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Abstract
We propose a person identi�cation technique that

can recognize and verify people from unconstrained
video and audio. We do not expect fully frontal face
image or clean speech as our input. Our recognition al-
gorithm can detect and compensate for pose variation
and changes in the auditory background and also se-
lect the most reliable video frame and audio clip to use
for recognition. We also use 3D depth information of
a human head to detect the presence of an actual per-
son as opposed to an image of that person. Our sys-
tem achieves 100% recognition and veri�cation rates
on natural real-time input with 26 registered clients.

1 Introduction
Automatic identi�cation of people has many ap-

plications in di�erent areas. If the recognition can
be performed in an unobtrusive manner it will be
useful in secured access sites, for automatic banking,
password-free computer login and also analysis of per-
son dependent- behaviors and preferences.

Relatively high accuracy rates have been obtained
in face recognition using computer vision techniques
alone and by fusing with other modalities like speaker
veri�cation and di�erent bio-metric measurements.
But much less work has been done in person identi�-
cation where there is little or no restriction on the per-
son's movement or speech. Researchers have proposed
di�erent techniques that can handle varying pose by
using template matching techniques or by modeling
the pose variations as manifolds or subspaces in a high
dimensional image space [5, 3].

The main goal of this paper is to recognize a person
using unconstrained audio and video information. We
derive a con�dence scoring which allows us to identify
the reliable video frames and audio clips that can be
used for recognition. We also propose a robust method
based on 3D depth information for rejecting imposters
who try to fool the face recognition system by using
photographs.

2 Face Recognition
In a realistic environment, a face image query will

not have the same background, pose, or expression
everytime. Thus we need a system that can detect

a face reliably in any kind of background and rec-
ognize a person despite wide variations in pose and
facial expression. The system also must be able to
pick out reliable images from the video sequence for
the recognition task. We propose a technique which
uses real-time face tracking and depth information to
detect and recognize the face under varying pose.

2.1 Face Detection and Tracking
The �rst step of the recognition process is to ac-

curately and robustly detect the face. In order to do
that we do the following:

1. Detect the face using skin color information.

2. Detect approximate feature location using sym-
metry transforms and image intensity gradient.

3. Compute the feature trajectories using correla-
tion based tracking.

4. Process the trajectories to stably recover the 3D
structure and 3D facial pose.

5. Use 3D head model to warp and normalize the
face to a frontal position

We model the skin color (RGB values) as a mixture
of Gaussians. To train our model we take samples
from people with varying skin tone and under di�erent
lighting conditions. This model is then used to detect
regions in the image that contain skin color blobs. The
largest blob is then processed further to look for facial
features e.g. eyes, nose and mouth. Our method does
not require the face to be frontal for the detection
stage. The loci of the features give an estimate of
the pose. Using this pose estimate and a 3D head
model we warp the detected face to a frontal view.
This frontal face then undergoes histogram �tting to
normalize it's illumination. For a detailed description
please refer to [7].

2.2 Eigenspace Modeling
Once a face has been detected and its features iden-

ti�ed, the image region containing the face is sent for
recognition. The face �nding stage gives us only an ap-
proximation of the feature locations. We re�ne these
estimates by re-searching for eyes, and mouth within
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a small area around the previous estimate. This over-
comes the time consuming stage of face and facial
feature detection in the whole image and makes the
recognition process suitable for real-time application.
After the feature locations have been accurately de-
tected the face is normalized such that the eyes and
mouth are at �xed locations.

Our eigenspace is built using training images pro-
vided by the real-time face tracker. We use the thirty-
�ve eigenvectors with the largest eigenvalues to project
our images on to. Having a 3D model for pose nor-
malization allows us to use a single eigenspace for a
range of poses. This eliminates the requirement for
storing and selecting from multiple eigenspaces. Thus
our face detection algorithm does not constrain the
user to maintain a still frontal pose.

To capture the facial variations for each person, we
�t a Gaussian to their eigencoe�cients. We de�ne the
probability of a match between a person and a test
image to be the probability of the test image eigenco-
e�cients given the person's model. In the unimodal
case, the person that has the maximumprobability for
that test image is the claimed identity. You can see
in Figure 1 the distribution of the eigencoe�cients for
two people and it also demonstrates the di�erences in
the mean coe�cients between two people.
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Figure 1: Distribution of the �rst 35 eigen coe�cients
for person A and B

2.3 Depth Estimate
If face recognition is used for security purpose, it

is important that the system is not fooled by a still
image of the person. The structure from motion esti-
mate in the tracking stage yields depth estimates for
each of the features. We can use this information to
di�erentiate between an actual head and a still im-
age of one. A picture held in front of the camera,
even if it is in motion, gives a 
at structure. Figure 2
shows the depth values extracted for a few test trials.
The photograph yielded the same depth value over

all of its feature points, while the depth values varied
greatly for actual faces. We are also looking into reli-
ably recovering the 3D structure of individuals to use
for recognition purposes.
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Figure 2: Depth values for tracked objects: the object
with all of its features at the same depth is a photo-
graph, the rest are faces.

3 Speaker Identi�cation
Past work has shown that text-independent speaker

identi�cation (SI) relies on the characterization of the
spectral distributions of speakers. However, convo-
lutional and additive noise in the audio signal will
cause a mismatch between the model and test dis-
tributions, resulting in poor recognition performance
[8, 1]. Even if the audio channel is kept consistent so
as to minimize convolutional noise, there will always
be the problem of additive noise in natural scenarios.

Deconvolutional techniques such as RASTA [6]
have had substantial success in matching the spectral
response of di�erent auditory channels. However, se-
vere drops in performance are still evident with even
small amounts of additive noise.

Work done by [1] has suggested that the presence
of noise doesn't necessarily degrade recognition perfor-
mance. They compared their system's error rates on a
clean database (YOHO) and a more realistic database
(SESP). When training and testing were done on the
same database the error rates were comparable.

Building on this idea, our speaker identi�cation sys-
tem is based on a simple set of linear spectral fea-
tures which are characterized with HMMs. This sim-
ple combination is well-suited for adapting the speaker
models to various types of background noise.

3.1 Event Detection
The �rst state in the audio pipeline is the coarse

segmentation of the incoming audio. The purpose
of this segmentation is to identify segments of audio
which are likely to contain speech. We chose this route
because it makes the statistical modeling much easier
and faster. Instead of integrating over all possible seg-
mentations, we have built-in the segmentation as prior
knowledge.

We used a simple and e�cient event detector, con-
structed by thresholding total energy and incorpo-
rating constraints on event length and surrounding



pauses. These constraints were encoded with a �nite-
state machine. The resulting segmentation yields a
series of audio clips that can be analyzed for speaker
identi�cation.

This method's 
aw is the possibility of arbitrarily
long events. If for example there was a jack hammer
nearby then the level of sound would always exceed the
threshold. A simple solution is to adapt the thresh-
old or equivalently scale the energy. The system keeps
a running estimate of the energy statistics and con-
tinually normalizes the energy to zero mean and unit
variance (similar to Brown's onset detector [2]). The
e�ect is that after a period of silence the system is
hypersensitive and after a period of loud sound the
system grows desensitized.

3.2 Feature Extraction
After segmentation the (16 kHz sampled) audio is

�ltered with a weak high-pass �lter (preemphasis) in
order to remove the DC o�set and boost the higher
frequencies. We calculate Mel-scaled frequency coe�-
cients (MFCs) for frames of audio that are spaced 16
ms apart and are 32 ms long. This frame size sets the
lower limit on the frequency measurement to approxi-
mately 30 Hz. Mel-scaling increases the resolution for
lower frequencies, where speech typically occurs.

MFC is a linear operation on the audio signal, so
additive noise does not cause a nonlinear distortion in
our features. This useful because it allows us to detect
additive noise given a model of the noise in isolation.

3.3 Modeling
Our system uses HMMs to capture the spectral sig-

nature of each speaker. An HMM for each person is
estimated from examples of their speech. The esti-
mation was achieved by �rst using segmental k-means
to initialize HMM parameters and then Expectation-
Maximization (EM) to maximize (locally) the model
likelihood. Since the examples of speech are text-
independent there is no common temporal structure
amongst the training examples. This situation re-
quires the use of fully-connected (ergodic) HMMs.

In order to �nd the optimal model complexity for
our task, we varied the number of states and num-
ber of Gaussians per state until the recognition rate
was optimized. We tested HMMs with 1 to 10 states
and 1 to 100 Gaussians. The best performance was
achieved with a 1 state HMM with 30 Gaussians per
state or, equivalently, a mixture of 30 Gaussians. This
is not surprising given the lack of temporal structure
in our text-independent training and testing examples.
Arguably this makes the use of HMMs unnecessary.
However, the use of HMMs is justi�ed for our back-
ground noise adaptation.

3.4 Background Adaptation
Statistical models trained on clean speech (or

speech in any speci�c environment) will perform badly
on speech in a di�erent environment. The changing
environment causes distortions in the speech features
which create a mismatch between the test speech and
model distribution. Convolutional noise is caused pri-
marily by di�ering microphone and sound card types,
and microphone and sound source location. Additive
noise is caused by the presence of other sound sources.

We will assume that the microphone type and location
is constant and concentrate on additive noise only.

The goal is to be able to adapt models of clean
speech for use in noisy environments. However, the
adaptation cannot require samples of the speech in
the noisy environment because usually they are not
available. So given only the clean speech models and
recordings of the background noise, our adaptation
technique can estimate the appropriate noisy speech
models.

The model adaptation procedure (which is related
to the parallel model combination algorithm of [4])
is based on estimating HMMs for noisy speech from
HMMs separately trained on speech and noise. Since
the background noise might have temporal structure,
such as repetitive noises like motor noise, or randomly
occurring changes like thunder in a rain storm, it is
appropriate to use an HMM to model it. The feature
extraction and HMM training was the same as above.

If the background noise and speech are assumed
independent and the features are extracted using only
linear operators then the distributions can be easily
estimated. Let B be the background noise HMM with
M states, S the clean speech HMM with N states, and
S0 the noisy speech HMM. The combination of the
two HMMs, S and B, is the HMM S0 with M � N
states in the state space constructed from the outer
product of the S and B state spaces. The probability
distributions for each state in S0 are the convolution
of the distributions in S with the distributions in B.

This adaptation was evaluated using the speech
of 26 people(their collection is described below) and
an auditory background scene of a street in a thun-
der storm. The noise scene contains frequent thunder
and occassional passing cars against a constant back-
ground of rain. We created two sets of audio data:
a Speech Only set with uncorrupted speech, and a
Speech + Noise set which was constructed by adding
the background recordings to the audio clips in the
Speech Only set. They were mixed at a Signal-to-Noise
Ratio (SNR) of 7dB. Each of these sets were further
divided into training and test sets.

A single state HMM, Si, was trained on the speech
of each individual from the Speech Only set. A 3-
state HMM, B, was trained on the background sounds.
This HMM was used to adapt the Si HMMs thereby
creating a new set of HMMs, S0i, which should match
the speech in the Speech + Noise set. Although this is
not an option for real-time adaptation, we also trained
HMMs, call them Ci, on the Speech + Noise training
set to evaluate the e�ectiveness of the adaptation.

Finally we test all HMMs on both the Speech Only
and Speech + Noise test sets. Table 3 contains the
recognition rates for two sets of 130 audio clips. As
shown by the extremely poor performance of the S
HMMs on the Speech + Noise test set, the back-
ground scene has clearly caused a mismatch between
the speech models and the audio. The adaptation is
able to regain 95% of the performance if we assume
the C HMMs are exactly matched to the Speech +
Noise set.



HMM Models Speech Only Speech + Noise

Speech Only (S) 71.5% 23.1%
Adapted (S0) N/A 65.4%
Corrupted (C) N/A 69.2%

Figure 3: Recognition rates for the clean speech, cor-
rupted speech and adapted speech models.

4 Classi�er Fusion
The goal of classi�er fusion is to complement one

modality with the another. If a classi�er is performing
poorly then it is important not to let its suggestions
skew the �nal decision. Therefore, careful considera-
tions must be made to ensure the appropriate weight-
ing of each classi�er.

The derivation of this weighting relies on having
a measurement of each classi�er's reliability. Let
P (Xi = j) be the probability that classi�er i assigns
to person j. These probabilities are calculated from
the model likelihoods, L(Xi = j) = P (DatajModelj):

P (Xi = j) =
L(Xi = j)X
k

L(Xi = k)

While this normalization is necessary for compar-
ing classi�er scores, it also removes any measure of
how well a test case is modeled by the classi�er (i.e.
P (dataj all models)).

4.1 Con�dence Scores
We have tried numerous measures for estimating a

classi�er's con�dence. For the face classi�er, we tested
con�dences based on the following measures (x is a
test image):

Distance from Face Space (DFFS)

DFFS(x) = kx� �xkEigenspace

Aggregate Model Likelihood (AML)

AML(x) = log

0
@X

j

P (xjModelj)

1
A

Maximum-Probability to Average-Probability Dis-
tance (MPAP)

MPAP (x) = max
j

fP (X = j)g �
1

N

X
j

P (X = j)

The speech classi�er was evaluated with only the
AML and MPAP measures. Since the above measures
can have arbitrary ranges and distributions we con-
verted them to probabilities with the following trans-
formation (M (x) is one of the measures above):

Let p(!) = pdf for the r.v., ! =M (x), then

con�dence(!0) = P (! < !0) =

Z !0

1

p(!) d!

We estimate p(!) from a set of images or audio clips
using Parzen windows with Gaussian kernels. Figure
4 shows this mapping for the DFFS measure.
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Figure 4: Mapping the DFFS to a probability: (top)
the DFFS pdf for a set of images, (bottom) the derived
cdf which is used for the mapping.

Table 5 shows how each con�dence measure per-
forms as a predictor for recognition. The percentages
are based on the correlation between the con�dence
scores and the correctly or incorrectly recognized test
cases. A score of 50% (chance) means that the con-
�dence score is uncorrelated with recognition. The
MPAP measure clearly outperforms the rest of the
measures and hence it was adopted as the con�dence
measure for the system.

4.2 Bayes Net
In the fusion of classi�ers, each knowledge source

may be dependent on other sources. The full Bayesian
approach assumes the least by assuming each knowl-
edge source is dependent on all the other sources. This
requires the estimation of many conditional distribu-
tions which in turn requires large amounts of training
data. However, many of the dependencies are unnec-
essary and we will make our assumptions explicit with
a Bayes Net.

The knowledge sources for each classi�er, i 2

f(S)peech,(F)aceg, are:

1. P (XjXi) - classi�er's probability for each person

Con�dence Score Speech Face

DFFS N/A 55.3%,90.0%
AML 50.2%,47.6% N/A
MPAP 71.4%,50.3% 99.1%,53.4%

Figure 5: Comparison of Con�dence Scores: Predic-
tion rates of Correct Recognition (left) and Wrong
Recognition (right).



Figure 6: The Bayes net used for combining knowledge
sources for each classi�er to produce a �nal decision,
X.

2. P (XijCi) - con�dence in the classi�er

where the r.v. Ci =freliable, not reliableg, and the
r.v. Xi = fjjj 2 Client Databaseg. Figure 6 displays
the Bayes net we used to combine these knowledge
sources.

The audio and video channels are assumed condi-
tionally independent as depicted by the lack of direct
links between CS and CF , and XA and XF . We
are also assuming that the con�dence scores are con-
ditionally independent from X. This is equivalent to
assuming that the distributions of con�dence scores
are the same for both classi�ers.

P (X) = P (XjXS)P (XS jCS)P (CS) +

P (XjXF )P (XF jCF )P (CF )

Finally, the prior on each con�dence score, P (Ci),
is simply the recognition rate for each classi�er. This
prior should be estimated separately for each individ-
ual, but the lack of training data forced us to use the
same prior for everyone.

5 Experiments
Both recognition and veri�cation experiments were

performed. We describe the data collection process
and then discuss some of the results using various
methods of evaluation.

5.1 Data Collection
We collected our data for training and testing using

an Automated Teller Machine (ATM) scenario. The
setup included a single camera and microphone placed
at average head height. A speech synthesis system was
used to communicate with the subjects rather than
displaying text on a screen. The reasons for this are
two-fold. First, the subjects won't be constrained to
face the screen at all times. Second, it is more natural
to answer with speech when the question is spoken as
well. The subjects were instructed to behave as if they
were at an actual ATM. No constraints were placed on
their movement and speech.

The session begins when the subject enters the cam-
era's �eld of view and the system detects their face.
The system then greets the person and begins the
banking transaction. A series of questions were asked
and after each question the system waited for a speech

event before proceeding to the next question. A typi-
cal session was as follows:

1. Wait for a face to enter the scene

2. System: \Welcome to Vizbank.Please state your
name"

3. User: \Joe Schmoe."

4. System: \Would you like to make a deposit or a
withdrawal?"

5. User: \Ummm, withdrawal."

6. System: \And the amount please ?"

7. User: \Fifty dollars."

8. System: \The transaction is complete. Thank
you for banking with us"

9. Wait for the face to leave the scene

10. Go back to step 1

During the transaction process the system saves
40X80-pixel images centered around the face and au-
dio at 16 KHz. We collected data from 26 people.

5.2 Evaluation Methods
We evaluated our system using both recognition

and veri�cation rates. Both procedures include a cri-
teria for rejecting clients entirely based on the proba-
bility output of the Bayes net. Rejection means that
the system did not get a suitable image clip or audio
clip for recognizing or verifying the client. Usually an
application would ask the client to repeat the session.

The recognition procedure is as follows:

1. The Client gives no information.

2. Recognized Identity = argmaxjfP (X = j)g.

3. Reject if P (X = Recognized Identity) < Rejec-
tion Threshold.

The veri�cation procedure is as follows:

1. The Client gives a Claimed Identity.

2. Recognized Identity = argmaxjfP (X = j)g.

3. Reject if P (X = Recognized Identity) < Rejec-
tion Threshold.

4. Verify i� Recognized Identity = Claimed Identity
else reject.

The results for each experiment are analyzed for hit
rate and correct rejection rate over the entire range of
rejection thresholds. The optimal operating threshold
is theoretically where the sum of hit and correct rejec-
tion rates are maximized. This is assuming equal cost
weights for hit rate and correction rejection rate. For
each experiment we give the success rate at both zero
threshold (i.e. no rejections) and the optimal operat-
ing threshold.



Modality Per Image/Clip Per Session

Audio 71.2 % 80.8 %
Video 83.5 % 88.4 %

Audio + Video 93.5 % 100 %

Figure 7: Recognition Rates (Zero Rejection Thresh-
old): no rejections

Modality Per Image/Clip

Audio 92.1% (28.8%)
Video 97.1% (17.7%)

Audio + Video 99.2% (55.3%)

Figure 8: Recognition Rates (Optimal Rejection
Threshold): the rejection rates are in parentheses.

5.3 Results
Results for our recognition and veri�cation pro-

cesses were calculated based on audio information and
video information alone and also by combining the
outputs using the Bayes Net described above. We cal-
culate rates both using all the images/clips and using
only the \best" clip from each session. Where \best"
is de�ned as the image/clip with the highest con�-
dence score. For session-based applications the latter
is more meaningful because it identi�es the session ac-
curacy rather than the accuracy per video frame and
audio clip.

Table 7 gives an overview of the system's recogni-
tion performance when no thresholding is used. The
recognition is perfect when done on a per session ba-
sis using only the most reliable image/clip pair. Table
8 shows what the optimal operating point is for per
image/clip recognition. The high rejection rates are
quite reasonable given that there were at least 7 im-
age/clips per person.

The veri�cation rates are in table 9. The veri�ca-
tion is near perfect (99.5%) with only 0.3% false ac-
ceptance rate on a per image/clip basis. The session
performance is perfect.

As is expected, when we prune away the less reli-
able images and audio clips, the performance increases
appreciably. When we use only the most con�dent
images and clips both the recognition and veri�cation
rates rise to 100% with no false acceptances.

6 Conclusions
We have implemented and evaluated a system that

combines face recognition and speaker identi�cation
modules for high accuracy person recognition. Fur-
thermore, both of these modules were designed to take
a large variety of natural real-time input. The face
recognition module achieves high recognition accura-
cies by combining face detection, head tracking, and
eigenface recognition. The text-independent speaker
identi�cation module is robust to changes in back-

Modality Per Image/Clip Per Session

Audio 97.8 % (0.2%) 98.5 % (0%)
Video 99.1 % (0.2%) 99.6 % (0%)

Audio + Video 99.5 % (0.3%) 100 % (0%)

Figure 9: Veri�cation Rates (Optimal Rejection
Threshold): the false acceptance rates are parenthe-
ses.

ground noise by incorporating adaptation in its event
detection and modeling stages. We use a simple Bayes
net to combine the outputs of our face and speech
modules. However this method is made quite e�ec-
tive by deriving and including con�dence scores that
can predict each module's reliability. In fact, we have
shown the system can select, based on the con�dence
scores, the most reliable images and audio clips from
each session and in this case perform with perfect
recognition and veri�cation rates.

Acknowledgments
The authors thank Sumit Basu for suggesting the

use of depth map for recognition. We also thank Bernt
Schiele, Jennifer Healey and Sumit Basu for many
helpful discussions.

References
[1] F. Bimbot, H. Hutter, C. Jaboulet, J. Koolwaaij, J. Lind-

berg, and J. Pierrot. Speaker veri�cation in the telephone
network: Research activities in the cave project. Techni-
cal report, PTT Telecom, ENST, IDIAP, KTH, KUN, and
Ubilab, 1997.

[2] G. J. Brown. Computational Auditory Scene Analysis:

A representational approach. PhD thesis, University of
She�eld, 1992.

[3] Brenden Frey Antonio Colmenarez and Thomas Huang.
Mixture of local linear subspaces for face recognition. In
International Conference on Computer Vision and Pat-

tern Recognition.

[4] M.J.F. Gales and S.J. Young. Robust continuous speech
recognition using parallel model combination. Technical
report, Cambride University, 1994.

[5] Daniel Graham and Nigel Allinson. Face recognition from
unfamiliar views: Subspacemethods and pose dependency.
In Third International Conference on Automatic Face and

Gesture Recognition.

[6] Hynek Hermansky, NelsonMorgan, Aruna Bayya, and Phil
Kohn. Rasta-plp speech analysis. ICSI Technical Report

TR-91-069, 1991.

[7] Tony Jebara and Alex Pentland. Parameterized structure
from motion for 3d adaptive feedback tracking of faces. In
IEEE Conference on Computer Vision and Pattern Recog-

nition.

[8] Jiyong Ma and Wen Gao. Text-independent speaker iden-
ti�cation based on spectral weighting functions. AVBPA

Proceedings, 1997.

[9] E.S. Bigun, J.Bigun, B. Duc, S. Fischer Expert Concili-
ation for Multi Modal Person Authentication Systems by
Bayesian Statistics In First International Conference on

Audio- and Video-based Biometric Person Authentication.


