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Abstract

The efficiency of the Orthogonal Least Squares (OLS) method for training approximation networks is examined
using the criterion of energy compaction. We show that the selection of basis vectors produced by the procedure
is not the most compact when the approximation is performed using a non-orthogonal basis. Hence, the algorithm
does not produce the smallest possible networks for a given approximation error. Specific examples are given using
the Gaussian Radial Basis Functions (RBF) type of approximation networks. A new procedure that finds the most
compact subset of non-orthogonal basis vectors is described and used to evaluate the performance of OLS in image
coding. The new procedure also permits a comparison of the Gaussian RBFs to the Discrete Cosine Transform
(DCT), an orthogonal basis commonly used in image coding. This comparison shows that in terms of efficiency,
the Gaussian RBFs can perform close to the DCT. Differences in perceptual distortion produced by the two coding
techniques are also discussed.
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1 Introduction

Recently, a number of feed-forward networks with one
hidden layer of processing units have been proven to
possess the ability to approximate any continuous func-
tion arbitrarily well [1], [2]. Even though these networks
differ in the type of the processing unit they use (e.g.,
sigmoids, Gaussians, etc.), they all attain any desired
accuracy by interconnecting a sufficiently large number
of nodes. However, a proof of the best approximation
property does not automatically yield a practical algo-
rithm for training the connection weights.

One such approximation scheme, the Radial Basis
Function (RBF) network, has been used as a classi-
fier [3] — [7]. The training problem for an RBF network
can be viewed as interpolation and solved by inverting a
matrix. But this approach often causes numerical prob-
lems, because the matrices involved are typically large.
This problem has led to several alternatives aimed at re-
ducing the training complexity without significant losses
in approximation accuracy [8] — [10].

This report analyzes the efficiency and applications
to image coding of one such method. The method ana-
lyzed is the Orthogonal Least Squares (OLS), proposed
by Chen et al [10]. Section 2 reviews the RBF approx-
imation problem and the OLS algorithm for solving it.
Section 3 presents the compaction criteria, which are
subsequently used in Section 4 to analyze the efficiency
of the OLS method. Examples using Gaussian RBFs are
also given in Section 4. Section 5 introduces an energy
efficient training procedure, which is used to evaluate
the performance of the OLS method in image coding.
The Gaussian RBFs are compared to the Discrete Co-
sine Transform (DCT) in terms of the energy efficiency
and the attendant visual artifacts. Finally, Section 6
summarizes the present study.

2 Background

2.1 Radial Basis Functions

A non-linear function h(Z, ¢), where & is the indepen-
dent variable and ¢ is the constant parameter, is called
a Radial Basis Function (RBF) when it depends only
on the radial distance r = ||Z — ¢]|, where &'is its “cen-
ter”. The RBF method is one of the possible solutions
to the real multivariate interpolation problem, stated as
follows [11] — [14]:

Interpolation Problem: Given N different points
{#; € R | i =1, ..., N}, where d is the num-
ber of dimensions, and N real numbers {y; € R |
i=1, ..., N}, find a function F from R? to R
satisfying the interpolation conditions:

The RBF approach consists of choosing the function
F to be an expansion of the form

=1, ..., N. (1)

N
F(&) =Y wih(||F - G]I), (2)
ji=1
where the centers of the expansion & = 2 must
be the the known date points, and {w; € R | j =
1, ..., N} are the corresponding weights.

The unknown weights can be recovered by impos-
ing the interpolation conditions. An RBF matrix H €

RN*N is constructed by evaluating h(||#; — ¢;]|) at each
z;and ¢y ¢, j=1, ..., N:

H = [hy],

hy = h(lE - Gl 3)

In other words, each column of H is a basis vector cor-
responding to a particular center. The resulting linear
system

Ho=y (4)
can be solved if H~! exists:

@ =H 'y (5)

From (5), a necessary and sufficient condition for the ex-
istence of a unique solution to the interpolation problem
is the invertibility of the matrix H. The RBF matrix
will be invertible if the column vectors of H form a basis
in RY. This condition is satisfied for a number of RBFs,
for example [12]:

h(r) = exp{—(r/a)®} (Gaussian)  (6)

h(r) = (a®+r%)7, B<1
hir) = r (linear)
h(r)y = rilogr (thin plate splines).

Figure 1 shows a realization of (2) in the form of a net-
work with one layer of hidden units. Each hidden unit
implements the same radial function, but with its own
center as a parameter. According to the interpolation
conditions, which led to (4), centers are the coordinates
of data points, and the number of centers equals the
number of data points '. Each hidden unit accepts in-
puts from all components of ¥, computes the norm, and

I Subsequent sections address the issue of reducing N to M.
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Figure 1: Schematic of an RBF network. The subscripts denote the indices of RBF centers; the superscripts denote
the components of the input vector.



produces an output in accordance with the given RBF
behavior. The outputs of all hidden units are weighted
by the coefficients & and summed to give F(Z). Since
each radial hidden unit defines a (d + 1)-dimensional
hypersurface, the RBF network interpolates by recon-
structing the data with scaled hypersurfaces. The exam-
ples in this report employ a special case of RBFs, mul-
tivariate Gaussians of constant variance, i.e., (6) with
variance o? = %, in which case the level sets of the
reconstructing hypersurfaces are the d-dimensional hy-
perspheres.

2.2 Training RBF Networks

In most applications, N is large, deeming the direct
use of (5) impractical. However, a well-known result
allows dimensionality reduction to M < N. Starting
with H € RY*N, which is a basis in RY, H is ob-
tained by selecting M = N —k, k =1, ..., N basis
vectors from H, such that H € RN*M  Then the prod-
uct (I—:TTI';[) € RMXM is an invertible matrix and thus a
basis in RM [15]. Using this result, an approximation
to (4) can be formulated and solved by the method of
Linear Least Squares Estimation (LLSE) [8]:

RNXM

Approximation Problem: Given H € and

7€ RN, related by
7= Ho + ¢, (7)

find an optimal coefficient vector W € RM such
that the error energy €' € is minimized. This can
be equivalently stated as: Find {wj € R | j =

1, ..., M} such that w; = w} solves
M
min (o = 3 wih(Ii = 1" (8)
i=1, ..., N.

In contrast with the interpolation problem, the ap-
proximation problem does not require the centers ¢; to
coincide with 47}, so one may choose any ¢; € Re. How-
ever, the centers are commonly chosen to be a subset of
data points.

The data is subsequently approximated using

37(1 :ﬂ—m (9)

or, equivalently, using

M
Fo(%) =) wih(||# - él)),
i=1

where ¢, and F,(Z) are the approximated values of the
data samples and the generalizing function, respectively.
The well-known LLSE optimal solution is in the form

of (5):
i = B, (11)

where H™ is the pseudoinverse of H:
HY = (HTH)'HT. (12)

If an RBF network with M << N centers adequately
approximates the data, then the above approach pro-
vides a computationally efficient procedure for deter-
mining the weights. However, arbitrarily selecting the
centers from data points often results in poor perfor-
mance in a sense that the networks end up with more
nodes than necessary for a desired accuracy of approxi-
mation [10].

2.3 Orthogonal Least Squares

In order to improve the performance of an RBF net-
work trained by solving the approximation problem, a
judicious selection of centers is needed. It has been re-
ported in [10] that the approximation problem, stated in
(7), lends itself to the Orthogonal Least Squares (OLS)
method, which is a recursive algorithm for selecting a
suitable subset of data points as centers. A basis vector
produced at each step of the procedure maximizes the
increment of the explained energy of the desired output.

We now review the process of center selection per-
formed by OLS using the concept of permutation matri-
ces.

Definition 2.1 A permutation of H € RYN*N s H' ¢
RNVNXN such that each column vector of H' is identical
to exactly one column vector of H. Formally,

H = HP,

where P € RV*N is a4 permutation matriz comprised of
the column vectors of the identity matriz, whose posi-
tions are arranged in one of N possibilities.

Definition 2.2 A selection matriz S € RN*M s ob-
tained by selecting

M=N-k k=1, ..., N column vectors of a partic-
ular permutation matriz

P c RNXN’

In OLS, a selection of the original RBF matrix H is
obtained and orthonormalized using the classical Gram-
Schmidt process (GS), summarized here for reference 2.

2For a detailed treatment, consult a standard linear algebra
text, such as [15], [16], etc.



Let d; be the column vectors of A = HS. The GS
process finds A = QR, where the matrix Q € RNxM
consists of orthonormal column vectors, and the right-
triangular matrix B € RM*M contains projection and
normalization coefficients computed by GS:

i—1
v = di — E i qls

=1 = 1, , N;
I
Ty = qU Q4 I = 1, ,i—1; (13)
i = |lill; M < N
. v; -
9 = —

Ty

Using the selection matrix notation, the approxima-
tion problem, stated in (7), takes the following form:

§ = HS@+¢, (14)
HS = QR, (15)
7 = ORW+E, (16)

where @ € R™ is the coefficient vector and € € RY is
the error vector. By defining

= R, (17)

oy

we obtain an orthonormal expansion of the data vector:
y=Qgf+e. (18)

Since (18) is a special case of the approximation prob-
lem, due to the orthonormality, its LLSE solution is par-
ticularly simple (and well-known):

i=Q"y, (19)
from which @ can be recovered by back substitution:
R&=4. (20)

Since QTQ = I, the M-dimensional identity matrix,
then

E
@y
[l
Q

~

oy
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a

™y

<
1
-

[l
=
S
+
T
™y

("9 +é"e. (21)
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The OLS algorithm begins with H consisting of
M = N RBF vectors h;, j=1, ..., N and produces

Q consisting of M < N orthonormal regressors 3 ¢; as
well as the selection matrix S. In fact, the key difference
between OLS and GS is the computation of the selection
matrix S. The OLS method finds S so that GS maxi-
mizes g7 = (q_;T #)? at each step. In other words, on each
iteration ¢ = 1, ..., M of the GS orthonormalization
procedure, the OLS method selects from the remaining
N — ¢+ 1 choices the values j and h_; such that the re-
sulting regressor ¢; will give the largest possible energy
g?. The algorithm keeps track of the order in which the
original basis vectors are selected to form H.S by setting
5;; = 1. The selection procedure is terminated when the
error energy has been reduced to the specified tolerance.

3 Efficiency Using the Energy
Compaction Criterion

It is helpful to distinguish two approaches aimed at
finding efficient bases: one is “variational”, while the
other is not. The variational approach allows the com-
ponents of the basis vectors to depend on the data, and
finds the optimal set of basis vectors, corresponding to
some criterion and constraint. In contrast, the non-
variational approach starts with fixed basis vectors and
searches for a combination that best approximates the
data.

In the context of the approximation problem, the cri-
terion is typically the minimization of the mean-squared
error, and “smoothness” of the solution is a possible
choice for the constraint [14]. Alternatively, using the
same criterion, but constraining the basis matrix to be
orthogonal, and applying the variational approach leads
to the method of “principal components”.

3.1 Principal Components is Variational

It is well-known that the eigenvectors of the covari-
ance matrix of the data are the “principal components”,
which form the basis that possesses the best energy com-
paction properties [17], [18]. This basis constitutes the
Karhunen-Loéve Transform (KLT), which decorrelates
the data and maximizes the incremental energy (or vari-
ance, in the statistical sense) explained by each regres-
sor. The KLT basis vectors are orthonormal, allowing
the approximation problem, (7), to take the form of (18):

7=Qf+e (22)

3We follow the terminology in which “regressor” denotes the

orthonormal columns of @, and “basis vector” is reserved for the
columns of H.



Let E[y] be the expected value of a random vector .
Then for a general stochastic vector, the principal com-
ponents are the eigenvectors of the covariance matrix,
Cy, sorted in the order of decreasing eigenvalues A; (vari-
ance or energy):

C; = ElF- E)G - E7)")
= QAQT,
A = diag(A; ... An).
Since § = Q77
C; = ElG- Eld)(@ - F)]
= QTCcyQ = A.

Even though trace(Cy) = trace(Cy), meaning that the
total energy is preserved by @, the distribution of energy
in Cy is more skewed towards the first few eigenvalues.
This is a direct consequence of the fact that the KLT ex-
pansion is the solution of the variational problem with
the mean-squared error criterion and the orthogonality
constraint. Thus, the KLT is the most compact orthog-
onal basis, because it produces the most skewed Cj.

The significance of the KLT is in its energy efficiency,
and networks that “learn” the principal components of
the data need the smallest number of processing units
for a given amount of error [19]. However, if the data ex-
hibits smoothness in a certain sense, a sinusoidal trans-
form, such as the Discrete Cosine Transform (DCT) be-
comes the KLT [20], [18], and, since the DCT is non-
variational, the burdensome task of computing the prin-
cipal components can be alleviated. The DCT involves
an expansion in M of the following (non-radial) basis
functions:

ha(#) = T b(cD)cos (2 T(i)c(i)(Zx(i) - 1)),
b(c(i)) 1— %6(C(i)),
(23)
where (), @) =1, ..., NO: i =1, ..., d, and §(-)

is the Kronecker delta. Similarly to the RBF expansion,
the DCT basis expansion also fits the network notation
of Figure 1, but uses a different type of the process-
ing node (not an RBF). The DCT is also the accepted
standard in image coding. Hence, in Section 5, we will
assume that the DCT is the KLT and use it to judge the
overall efficiency of the RBF expansion in image coding.

3.2 OLS is Non-Variational

The objective of the OLS method is to find the small-
est subset of a fixed original basis (while not exceeding
the allowed approximation error); therefore, the choices
available to the procedure are restricted to various com-
binations of the original basis vectors. Since the number

of candidate subsets is finite, it is natural to view effi-
ciency as a relative measure. Thus, we will adopt the
following definition of energy compactness in order to
evaluate the efficiency of the OLS method:

Definition 3.1 Consider the following two schemes for
approrimating the same data:

= 3151117’1—1—6] and
= BySyuy + €3,

@ ey

where By and By are bases (i.e., each has an inverse
and is capable of interpolating the data). Let Sy and Sy
be the selection matrices (according to Definition 2.2)
with My and My columns, respectively. Assume

T T —

€1 €1 = €3 €.

Then By is more compact than By if My < M.

3.3 Deterministic KLT

In order to judge the energy compaction properties
of the OLS method, it is helpful to consider the degen-
erate or “deterministic” case of the KLT. In the deter-
ministic case, the “covariance matrix” of the data (after
the sample mean has been removed) is Cy = 7y’ and
is of rank 1. The entire KLT basis is reduced to only
one principal component, which becomes the normal-
ized version of the data vector itself. Thus the energy
compaction properties of any orthogonal basis can be
judged by how well its vectors align with the data vec-
tor. The i-th regressor’s energy, g2, is related to the
alignment via g? = (q_;ng’)Z. Using this measure, a basis
with good energy compaction properties will need only
a small number of its vectors to be retained in order
to explain the required percentage of the data energy.
The remaining basis vectors, which align poorly with
the data, can be discarded.

3.4 Orthogonality

A convenient property of an orthogonal basis is that
the energy contributions of the component vectors are
decoupled. A maximally compact permutation of an or-
thogonal basis matrix can be formed by computing the
projections of the basis vectors onto the data and rear-
ranging the column vectors in the order of decreasing
energy. In this new matrix, the energy, ¢?, of a basis
vector (which, due to orthogonality, is also a regressor)
as a function of its index, i = 1, ..., M becomes mono-
tonically decreasing. As ¢ ¢ in (14) decreases, the basis



vectors of progressively smaller energy become involved
in the approximation process as needed. It follows that
a permutation of an orthogonal basis is the most com-
pact if and only if ¢? is monotonically decreasing; no
other permutation of the original basis matrix can yield
the same error with a smaller M.

In the case of both GS and OLS, determining the en-
ergy efficiency is more complicated, because the start-
ing basis is non-orthogonal and the basis vectors can-
not be treated separately. A permutation of the basis
matrix, whose regressors have monotonically decreasing
g%, no longer assures maximal energy compaction. As a
consequence, for different error allowances different per-
mutations of the original basis matrix will be the most
compact. This will be illustrated with examples in Sec-
tion 4.3.

4 Energy Compaction Provided
by OLS

The significance of the most compact permutation is
that it produces the smallest possible RBF network for
a given error tolerance. Therefore, it is interesting to
find out whether or not the selection performed by the
OLS procedure is the best in terms of energy packing.
It has been claimed in [10] that the OLS method is
“parsimonious” in a sense that, given a required level
of unexplained energy, it will pick no more basis vec-
tors than needed, and thereby produce an RBF network
with fewer nodes than one with randomly selected cen-
ters. However, we show that the selection made by OLS
is not guaranteed to contain the smallest number of cen-
ters.

4.1 OLS is Always Efficient for Orthog-
onal Bases

It is unlikely that the OLS procedure will be used in
practice on an orthogonal basis, because dealing with
such a convenient basis requires only sorting its vectors
according to the alignment criterion (see Section 3), with
no need for GS. However, it is illuminating to examine
this trivial case first, because it is the only one for which
the OLS method is always energy efficient.

Clearly, since the basis is orthogonal, the GS part of
OLS does not alter the components of the basis vectors,
and R = I. The only action of OLS is computing the
S matrix. The first step of the algorithm locates the
basis vector with the largest alignment to the data vec-
tor. The second step locates the next largest, and so

on. At the end, all basis vectors are sorted in the or-
der of decreasing alignment, making the algorithm both
parsimonious and energy efficient, simultaneously.

4.2 OLS is not Always Efficient for Non-
Orthogonal Bases

If the RBF basis is non-orthogonal, the energy con-
tributions of different basis vectors are mixed (i.e., not
independent). Hence, for a general data vector, every
step of the OLS procedure is unable to locate the re-
gressor with maximal alignment in the global sense. In
other words, even though every step yields a regressor
with the largest possible alignment, “the largest” may
not be large enough. Since the data vector is the princi-
pal component, the OLS algorithm is effectively trying
to approximate this principal component as closely as
possible at each local step, with no regard for the global
energy distribution properties. In a sense, this method
is analogous to pursuing “short term profits” as opposed
to “long term profits”.

Evidently, as the examples below indicate, it is possi-
ble to benefit from relaxing the restriction of maximal
alignment between the regressor and the data at each
step of GS. Admitting some basis vectors that produce
regressors with poor alignment may steer GS toward fu-
ture basis vectors that produce regressors with excellent
alignment, such that the overall energy compaction is
improved. However, there is no mechanism in OLS to
decide ahead of time what the optimal permutation of
H should be for a specified error value.

4.3 Examples Using Gaussian RBF's

The goal of this section is to illustrate some cases,
where the OLS procedure does not select the optimal
subset of basis vectors in the energy compaction sense.
For clarity, the following examples use one-dimensional
data and a 3 X 3 Gaussian RBF matrix with variance

o=1:
1 0.606531 0.135335
H = 0.606531 1 0.606531
0.135335 0.606531 1
4.3.1 Example 1
Let
190
gy=1 80 |,
200



which gives the total energy 77 i = 82500.

In the first step, the OLS procedure selects the second
column of H, because it gives the largest projection onto
y. After one step of GS, performed on the remaining
columns of H, the third column produces a regressor
with the largest alignment. In the third step, the first
column must be selected. Combining these steps yields
the following permutation of H:

0.606531 0.135335 1
HPors= 1|1 0.606531 0.606531 |,
0.606531 1 0.135335

which produces regressors with the energies:
g7 = 57728.1, g2 = 3447.38, and g2 = 21324.6,
respectively, and

9i + 93

= = 0.74.
gy

For a given data vector, the OLS method always se-
lects the same sequence of regressors, regardless of the
desired error. In this case, all three basis vectors are
needed in order to approximate as much as 75% of the
total energy. However, if OLS were able to select the
following permutation of H for this data:

0.135335 1 0.606531
HP,,; = | 0.606531 0.606531 1 ,
1 0.135335 0.606531

which produces regressors with the energies:
g7 = 54253.2, g5 = 17759.4, and g2 = 10487.4,
respectively, and

9i + 93
—q”—)

vy

~ 0.87,

only two basis vectors would be needed in order to ap-
proximate up to 87% of the total energy. Note that even
though this permutation of H produces regressors with
monotonically decreasing energies g2, it still may not
be optimal if it is desired to satisfy (i.e. just exceed) a
different error value.

4.3.2 Example 2

In the following example, the first column vector of
H is nearly orthogonal to §f. Therefore, one of the other
two basis vectors (in this case, the second) must pro-
duce a regressor that is nearly parallel to ¢, resulting in

a large value of the energy. The OLS misses this oppor-
tunity, because it searches for the largest alignment at
each step. Let
—100
y= 100 |,
100

which gives the energy 77 i = 30000.

The OLS procedure selects the following permutation of
H:

0.135335 1 0.606531
HPors = | 0.606531 0.606531 1 ,
1 0.135335 0.606531

which produces regressors with the energies:
g7 =15614.1, ¢2 = 8019.76, and ¢35 = 6366.17,
respectively, and

91+ 93

—= = 0.79.
gy

However, the following (identity) permutation of H:

1 0.606531 0.135335
0.606531 1 0.606531
0.135335 0.606531 1

H-Popt =

i

which produces regressors with the energies:
g7 = 480.691, g5 = 29305.3, and g5 = 213.976,
respectively, and

g + 93
ity

~ 0.99,

is clearly superior in case 80% or more of the energy is
needed. The OLS will require all three basis vectors,
while the other permutation will need only two. Again,
note that the optimality is error dependent. If we only
needed a 52% accuracy, the one-vector subset chosen by
OLS would be optimal.

4.4 Sorting Regressors does not Im-
prove Efficiency

Since the energy function of the orthonormal regres-
sors produced by OLS is not monotonic in general, a
seemingly obvious next step would be to sort the re-
gressors in the order of decreasing energy and delete
the ones with the smallest g2 contributions, without ex-
ceeding the allowed error. However, such a parsimonious



sorting of the regressors alters the specific permutation
adhered to by the GS process.

The premise of OLS is that the chosen selection of the
original RBF vectors can be recovered by reversing GS,
a forward recursion procedure. Using (13) gives:

i-1
a; = ;G + Z T4, (24)
=1

where r; and ¢; depend on the order in which the orig-
inal basis vectors h_; were selected as d;. If the columns
of Q and R are now sorted without deleting any ¢;, A
can still be recovered. However, deleting any regressors,
no matter how insignificant their g? may be, upsets the
consistency of the GS process, thereby precluding the
recovery of A and destroying the connection to the orig-
inal RBF weights. In other words, the sorted regressors
cannot be used to train the RBF approximation net-
work.

Since every permutation of the original RBF matrix
leads via GS to a different set of orthonormal regressors,
their energies are meaningful only in the context of a
particular permutation selected by OLS. Both the order
of selection and the intermediate regressors themselves,
even with low energies, are the key to a possibly high
degree of alignment of a regressor selected at a later
step of the procedure. On the other hand, deleting a
GS regressor shrinks the number of basis vectors in the
selection. And since the original RBF matrix is non-
orthogonal, removing a regressor with a relatively low
energy is not equivalent to disposing of an insignificant
basis vector.

5 Performance of OLS in Image
Coding

This section presents a new algorithm for selecting
RBF centers, which is optimal in the sense of energy
efficiency. This algorithm is used to evaluate the perfor-
mance of the OLS method in a practical signal process-
ing application, image coding. Specifically, the goal is
to compare the size of an RBF network trained by OLS
to the size of the smallest network achievable for a given
error tolerance.

5.1 A New Optimal Selection Procedure

The OLS algorithm preserves the order of selection
for a given data vector and attains higher accuracy by

enlarging the selection matrix. In the limit of zero er-
ror, the selection matrix becomes a particular permuta-
tion matrix. It follows that the best selection of a non-
orthogonal basis matrix H can be found by orthonormal-
izing all of its N! permutations with GS and choosing the
selection that accomplishes the specified approximation
accuracy with the smallest number of regressors. Al-
though the permutations can be processed concurrently,
having to maintain the order of basis vectors, i.e., keep-
ing N! of them in storage, leads to an enormous amount
of hardware, even for modest values of N.

Regardless of the order in which the basis vectors are
chosen, every M-member combination of N original ba-
sis vectors has an error value associated with it. For
instance, any one of N! permutations of H can approx-
imate the data with zero error. Therefore, M and the
particular basis vectors comprising the subset must be
chosen depending on both the data vector and the re-
quired error. This suggests dispensing with the order
and performing LLSE on all E%:‘i(ﬁ) possible com-
binations of the original basis vectors until the error
tolerance is met at M = M,,;. This can also be im-
plemented in parallel, requiring less hardware than the
previous approach.

We combined this reasoning with OLS to arrive at the
following procedure for determining the most efficient
RBF network:

1. Run OLS to determine Mor s —an upper bound on
M.

2. For each of the (Mj\i 1) possible combinations of the
basis vectors of H, construct H and evaluate

e =

—

Ya
T A ~

HT Hw*

37_
37_

Sy Sy
I i Q@,%

using (9) and (11) %. Record the combination that
gives the lowest ¢” €.

3. If é7¢ in Step 2 is less than or equal to the desired
error allowance,
set M — M — 1 and go back to Step 2. Otherwise,
M = M,ps, which cannot be further reduced with-
out violating the allowed error specifications.

The following experiment examines energy efficiency
only. Clearly, the computational efficiency of OLS will
always be better than that of the new optimal method.

5.2 Experiment and Results

*The Singular Value Decomposition method [21] for computing
the pseudoinverse matrices was used in the actual implementation.



Even one iteration of the exhaustive search in Step 2
is a tremendous computational task if N > 10. This is
not a problem in image coding, because the processing is
commonly performed on small blocks of data [22]. Two
256 x 256-pixel images (a face ® and a texture), shown in
Figure 2, were each segmented into 1024 square blocks
of 8 x 8 pixels. To each block, we applied the Gaussian
RBF transform (with variance ¢ = 1). Treating pixel
locations as the coordinates of RBF centers and noting
that the multivariate Gaussian RBFs are separable ©,
assigns the network parameters to d = 1 and N = 8§
(see Figure 1). The OLS and the optimal algorithms
were applied to every block of an image, and the total
counts of RBF nodes were recorded. Coding a 256 x 256-
pixel image with the optimal algorithm was found to be
20 times slower than with OLS. In order to juxtapose
the overall efficiency of the Gaussian RBF approxima-
tion scheme against the KLT, the image was also coded
with the DCT in the same fashion. The DCT, (23), is
an orthonormal sinusoidal transform. Because of these
properties, it has a fast algorithm for its implementa-
tion, just like the Discrete Fourier Transform (DFT) has
the Fast Fourier Transform (FFT) [20]. Therefore, DCT
is faster than OLS.

The comparison of the Gaussian RBFs with the DCT
basis functions is justified by the fact that the images are
sampled on a dense regular grid, as opposed to using the
typically sparse data. We are interested in approximat-
ing the image intensities at these grid positions with as
few basis vectors as possible for a given value of the er-
ror. Note that, depending on the assumptions regarding
the source of the data samples, approximating with ei-
ther the Gaussian RBFs or the DCT basis may be under-
stood as generalizing between the data points [23], [14].
However, this issue is tangential to that of efficiency,
which is the main focus of the present experiment.

The results plotted in Figure 3 demonstrate the image
coding efficiencies achieved by the OLS and the optimal
methods of training an RBF network as a function of
the signal-to-noise ratio (SNR), defined as
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In addition, Figure 4 graphs the percentage oversize of
the OLS-trained RBF network as a function of SNR.
All three methods exhibit the same poor efficiency
at high values of SNR, because a high approximation
accuracy requires a large number of RBF centers (or

5 Actually, a second face image (“Einstein” ) was coded as well,
but because the results differed by only a few tenths of a percent,
only one is presented here.

8In other words, rows and columns of an image block can be
processed separately.

spatial frequencies in the case of the DCT). However,
the relative efficiency of the OLS method drops rapidly
as more error is allowed. For example, at SNR = 35dB,
OLS requires 15% more RBF centers than the optimal
technique.

For applications that use large training sets and re-
quire extremely high SNR, the computational efficiency
of the OLS method warrants its use, despite its subop-
timal energy compaction characteristics. On the other
hand, for applications which allow lots of “encoding”
time, the new selection procedure will give a more ef-
ficient set of RBF coefficients. Note that the optimal
method can be helpful in comparing the compaction ef-
ficiencies of various, possibly non-orthogonal, bases. In
fact, the plots reveal that the optimal method, applied
to the Gaussian RBFs with o = 1 achieves coding rates
that are close to those attained by the DCT.

Having established the potential of Gaussian RBFs
for efficient representation, other relevant properties of
the basis become of interest. For example, Figure 5 of-
fers the comparison of visual artifacts associated with
reconstructing the image in Figure 2(a) using the DCT
and the Gaussian bases. A typical in compression value
of SNR (35dB) is chosen in order to emphasize the dis-
tinctions. The well-known “blocking effect” is promi-
nent in the reconstructed image for the DCT case. This
type of distortion is caused by differences in spatial fre-
quencies required for reconstructing each block with the
given SNR. Since the human eye is sensitive to spatial
frequencies, it notices these discontinuities at the block
boundaries.

However, in the case of the Gaussian RBFs, the pa-
rameter of the expansion is not the spatial frequency,
but the actual coordinate of a center. Eliminating a
center from the RBF set causes a different type of dis-
tortion than eliminating a wave number from the DCT
expansion. While in the DCT expansion each spatial
frequency affects all pixels of a block, in the Gaussian
RBF expansion each center affects only a narrow neigh-
borhood around the corresponding pixel. This local-
ity property of the Gaussians leads to the “point de-
fects” seen in the reconstructed image for the RBF case.
The point defects occur when the pixel intensity at the
deleted center is not adequately approximated by the
preserved basis vectors.

An informal study of these perceptual defects was con-
ducted by asking each of ten research colleagues to stand
ten feet away from the 1152 pixel x 900 pixel display
monitor and rank three 3 in x 3 in (or 256 X 256-pixel)
versions of “Lena” based on the overall quality. The
images were placed in the center of the screen with the
original in the middle and the versions reconstructed
at 35dB SNR using the Gaussian RBFs and the DCT



abutting its left and right hand sides, respectively. The
image reconstructed with the Gaussian RBFs was unan-
imously found to look more like the original than the
one reconstructed with the DCT basis. This stems from
the fact that the point defects occur in random places
within a block, while the blocking effect produces corre-
lated patterns with periods commensurable to the block
dimensions [24]. Figure 6 illustrates this point by dis-
playing the error images corresponding to approximat-
ing the image in Figure 2(a) using the DCT and the
Gaussian bases at 35dB SNR. When people stood closer
than ten feet away from the screen, the preferences var-
ied. This may be related to the fact that some of the
subjects work in image coding, while others in vision,
and bring in with them different biases.

This effect is even more pronounced when coding a
textured image, such as “Treebark”. For this texture,
the results of the same experiment appear in Figure 7
and Figure 8. Since textures generally contain many
spatial frequencies, coding with the DCT produces ex-
tremely correlated error images. On the other hand, the
error images resulting from coding with the Gaussian
RBFs look much more random.

6 Conclusions

While the OLS method has been believed to find a
more efficient selection of RBF centers than a random-
based approach [10], it does not produce the small-
est RBF network for a given approximation accuracy.
Simple examples were constructed to provide intuition
about the sources of inefficiency.

To determine its performance in a practical signal pro-
cessing application, OLS was used to train a Gaussian
RBF network for image coding. In addition, a new op-
timal training method was described and also applied
to image coding. The new method requires significantly
more computation than OLS, but is optimal in the en-
ergy compaction sense, since it effectively searches all
possible subsets of the basis. Simulations revealed that
at low SNR, this optimal technique gives higher data
compression than OLS.

Both algorithms performed poorly at high SNR, indi-
cating that the efficiency depends not only on the train-
ing method, but also on the choice of the basis. The
new optimal method allows a fair comparison among
different bases and becomes a useful tool when non-
orthogonal representations are considered. Thus, the
Gaussian RBF network was evaluated with respect to
the DCT expansion, a standard image coding technique.
Relative efficiencies of various bases are always data-
dependent. For the three test images studied, the ef-
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ficiencies of the Gaussian RBF network and the DCT
were found to be comparable, judged by the number of
basis functions necessary for a desired SNR.

In addition to coding efficiency, the two bases were
contrasted from the standpoint of visual perception, an-
other criterion relevant in image coding. An informal
study involving ten human observers found the “point
defects”, resulting from approximating the images with
the Gaussians, to be perceptually less objectionable un-
der certain conditions than the “blocking effect”, caused

by the DCT.
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Figure 2: Test images: (a) “Lena”; (b) “Tree-bark”.
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Figure 3: The number of RBF nodes per pixel selected by the OLS and the optimal training methods as a function
of SNR. A similar plot for DCT is included for comparing the efficiency of the RBF and the KLT expansions.
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Figure 4: Percentage of extra nodes produced by the OLS training method as a function of SNR.

(a)

Figure 5: Reconstruction of the image in Figure 2(a) at 35dB SNR; the magnification is x2: (a) using the DCT basis;
(b) using the Gaussian RBFs with the new optimal selection procedure.
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(a)

Figure 6: Error images corresponding to approximating the image in Figure 2(a) at 35dB SNR: (a) using the DCT
basis: the range of values was modified from {—44, 38} to {0, 255} for displaying purposes; (b) using the Gaussian
RBFs with the new optimal selection procedure: the range of values was modified from {—30, 47} to {0, 255} for
displaying purposes. Notice that (a) is more correlated than (b).

Figure 7: Reconstruction of the image in Figure 2(b) at 35dB SNR; the magnification is x2: (a) using the DCT basis;
(b) using the Gaussian RBFs with the new optimal selection procedure.
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(b)

Figure 8: Error images corresponding to approximating the image in Figure 2(b) at 35dB SNR: (a) using the DCT
basis: the range of values was modified from {—43, 38} to {0, 255} for displaying purposes; (b) using the Gaussian
RBFs with the new optimal selection procedure: the range of values was modified from {—66, 111} to {0, 255} for
displaying purposes. Notice that (a) is more correlated than (b).
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