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Abstract

We propose a probabilistic similarity measure for direct
image matching based on a Bayesian analysis of image
deformations. We model two classes of variation in object
appearance: intra-object and extra-object. The probability
density functions for each class are then estimated from
training data and used to compute a similarity measure
based on the a posteriori probabilities. Furthermore, we
use a novel representation for characterizing image di�er-
ences using a deformable technique for obtaining pixel-wise
correspondences. This representation, which is based on a
deformable 3D mesh in XYI-space, is then experimentally
compared with two simpler representations: intensity dif-
ferences and optical 
ow. The performance advantage of
our deformable matching technique is demonstrated using
a typically hard test set drawn from the US Army's FERET
face database.

1 Introduction

Current approaches to image matching for visual object
recognition and image database retrieval often make use
of simple image similarity metrics such as Euclidean
distance or normalized correlation, which correspond to
a standard template-matching approach to recognition.
For example, in its simplest form, the similarity measure
S(I1; I2) between two images I1 and I2 can be set to be
inversely proportional to the norm jjI2�I1jj. Such a simple
formulation su�ers from two major drawbacks: it requires
precise alignment of the objects in the image and does not
exploit knowledge of which type of variations are critical
(as opposed to incidental) in expressing similarity. In
this paper, we formulate a probabilistic similarity measure
which is based on the probability that the image-based dif-
ferences, denoted by d(I1; I2), are characteristic of typical
variations in appearance of the same object. For example,
for purposes of face recognition, we can de�ne two classes
of facial image variations: intrapersonal variations 
I
(corresponding, for example, to di�erent facial expressions
of the same individual) and extrapersonal variations 
E
(corresponding to variations between di�erent individuals).
Our similarity measure is then expressed in terms of the
probability

S(I1; I2) = P (d(I1; I2) 2 
I) = P (
Ijd(I1; I2)) (1)

where P (
Ijd(I1; I2)) is the a posteriori probability
given by Bayes rule, using estimates of the likelihoods
P (d(I1; I2)j
I) and P (d(I1; I2)j
E) which are derived from
training data using an e�cient subspace method for density
estimation of high-dimensional data [9].

Furthermore, we use a novel representation for d(I1; I2)
which combines both the spatial (XY) and grayscale (I)
components of the image in a uni�ed XYI framework
(unlike previous approaches which essentially treat the
shape and texture components independently, e.g., [3,
4, 7, 2]). Speci�cally, I1 is modeled as a physically-
based deformable 3D surface (or manifold) in XYI-space
which deforms in accordance with attractive \physical
forces" exerted by I2. The dynamics of this system are
e�ciently solved for using the analytic modes of vibration
[10], yielding a 3D correspondence �eld for warping I1
into I2. In addition, we use the parametric representation,

d(I1; I2) = ~U, where ~U is the modal amplitude spectrum
of the resultant deformation [12]. This manifold matching
technique can be viewed as a more general formulation for
image correspondence which, unlike optical 
ow, does not
require a constant brightness assumption [5].1

Finally, we experimentally compare our deformable
matching technique with two alternative (non-deformable)
methods: one using intensity di�erences with d(I1; I2) =
I2 � I1, and a standard correspondence method using op-
tical 
ow with d(I1; I2) = flow(I1; I2) where flow(I1; I2)
is the vector 
ow �eld between I1 and I2. We note that
these two methods can be viewed as degenerate cases of our
general XYI correspondence method: the former assumes
XY correspondences and makes the I di�erence explicit,
whereas the latter assumes comparable I components and
makes the XY variations explicit. Our experimental results
have con�rmed our basic intuition that the fully deformable
XYI warping method yields the best characterization of
d(I1; I2), at least as far as recognition is concerned. The
advantage of our method over optical 
ow is key, since
this simpler method relies all too heavily on the constant
brightness assumption and is prone to failure when there
are large grayscale variations between the images of di�er-
ent individuals (e.g., presence/absence of facial hair).

2 XYI Image Warping

In previous work [12], we formulated an image matching
technique based on a 3D surface representation of an image
I(x;y) | i.e., as the surface (x; y; I(x; y)) as shown, for
example, in Figure 1 | and developed an e�cient method
to warp one image onto another using a physically-based
deformation model. In this section we brie
y review the
mathematics of this approach (for further details the reader

1In fact, by simply disabling the I component of our
deformations we can obtain a standard 2D deformable
mesh which yields correspondences similar to an optical

ow technique with thin-plate regularizers.
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Figure 1: An image and its XYI surface representation

is referred to [11, 12]).
The intensity surface is modeled as a deformable mesh

and is governed by Lagrangian dynamics [1] :

M�U+C _U+KU = F(t) (2)

where U = [: : : ;�xi;�yi;�zi; : : :]
T is a vector storing

nodal displacements, M, C and K are respectively the
mass, damping and sti�ness matrices of the system, and F
is the external force. In warping one image onto a second
(reference) image, the external force at each node Mi of
the mesh points is the vector to the closest 3D point Pi in
the reference surface:

F(t) = [: : : ;
���!
MiPi(t); : : :]

T (3)

The �nal correspondence (and consequently the resultant
XYI-warp) between two images is obtained by solving the
governing equation above. Figure 2 shows a schematic
representation of the deformation process. Note that the
external forces (dashed arrows) do not necessarily corre-
spond to the �nal displacement �eld of the surface. The
elasticity of the surface provides an intrinsic smoothness
constraint for computing the �nal displacement �eld.
We note that this formulation provides an interesting

alternative to optical 
ow methods for obtaining cor-
respondence, without the classical brightness constraint
[5]. Indeed, the brightness constraint corresponds to a
particular case of our formulation where the closest point

Pi has to have the same intensity as Mi | i.e.,
���!
MiPi is

parallel to the XY plane. We do not make that assumption
here.
Solutions of the governing equation are typically

obtained using an eigenvector-based modal decomposi-
tion [13, 11, 10]. In particular, the vibration modes �(i) of
the previous deformable surface are the vector solutions of
the eigenproblem :

K� = !
2
M� (4)

where !(i) is the i-th eigenfrequency of the system. Solving
the governing equations in the modal basis leads to scalar
equations where the unknown ~u(i) is the amplitude of mode
i [1]

�~u(i) + ~ci _~u(i) + !(i)2~u(i) = ~fi(t) i = 1; : : : ; 3N: (5)

The closed-form expression of the displacement �eld is then
given by

U �

PX
i=1

~u(i)�(i) (6)

x

S’

S

I(x)

Figure 2: A cross-section of the intensity surface S being pulled
towards S0 by image forces

with P � 3N , which means that only P scalar equations of
the type of (5) need to be solved. The modal superposition
equation (6) can be seen as a Fourier expansion with high-
frequencies neglected [10]. In our formulation, however, we
make use of the analytic modes [10, 12], which are known
sine and cosine functions for speci�c surface topologies

�(p; p0) = [: : : ; cos
p�(2i� 1)

2n
cos

p0�(2j � 1)

2n0
; : : :]T (7)

These analytic expressions avoid costly eigenvector decom-
positions and furthermore allow the total number of modes
to be easily adjusted for the application.
The above modal analysis technique represents a coor-

dinate transform from the nodal displacement space to the
modal amplitude subspace:

~U = �
T
U (8)

where � is the matrix of analytic modes �(p; p0) and
~U is the resultant vector of modal amplitudes which
encodes the type of deformations which characterize the
di�erence between the two images. In addition, once we
have solved for the resultant 3D displacement �eld we
can then warp the original image onto the second in the
XYI space and then render a resultant 2D image using
simple computer graphics techniques. Figure 3 shows an
example illustrating this warping process. We note that
the warped image I1!2 is only an incidental by-product
of our correspondence method. Since our main goal is
image matching we are primarily interested in the modal

amplitude spectrum ~U for expressing d(I1; I2).

3 Analysis of Deformations

We now consider the problem of characterizing the type
of deformations which occur when matching two images
in a face recognition task. We de�ne two distinct and
mutually exclusive classes: 
I representing intrapersonal
variations between multiple images of the same individual
(e.g., with di�erent expressions and lighting conditions),
and 
E representing extrapersonal variations which result
when matching two di�erent individuals. We will assume
that both classes are Gaussian-distributed and seek to
obtain estimates of the likelihood functions P (~Uj
I) and

P (~Uj
E) for a given deformation's modal amplitude vector
~U.
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Figure 3: Example of XYI warping two images.

Given these likelihoods we can de�ne the similarity score
S(I1; I2) between a pair of images directly in terms of the
intrapersonal a posteriori probability as given by Bayes
rule:

S(I1; I2) = P (
Ij~U)

=
P (~Uj
I)P (
I)

P (~Uj
I)P (
I) + P (~Uj
E)P (
E)

(9)

where the priors P (
) can be set to re
ect speci�c
operating conditions (e.g., number of test images vs. the
size of the database) or other sources of a priori knowledge
regarding the two images being matched. Additionally, this
particular Bayesian formulation casts the standard face
recognition task (essentially an M -ary classi�cation prob-
lem for M individuals) into a binary pattern classi�cation
problem with 
I and 
E . This simpler problem is then
solved using the maximum a posteriori (MAP) rule | i.e.,
two images are determined to belong to the same individual

if P (
Ij~U) > P (
Ej~U), or equivalently, if S(I1; I2) >
1
2
.

3.1 Statistical Modeling of Modes

One di�culty with this approach is that the modal

amplitude vectors are high-dimensional, with ~U 2 RN

with N = O(103). Therefore we typically lack su�cient
independent training observations to compute reliable 2nd-
order statistics for the likelihood densities (i.e., singular
covariance matrices will result). Even if we were able
to estimate these statistics, the computational cost of
evaluating the likelihoods is formidable. Furthermore, this
computation would be highly ine�cient since the intrinsic

dimensionality or major degrees-of-freedom of ~U for each
class is likely to be signi�cantly smaller than N .

Recently, an e�cient density estimation method was
proposed by Moghaddam & Pentland [9] which divides

the vector space RN into two complementary subspaces
using an eigenspace decomposition. This method relies on
a Principal Components Analysis (PCA) [6] to form a low-
dimensional estimate of the complete likelihood which can
be evaluated using only the �rst M principal components,
where M << N . This decomposition is illustrated in
Figure 4 which shows an orthogonal decomposition of the
vector space RN into two mutually exclusive subspaces:
the principal subspace F containing the �rst M principal
components and its orthogonal complement �F , which
contains the residual of the expansion. The component in
the orthogonal subspace �F is the so-called \distance-from-
feature-space" (DFFS), a Euclidean distance equivalent to

the PCA residual error. The component of ~U which lies
in the feature space F is referred to as the \distance-in-
feature-space" (DIFS) and is a Mahalanobis distance for
Gaussian densities.

As shown in [9], the complete likelihood estimate can
be written as the product of two independent marginal
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Figure 4: (a) Decomposition of RN into the principal subspace
F and its orthogonal complement �F for a Gaussian density, (b) a
typical eigenvalue spectrum and its division into the two orthogonal
subspaces.
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where PF (~Uj
) is the true marginal density in F , P̂ �F (~Uj
)
is the estimated marginal density in the orthogonal comple-

ment �F , yi are the principal components and �2(~U) is the
residual (or DFFS). The optimal value for the weighting
parameter � is simply the average of the �F eigenvalues

� =
1

N �M

NX
i=M+1

�i (11)

We note that in actual practice, the majority of the
�F eigenvalues are unknown but can be estimated, for
example, by �tting a nonlinear function to the available
portion of the eigenvalue spectrum and estimating the
average of the eigenvalues beyond the principal subspace.

(a) (b)

Figure 5: Examples of FERET frontal-view image pairs used for (a)
the Gallery set (training) and (b) the Probe set (testing).
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Figure 6: The face alignment system

4 Experiments

To test our recognition strategy we used a collection of
images from the FERET face database. This collection of
images consists of hard recognition cases that have proven
di�cult for all face recognition algorithms previously tested
on the FERET database. The di�culty posed by this
dataset appears to stem from the fact that the images were
taken at di�erent times, at di�erent locations, and under
di�erent imaging conditions. The set of images consists
of pairs of frontal-views and are divided into two subsets:
the \gallery" (training set) and the \probes" (testing set).
The gallery images consisted of 74 pairs of images (2 per
individual) and the probe set consisted of 38 pairs of
images, corresponding to a subset of the gallery members.
These images are shown in Figure 5.
Before we can apply our deformable matching technique,

we need to perform a rigid alignment of these facial images.
For this purpose we have used an automatic face-processing
system which extracts faces from the input image and
normalizes for translation, scale as well as slight rotations
(both in-plane and out-of-plane). This system is described
in detail in Moghaddam &Pentland [9] and uses maximum-
likelihood estimation of object location (in this case the
position and scale of a face and the location of individual
facial features) to geometrically align faces into standard
normalized form as shown in Figure 6. All the faces in our
experiments were geometrically aligned and normalized in

Figure 7: The �rst 8 normalized eigenfaces.
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Figure 8: Examples of (a) intrapersonal and (b) extrapersonal facial warps.

this manner prior to further analysis.

4.1 Matching with Eigenfaces

As a baseline comparison, we �rst used an eigenface match-
ing technique for recognition. The normalized images
from the gallery and the probe sets were projected onto
a 100-dimensional eigenspace and a nearest-neighbor rule
based on a Euclidean distance measure was used to match
each probe image to a gallery image.2 A few of the
lower-order eigenfaces used for this projection are shown
in Figure 7. We note that these eigenfaces represent
the principal components of an entirely di�erent set of
images | i.e., none of the individuals in the gallery or
probe sets were used in obtaining these eigenvectors. In
other words, neither the gallery nor the probe sets were
part of the \training set." The rank-1 recognition rate
obtained with this method was found to be 84% (64 correct
matches out of 76), and the correct match was always in
the top 10 nearest neighbors. Note that this performance is
better than or similar to recognition rates obtained by any
algorithm tested on this database, and that it is lower (by
about 10%) than the typical rates that we have obtained
with the FERET database [8]. We attribute this lower
performance to the fact that these images were selected
to be particularly challenging. In fact, using an eigenface
method to match the �rst views of the 76 individuals
in the gallery to their second views, we obtain a higher
recognition rate of 89% (68 out of 76), suggesting that

2We note that this method corresponds to a generalized
template-matching method which uses a Euclidean norm
type of similarity S(I1; I2), which is restricted to the
principal component subspace of the data.

the gallery images represent a less challenging data set
since these images were taken at the same time and under
identical lighting conditions.

4.2 Matching with XYI Deformations

For our probabilistic algorithm, we �rst gathered training
data by computing the modal amplitude spectra for a
training subset of 74 intrapersonal warps (by matching the
two views of every individual in the gallery) and a random
subset of 296 extrapersonal warps (by matching images of
di�erent individuals in the gallery), corresponding to the
classes 
I and 
E , respectively. An example of each of
these two types of warps is shown in Figure 8.
It is interesting to consider how these two classes are

distributed, for example, are they linearly separable or
embedded distributions? One simple method of visualizing
this is to plot their mutual principal components | i.e.,
perform PCA on the combined dataset and project each
vector onto the principal eigenvectors. Such a visualization
is shown in Figure 9(a) which is a 3D scatter plot of the
�rst 3 principal components. This plot shows what appears
to be two completely enmeshed distributions, both having
near-zero means and di�ering primarily in the amount of
scatter, with 
I displaying smaller modal amplitudes as
expected. It therefore appears that one can not reliably
distinguish low-amplitude extrapersonal warps (of which
there are many) from intrapersonal ones.
However, direct visual interpretation of Figure 9(a) is

very misleading since we are essentially dealing with low-
dimensional (or \
attened") hyper-ellipsoids which are
intersecting near the origin of a very high-dimensional
space. The key distinguishing factor between the two
distributions is their relative orientation. Fortunately, we
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Figure 9: (a) distribution of the two classes in the �rst 3 principal components (circles for 
I , dots for 
E) and (b) schematic representation
of the two distributions showing orientation di�erence between the corresponding principal eigenvectors.
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Figure 10: Total number of misclassi�ed extrapersonal matches

(with P (
I j~U) > 0:5) as a function of the principal subspace
dimensionalities MI and ME.

can easily determine this relative orientation by performing
a separate PCA on each class and computing the dot
product of their respective �rst eigenvectors. This analysis
yields the cosine of the angle between the major axes
of the two hyper-ellipsoids, which was found to be 68�,
implying that the orientation of the two hyper-ellipsoids
is quite di�erent. Figure 9(b) is a schematic illustration
of the geometry of this con�guration, where the hyper-
ellipsoids have been drawn to approximate scale using the
corresponding eigenvalues.

We note that since these classes are not linearly sep-
arable, simple linear discriminant techniques (e.g., using
hyperplanes) can not be used with any degree of reliabil-
ity. The proper decision surface is inherently nonlinear
(quadratic, in fact, under the Gaussian assumption) and is
best de�ned in terms of the a posterioriprobabilities | i.e.,

by the equality P (
Ij~U) = P (
Ej~U). Fortunately, the
optimal discriminant surface is automatically implemented
when invoking a MAP classi�cation rule.

Having analyzed the geometry of the two distributions,

we then computed the likelihood estimates P (~Uj
I) and

P (~Uj
E) using the PCA-based method outlined in Sec-
tion 3.1. We selected principal subspace dimensions of
MI = 10 and ME = 30 for 
I and 
E , respectively.
These density estimates were then used with a default
setting of equal priors, P (
I) = P (
E), to evaluate the a

posteriori intrapersonal probability P (
Ij~U) for matching
probe images to those in the gallery.

In order to avoid an unnecessarily large number of XYI
warps, we only matched a probe image to the top 10
gallery images retrieved by the eigenface method. This
signi�cantly reduces the computational cost of our system,
since computing eigenface similarity scores is negligible
compared to computing XYI warps (the former takes
several milliseconds whereas the latter takes approximately
20 seconds on an HP 735 workstation).

Therefore, for each probe image we computed a set of 10
probe-to-gallery warps and re-sorted the matching order,

this time using the a posteriori probability P (
Ij~U) as
the similarity measure. This probabilistic ranking yielded
an improved rank-1 recognition rate of 92% (70 out of
76). Furthermore, out of the 608 extrapersonal warps
performed in this recognition experiment, only 2% (11)
were misclassi�ed as being intrapersonal | i.e., with

P (
Ij~U) > P (
E j~U).

We also analyzed the sensitivity of our Bayesian match-
ing technique with respect to the principal subspace di-
mensionalities MI and ME , which are used in estimating

the likelihoods P (~Uj
I) and P (~Uj
E). The higher we
set these parameters the more accurate an estimate of the
likelihoods we obtain, while also requiring more principal
projections. These parameters therefore represent an accu-
racy vs. complexity tradeo� in our Bayesian approach. To
quantify this tradeo�, we repeated the probe set recogni-
tion experiment while varying both parameters and noted
that the recognition rate never dropped below 79%, even
when the two subspaces used in estimating the likelihoods
were as low as one-dimensional. However, we noted that
the total number of extrapersonal matches which were

6



XYI-warp I-di� XY-
ow

Mean Correct Recognition Rate 86.8 % 85.9 % 82.3 %
Max Correct Recognition Rate 92.1 % 89.5 % 86.8 %
Mean Number of False Matches 10 14 1
Max Number of False Matches 115 155 53

Figure 11: Performance of Bayesian classi�er with three di�erent data representations: full XYI-warp, intensity di�erences (I-di�) and
optical 
ow (XY-
ow). Results are mean/maximum values over nearly 2000 experimental trials with varying MI and ME.

misclassi�ed as being intrapersonal | i.e., P (
Ij~U) >

P (
Ej~U) | varied in a principled way with the subspace
dimensionalities. This variation is shown in Figure 10 and
is clearly the type of behavior one would expect: the total
number of misclassi�ed matches decreases with increasing
subspace dimensionalities. From the �gure, it is apparent
that these errors are more sensitively dependent on MI ,
the dimensionality of the intrapersonal subspace (possibly
because this class has a much lower intrinsicdimensionality
and its distribution can be modeled using fewer principal
eigenvectors).

4.3 Matching with Optical Flow and
Intensity Di�erences

To compare the e�cacy of our deformable representation
for d(I1; I2) (i.e., the modal amplitudes of an XYI-warp),
we next applied our Bayesian matching technique on
the alternative representations: intensity di�erences and
optical 
ow. The particular optical 
ow algorithm used
in our experiment was that of Wang & Adelson [14]. For
each method, the eigenspace analysis was used to derive
corresponding density estimates for the intra/extra classes
and recognition proceeded exactly as described in the
previous section.

Since it is di�cult to compare recognition and false
match rates directly (due to the di�erent dimensionalities
of d(I1; I2) in each case) we systematically varied the
dimensions of the principal subspaces MI and ME , as in
Figure 10 for each method and analyzed the performance
in terms of % correct recognition and the number of false
matches. Table 11 shows the mean and maximum values
computed over the nearly 2,000 di�erent combinations of
MI and ME for the three di�erent methods: full XYI-
warp, intensity di�erences (I-di�) and optical 
ow (XY-

ow). These results indicate that XYI-warps are in fact
the best representation for classi�cation purposes, with
intensity di�erences being second and optical 
ow being
the least e�ective representation. We believe the reason
optical 
ow is so ine�ective is because it has no intensity
information encoded in the representation and also since
it essentially yields \garbage" for the extrapersonal class
(due to the inability of obtaining good correspondences
between two di�erent individuals). Notice how the number
of false matches, however, is least with optical 
ow,
possibly because it is quite easy to discriminate between
the (essentially \garbage") 
ow �eld of an extrapersonal
warp and that of an intrapersonal one. Also note that in
terms of false matches, intensity di�erences seem to yield
worse results than XYI-warps.

5 Conclusions

We have proposed an alternative technique for direct
visual matching of images for purposes of recognition and
database search. Speci�cally, we have argued in favor of a
probabilistic measure of similarity, in contrast to simpler
methods which are based on standard L2 norms (e.g.,
template matching) or subspace-restricted norms (e.g.,
eigenspace matching). This probabilistic framework is also
advantageous in that the intra/extra density estimates
explicitly characterize the type of appearance variations
which are critical in formulating a meaningful measure of
similarity. For example, the deformations corresponding
to facial expression changes (which may have high image-
di�erence norms) are, in fact, irrelevant when the measure
of similarity is to be based on identity. The subspace den-
sity estimation method used for representing these classes
thus corresponds to a learning method for discovering the
principal modes of variation important to the classi�cation
task. Furthermore, by equating similarity with the a
posteriori probability P (
Ijd(I1; I2), we obtain an optimal
non-linear decision rule for matching and recognition. This
aspect of our approach di�ers from methods which use
linear discriminant analysis techniques for visual object
recognition (e.g., [15]).

Furthermore, we have experimentally shown that our
deformable XYI warping method for obtaining pixel cor-
respondences does indeed lead to an e�ective representa-
tion for d(I1; I2), especially when compared with simpler
methods such as intensity di�erences and optical 
ow. In
fact, these methods can essentially be viewed as limiting
cases of our general XYI warping method and therefore
lack full correspondence: the intensity di�erence method
requires pre-established spatial correspondence between
I1 and I2, whereas optical 
ow assumes that I1 and I2
only di�er by an XY deformation. The XYI warping
method, on the other hand, makes no such assumptions
and e�ciently solves for both types of correspondences
in a uni�ed framework. The resultant modal amplitude
spectra of these deformations will therefore encode both
shape (spatial) and texture (intensity) variations between
the two images. The experimental results indicate that a
d(I1; I2) representation based on full XYI correspondence
(i.e., precise alignment/correspondence) does in fact lead
to the best overall recognition performance.
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