state of the model. Garand
and Weinman [6] showed examples where this ap-
proach worked well for images of marine stratocumu-
lus clouds.

Let F'(y) be the discrete Fourier transform (DFT)
of the image to be modeled, y. Garand and Weinman
found that the N, = 6 largest components of |F(y)|?
corresponded to the frequencies which provided the
predominant structure in their cloud images. Inverse
transforming the magnitude and phase components at
these six locations and scaling to approximate the orig-
inal image histogram resulted in a new image, y. This
image was then used as the initial state for the GRF
texture synthesis.

From a signal processing standpoint, this algorithm
corresponds to abrupt filtering which one might expect
to cause ringing. It also provides no framework to es-
timate the (data-dependent) choice of N,, the number
of coefficients to keep, nor does it separate out this
component before estimating the GRF parameters.
In practice, however, their results were visually quite

similar to the original textured cloud images. Also,
the method was efficient with respect to the number
of parameters, and somewhat semantic for identifying
properties of clouds.

We show an example of using an algorithm simi-
lar to theirs in Figure 1. The primary difference is
we use the DCT instead of the DFT, avoiding the
need for a prefiltering window. One can see the effect
of the GRF on the initial image is one of slow ran-
dom modification by the parameters, 511 = (12 = .52,
O21 = P2g = —.27, corresponding to the west, north,
northwest, and northeast neighbors respectively.

There is a basic theoretical problem [7] with this
method of putting structure in the random field. In
theory, the final state of the GRF should be indepen-
dent of the initial state. Clearly, this is not the case
here, as the structure in the initial state 1s intention-
ally preserved. Problems will arise with this method
if careful attention is not made to the temperature,
T, of the model during the Metropolis exchange. The
Metropolis exchange method swaps the graylevels at
two sites with probability

min(1, exp(_ATE)),

where AE = E(y) — E(x), x is the initial configura-
tion, and y is the configuration with the elements at
two sites swapped. Consider the probability of a swap
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Figure 2: Tmage (a) is a 256 x 256 binary image made from a photo of a brick wall. Tmage (b) is a 256 x 256
n = 16 graylevel GRF with internal field parameters 517 = 812 = 1.0 and 21 = 822 = 2.0 and no external field.
Tmage (c) is the result of using (a) as the external field and (b) as the internal field. The result in (¢) is a GRF

with structure.

when some T5 > T7:

—AF . —AF
T1 - TZ

min(1, exp(

Thus, the higher T, the higher the probability of swap-
ping. When T — oo then all pixels swap, and since
there is no restriction on their range, the pixels in
the image become completely “mixed”, as if someone
had stirred them into a random solution. Hence, the
structure in the initial image is lost depending on T'.
Furthermore, one can show that the behavior of in-
creasing 7' i1s approximately the same as the behavior
of decreasing the magnitude of the § parameters or
decreasing the number of graylevels [8]. For certain
combined ranges of these values, the effect will be that
of low temperature, which will preserve initial struc-
ture for a long time. Garand and Weinman ran the
Metropolis Exchange for approximately 12 iterations.
Over so few iterations, and over their relatively low
temperature conditions, the initial state structure is
preserved.

Thus, one practical problem with this model is the
careful monitoring required to ensure that the initial
structure is preserved. By empirical study of temper-
ature dependent “phase transition” behavior [8], one
can determine the temperature ranges (or tempera-
ture annealing schedules) that are appropriate. For
non-isotropic parameters, however, this can be a lot
of work. In general, the success of this method de-
pends on fine-tuning for a particular class of data.

5 Structure from external field

The second method for putting structure into a
GRF involves the external field term in the energy
function. Recall that the external field is specified by
the o ’s in (1). When the Metropolis exchange algo-
rithm is used, and when «; = «, i.e., the external field
1s homogeneous, then one can show that the external
field term cancels and hence has no effect [6]. This
is the case in the texture study of Cross and Jain [1],
so that their results, which did not achieve any struc-
tured patterns, can be attributed to interactions of the
internal field § parameters only.

In applications of the GRF used with MAP estima-
tion it is useful to consider a non-homogeneous exter-
nal field. Consider again the energy function of (1),
but now with a homogeneous internal field. Further-
more, let us set the nonhomogeneous external field to
the values in some reference image, y. Hence the value
of ay = ys, the graylevel value at site s in the image
y. This yields an energy of:

E(X) = — Z (ysxs + Z ﬁrxs$r) ) (3)

SES reN;

Although one can synthesize samples from any energy
range of the Gibbs distribution, the most probable
samples correspond to those with the least energy.
Consider the “attractive” case where the parameters
0O, are nonnegative. In this case, the energy is min-
imized when the products yszs and EreNs Tk, are



maximized. If we let P be a permutation matrix, then
the first product can be rewritten in the form y'Px.
For some P, i.e., some configuration of the GRF x,
this product will be maximized. If the images y and x
have the same first order statistics, then this product
will be maximized when y = Px. If not for compe-
tition from the internal field product, the synthesized
random field would align itself perfectly with the de-
sired external field.

The internal field product term, EreNs xsx, has
been shown elsewhere [9] to be maximized when the
graylevel sets in the image form configurations which
maximize their “separation”, analogous to the separa-
tion of immiscible fluids. The product z;x, is max-
imized when the same graylevels occur as neighbors.
Hence patterns which minimize the number of neigh-
bors that have a different graylevel are most likely
to form. Thus, the minimum energy internal field
will have minimal length boundaries between pairs
of graylevel sets. Moreover, a region of constant
graylevel, g, will tend to be surrounded by regions
of constant graylevel ¢ — 1 or g + 1. The second-order
statistics for such patterns can be quite restricted [9].

In Figure 2 an example is shown using an external
field to introduce structure. Here a balance is main-
tained between the external and internal fields so that
both of them contribute to the final pattern. This
method also tends to be efficient in its use of parame-
ters, but 1t is still unknown how best to estimate the
relative strengths of the two fields.

6 Summary and conclusions

This paper has discussed the problem of incorporat-
ing structure into a random field model. Two methods
were described for augmenting the ability of the auto-
binomial GRF for producing structured patterns. The
first method uses the dominant components from a
deterministic sinusoidal expansion as the initial state.
This method exploits the efficiency of a determinis-
tic basis for representing the structured part of the
signal, but will fail to preserve the structure if the
random field is allowed to run to equilibrium, even-
tually becoming independent of the initial state. The
second method is better motivated theoretically, but
it is still unknown how to best balance the parameters
so that the competition between the two fields reaches
an equilibrium at the desired pattern.

It is important to point out that although in the
second case the structure is actually synthesized by the
random swapping process, it 1s not “emerging from the
randomness.” Rather, it is encoded in a pre-designed
external field.

5

One potentially promising alternate method for in-
corporating structure is to decompose the random field
into its mutually orthogonal stochastic, deterministic,
and evanescent components using a Wold-like decom-
position as by Francos, et al. [10]. The stochastic
component is then represented with an autoregres-
sive model, and the other two components are rep-
resented by some kind of structural model. The struc-
tural model of Francos, et al. consists of sums of delta
functions. Currently, however, the Wold decomposi-
tion only works for a homogeneous random field. It
also does not provide an efficient way to represent the
non-stochastic structural components. We are contin-
uing research along these lines now.
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