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Abstract

We propose a novel technique for direct visual
matching of images for the purposes of face
recognition and database search. Speci�cally,
we argue in favor of a probabilistic measure of
similarity, in contrast to simpler methods which
are based on standard L2 norms (e.g., template
matching) or subspace-restricted norms (e.g.,
eigenspace matching). The proposed similarity
measure is based on a Bayesian analysis of image
di�erences: we model two mutually exclusive
classes of variation between two facial images:
intra-personal (variations in appearance of the
same individual, due to di�erent expressions or
lighting) and extra-personal (variations in ap-
pearance due to a di�erence in identity). The
high-dimensional probability density functions
for each respective class are then obtained from
training data using an eigenspace density es-
timation technique and subsequently used to
compute a similarity measure based on the a
posterioriprobability of membership in the intra-
personal class, which is used to rank matches
in the database. The performance advantage
of this probabilistic matching technique over
standard nearest-neighbor eigenspace matching
is demonstrated using results from ARPA's 1996
\FERET" face recognition competition, in which
this algorithm was found to be the top performer.

1 Introduction

Current approaches to image matching for visual object
recognition and image database retrieval often make use
of simple image similarity metrics such as Euclidean
distance or normalized correlation, which correspond to
a standard template-matching approach to recognition [2].
For example, in its simplest form, the similarity measure
S(I1; I2) between two images I1 and I2 can be set to be
inversely proportional to the norm jjI1�I2jj. Such a simple
formulation su�ers from a major drawback: it does not
exploit knowledge of which type of variations are critical
(as opposed to incidental) in expressing similarity. In
this paper, we formulate a probabilistic similarity measure
which is based on the probability that the image intensity
di�erences, denoted by � = I1 � I2, are characteristic
of typical variations in appearance of the same object.
For example, for purposes of face recognition, we can
de�ne two classes of facial image variations: intrapersonal
variations 
I (corresponding, for example, to di�erent

facial expressions of the same individual) and extrapersonal
variations 
E (corresponding to variations between di�er-

ent individuals). Our similarity measure is then expressed
in terms of the probability

S(I1; I2) = P (� 2 
I) = P (
Ij�) (1)

where P (
Ij�) is the a posteriori probability given by
Bayes rule, using estimates of the likelihoods P (�j
I) and
P (�j
E) which are derived from training data using an
e�cient subspace method for density estimation of high-
dimensional data [6]. This Bayesian (MAP) approach
can also be viewed as a generalized nonlinear extension of
Linear Discriminant Analysis (LDA) [8, 3] or \FisherFace"
techniques [1] for face recognition. Moreover, our nonlinear
generalization has distinct computational/storage advan-
tages over these linear methods for large databases.

2 Analysis of Intensity Di�erences

We now consider the problem of characterizing the type
of di�erences which occur when matching two images
in a face recognition task. We de�ne two distinct and
mutually exclusive classes: 
I representing intrapersonal
variations between multiple images of the same individual
(e.g., with di�erent expressions and lighting conditions),
and 
E representing extrapersonal variations which result
when matching two di�erent individuals. We will assume
that both classes are Gaussian-distributed and seek to
obtain estimates of the likelihood functions P (�j
I) and
P (�j
E) for a given intensity di�erence � = I1 � I2.
Given these likelihoods we can de�ne the similarity score

S(I1; I2) between a pair of images directly in terms of the
intrapersonal a posteriori probability as given by Bayes
rule:

S = P (
Ij�)

=
P (�j
I)P (
I)

P (�j
I)P (
I) + P (�j
E)P (
E)
(2)

where the priors P (
) can be set to re
ect speci�c
operating conditions (e.g., number of test images vs. the
size of the database) or other sources of a priori knowledge
regarding the two images being matched. Additionally, this
particular Bayesian formulation casts the standard face
recognition task (essentially an M -ary classi�cation prob-
lem for M individuals) into a binary pattern classi�cation
problem with 
I and 
E . This much simpler problem
is then solved using the maximum a posteriori (MAP)
rule | i.e., two images are determined to belong to the
same individual if P (
I j�) > P (
E j�), or equivalently, if
S(I1; I2) >

1
2
.
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2.1 Density Modeling

One di�culty with this approach is that the intensity
di�erence vector is very high-dimensional, with � 2 RN

and N = O(104). Therefore we typically lack su�cient
independent training observations to compute reliable 2nd-
order statistics for the likelihood densities (i.e., singular
covariance matrices will result). Even if we were able
to estimate these statistics, the computational cost of
evaluating the likelihoods is formidable. Furthermore, this
computation would be highly ine�cient since the intrinsic
dimensionality or major degrees-of-freedom of � for each
class is likely to be signi�cantly smaller than N .
Recently, an e�cient density estimation method was

proposed by Moghaddam & Pentland [6] which divides

the vector space RN into two complementary subspaces
using an eigenspace decomposition. This method relies on
a Principal Components Analysis (PCA) [4] to form a low-
dimensional estimate of the complete likelihood which can
be evaluated using only the �rst M principal components,
where M << N . This decomposition is illustrated in
Figure 1 which shows an orthogonal decomposition of the
vector space RN into two mutually exclusive subspaces:
the principal subspace F containing the �rst M principal
components and its orthogonal complement �F , which
contains the residual of the expansion. The component in
the orthogonal subspace �F is the so-called \distance-from-
feature-space" (DFFS), a Euclidean distance equivalent to
the PCA residual error. The component of � which lies
in the feature space F is referred to as the \distance-in-
feature-space" (DIFS) and is a Mahalanobis distance for
Gaussian densities.
As shown in [6], the complete likelihood estimate can

be written as the product of two independent marginal
Gaussian densities

P̂ (�j
) =

2
66664

exp

 
�

1
2

MX
i=1

y
2
i

�i

!

(2�)M=2

MY
i=1

�
1=2

i

3
77775 �
2
4 exp

�
�

�
2(�)

2�

�
(2��)(N�M)=2

3
5

= PF (�j
) P̂ �F (�j
)
(3)

where PF (�j
) is the true marginal density in F , P̂ �F (�j
)
is the estimated marginal density in the orthogonal comple-
ment �F , yi are the principal components and �

2(�) is the
residual (or DFFS). The optimal value for the weighting
parameter � is then found to be simply the average of the
�F eigenvalues

� =
1

N �M

NX
i=M+1

�i (4)

We note that in actual practice, the majority of the
�F eigenvalues are unknown but can be estimated, for
example, by �tting a nonlinear function to the available
portion of the eigenvalue spectrum and estimating the
average of the eigenvalues beyond the principal subspace.

3 Experiments

To test our recognition strategy we used a collection of
images from the FERET face database. This collection of

DIFS

F

F
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Figure 1: (a) Decomposition of RN into the principal sub-
space F and its orthogonal complement �F for a Gaussian
density, (b) a typical eigenvalue spectrum and its division
into the two orthogonal subspaces.

images consists of hard recognition cases that have proven
di�cult for all face recognition algorithms previously tested
on the FERET database. The di�culty posed by this
dataset appears to stem from the fact that the images were
taken at di�erent times, at di�erent locations, and under
di�erent imaging conditions. The set of images consists
of pairs of frontal-views (FA/FB) and are divided into
two subsets: the \gallery" (training set) and the \probes"
(testing set). The gallery images consisted of 74 pairs of
images (2 per individual) and the probe set consisted of 38
pairs of images, corresponding to a subset of the gallery
members. The probe and gallery datasets were captured
a week apart and exhibit di�erences in clothing, hair and
lighting (see Figure 2).

Before we can apply our matching technique, we need to
perform an a�ne alignment of these facial images. For this
purpose we have used an automatic face-processing system
which extracts faces from the input image and normalizes
for translation, scale as well as slight rotations (both in-
plane and out-of-plane). This system is described in detail
in [6] and uses maximum-likelihood estimation of object
location (in this case the position and scale of a face and the
location of individual facial features) to geometrically align
faces into standard normalized form as shown in Figure 3.
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(a) (b)

Figure 2: Examples of FERET frontal-view image pairs
used for (a) the Gallery set (training) and (b) the Probe
set (testing).
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Figure 3: The face alignment system

All the faces in our experiments were geometrically aligned
and normalized in this manner prior to further analysis.

3.1 Eigenface Matching

As a baseline comparison, we �rst used an eigenface
matching technique for recognition [9]. The normalized
images from the gallery and the probe sets were projected
onto a 100-dimensional eigenspace and a nearest-neighbor
rule based on a Euclidean distance measure was used to
match each probe image to a gallery image. We note
that this method corresponds to a generalized template-
matching method which uses a Euclidean norm type of
similarity S(I1; I2), which is restricted to the principal
component subspace of the data. A few of the lower-
order eigenfaces used for this projection are shown in
Figure 4. We note that these eigenfaces represent the
principal components of an entirely di�erent set of images
| i.e., none of the individuals in the gallery or probe
sets were used in obtaining these eigenvectors. In other
words, neither the gallery nor the probe sets were part of
the \training set." The rank-1 recognition rate obtained
with this method was found to be 84% (64 correct matches
out of 76), and the correct match was always in the
top 10 nearest neighbors. Note that this performance is
better than or similar to recognition rates obtained by any

Figure 4: Standard Eigenfaces.

algorithm tested on this database, and that it is lower (by
about 10%) than the typical rates that we have obtained
with the FERET database [5]. We attribute this lower
performance to the fact that these images were selected
to be particularly challenging. In fact, using an eigenface
method to match the �rst views of the 76 individuals
in the gallery to their second views, we obtain a higher
recognition rate of 89% (68 out of 76), suggesting that
the gallery images represent a less challenging data set
since these images were taken at the same time and under
identical lighting conditions.

3.2 Bayesian Matching

For our probabilistic algorithm, we �rst gathered training
data by computing the intensity di�erences for a training
subset of 74 intrapersonal di�erences (by matching the two
views of every individual in the gallery) and a random sub-
set of 296 extrapersonal di�erences (by matching images of
di�erent individuals in the gallery), corresponding to the
classes 
I and 
E, respectively.
It is interesting to consider how these two classes are

distributed, for example, are they linearly separable or
embedded distributions? One simple method of visualizing
this is to plot their mutual principal components | i.e.,

perform PCA on the combined dataset and project each
vector onto the principal eigenvectors. Such a visualization
is shown in Figure 5(a) which is a 3D scatter plot of
the �rst 3 principal components. This plot shows what
appears to be two completely enmeshed distributions, both
having near-zero means and di�ering primarily in the
amount of scatter, with 
I displaying smaller intensity
di�erences as expected. It therefore appears that one
can not reliably distinguish low-amplitude extrapersonal
di�erences (of which there are many) from intrapersonal
ones.
However, direct visual interpretation of Figure 5(a) is

very misleading since we are essentially dealing with low-
dimensional (or \
attened") hyper-ellipsoids which are
intersecting near the origin of a very high-dimensional
space. The key distinguishing factor between the two
distributions is their relative orientation. Fortunately, we
can easily determine this relative orientation by performing
a separate PCA on each class and computing the dot
product of their respective �rst eigenvectors. This analysis
yields the cosine of the angle between the major axes
of the two hyper-ellipsoids, which was found to be 124�,
implying that the orientation of the two hyper-ellipsoids
is quite di�erent. Figure 5(b) is a schematic illustration
of the geometry of this con�guration, where the hyper-
ellipsoids have been drawn to approximate scale using the
corresponding eigenvalues.

3.3 Dual Eigenfaces

We note that the two mutually exclusive classes 
I and

E correspond to a \dual" set of eigenfaces as shown in
Figure 6. Note that the intrapersonal variations shown in
Figure 6-(a) represent subtle variations due mostly to ex-
pression changes (and lighting) whereas the extrapersonal
variations in Figure 6-(b) are more representative of general
eigenfaces which code variations such as hair color, facial
hair and glasses. Also note the overall qualitative similarity
of the extrapersonal eigenfaces to the standard eigenfaces
in Figure 4. This suggests the basic intuition that intensity
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Figure 5: (a) Distribution of the two classes in the �rst 3 principal components (circles for 
I , dots for 
E) and (b)
schematic representation of the two distributions showing orientation di�erence between the corresponding principal
eigenvectors.

(a)

(b)

Figure 6: \Dual" Eigenfaces: (a) Intrapersonal, (b)
Extrapersonal

di�erences of the extrapersonal type span a larger vector
space similar to the volume of facespace spanned by
standard eigenfaces, whereas the intrapersonal eigenspace
corresponds to a more tightly constrained subspace. It
is the representation of this intrapersonal subspace that
is the critical part of formulating a probabilistic measure
of facial similarity. In fact our experiments with a larger
set of FERET images have shown that this intrapersonal
eigenspace alone is su�cient for a simpli�ed maximum

likelihoodmeasure of similarity (see Section 3.4).

Finally, we note that since these classes are not linearly
separable, simple linear discriminant techniques (e.g., us-
ing hyperplanes) can not be used with any degree of relia-
bility. The proper decision surface is inherently nonlinear
(quadratic, in fact, under the Gaussian assumption) and
is best de�ned in terms of the a posteriori probabilities |
i.e., by the equality P (
Ij�) = P (
Ej�). Fortunately, the
optimal discriminant surface is automatically implemented
when invoking a MAP classi�cation rule.

Having analyzed the geometry of the two distributions,
we then computed the likelihood estimates P (�j
I) and

P (�j
E) using the PCA-based method outlined in Sec-
tion 2.1. We selected principal subspace dimensions of
MI = 10 and ME = 30 for 
I and 
E , respectively.
These density estimates were then used with a default
setting of equal priors, P (
I) = P (
E), to evaluate the a
posteriori intrapersonal probability P (
I j�) for matching
probe images to those in the gallery.
Therefore, for each probe image we computed probe-

to-gallery di�erences and sorted the matching order, this
time using the a posteriori probability P (
Ij�) as the
similarity measure. This probabilistic ranking yielded an
improved rank-1 recognition rate of 89.5%. Furthermore,
out of the 608 extrapersonal warps performed in this
recognition experiment, only 2% (11) were misclassi�ed as
being intrapersonal | i.e., with P (
Ij�) > P (
Ej�).

3.4 The 1996 FERET Competition
Results

This approach to recognition has produced a signi�cant
improvement over the accuracy we obtained using a stan-
dard eigenface nearest-neighbor matching rule. The proba-
bilistic similarity measure was used in the September 1996
FERET competition (with subspace dimensionalities of
MI =ME = 125) and was found to be the top-performing
system by a typical margin of 10-20% over the other
competing algorithms [7] (see Figure 7). Figure 8 shows
the performance comparison between standard eigenfaces
and the Bayesian method from this test. Note the 10% gain
in performance a�orded by the new Bayesian similarity
measure. Similarly, Figure 9 shows the recognition results
for \duplicate" images which were separated in time by
up to 6 months (a much more challenging recognition
problem) which shows a 30% improvement in recognition
rate with Bayesian matching. Thus we note that in
both cases (FA/FB and duplicates) the new probabilistic
similarity measure has e�ectively halved the error rate of
eigenface matching.
We have recently experimented with a more simpli�ed

probabilistic similarity measure which uses only the in-
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Figure 7: Cumulative recognition rates for frontal FA/FB
views for the competing algorithms in the FERET 1996
test. The top curve (labeled \MIT Sep 96") corresponds
to our Bayesian matching technique. Note that second
placed is standard eigenface matching (labeled \MIT Mar
95").

trapersonal eigenfaces with the intensity di�erence � to
formulate a maximum likelihood (ML) matching technique
using

S
0 = P (�j
I) (5)

instead of the maximum a posteriori (MAP) approach de-
�ned by Equation 2. Although this simpli�ed measure has
not yet been o�cially FERET tested, our own experiments
with a database of size 2000 have shown that using S0

instead of S results in only a minor (2%) de�cit in the
recognition rate while cutting the computational cost by
a factor of 1/2 (requiring a single eigenspace projection as
opposed to two).

0.70

0.80

0.90

1.00

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

MIT-Stand. August 1996
MIT-Stand. March 1995
Gallery    Probes
  831       780

0 10 20 30 40

Rank

Figure 8: Cumulative recognition rates for frontal FA/FB
views with standard eigenface matching and the newer
Bayesian similarity metric.

4 Conclusions

We have proposed a novel technique for direct visual
matching of images for the purposes of recognition and
search in a large face database. Speci�cally, we have argued
in favor of a probabilisticmeasure of similarity, in contrast
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Figure 9: Cumulative recognition rates for frontal dupli-
cate views with standard eigenface matching and the newer
Bayesian similarity metric.

to simpler methods which are based on standard L2 norms
(e.g., template matching [2]) or subspace-restricted norms
(e.g., eigenspace matching [9]). This technique is based on
a Bayesian analysis of image di�erences which leads to a
very useful measure of similarity.

The performance advantage of our probabilistic match-
ing technique has been demonstrated using both a small
database (internally tested) as well as a large (800+)
database with an independent double-blind test as part
of ARPA's September 1996 \FERET" competition, in
which Bayesian similarity out-performed all competing
algorithms (at least one of which was using an LDA/Fisher
type method). We believe that these results clearly demon-
strate the superior performance of probabilistic matching
over eigenface, LDA/Fisher and other existing techniques.

This probabilistic framework is particularly advanta-
geous in that the intra/extra density estimates explicitly
characterize the type of appearance variations which are
critical in formulating a meaningful measure of similarity.
For example, the deformations corresponding to facial
expression changes (which may have high image-di�erence
norms) are, in fact, irrelevant when the measure of sim-
ilarity is to be based on identity. The subspace density
estimation method used for representing these classes
thus corresponds to a learning method for discovering the
principal modes of variation important to the classi�cation
task. Furthermore, by equating similarity with the a
posteriori probability we obtain an optimal non-linear
decision rule for matching and recognition. This aspect
of our approach di�ers signi�cantly from recent methods
which use simple linear discriminant analysis techniques
for recognition (e.g., [8, 3]). Our Bayesian (MAP) method
can also be viewed as a generalized nonlinear (quadratic)
version of Linear Discriminant Analysis (LDA) [3] or
\FisherFace" techniques [1]. The computational advantage
of our approach is that there is no need to compute and
store an eigenspace for each individual in the gallery (as
required with LDA). One (or at most two) eigenspaces are
su�cient for probabilistic matching and therefore storage
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and computational costs are �xed and do not increase with
the size of the database (as with LDA/Fisher methods).
Finally, the results obtained with the simpli�ed ML

similarity measure (S0 in Eq. 5) suggest a computationally
equivalent yet superior alternative to standard eigenface
matching. In other words, a likelihood similarity based on
the intrapersonal density P (�j
I) alone is far superior to
nearest-neighbor matching in eigenspace while essentially
requiring the same number of projections. For complete-
ness (and a slightly better performance) however, one
should use the a posteriori similarity S in Eq. 2, at twice
the computational cost of standard eigenfaces.
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