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Abstract

We describe a novel approach for image matching
based on deformable intensity surfaces. In this
approach, the intensity surface of the image
is modeled as a deformable 3D mesh in the
(x;y; I(x;y)) space. Each surface point has 3
degrees of freedom, thus capturing �ne surface
changes. A set of representative deformations
within a class of objects (e.g. faces) are sta-
tistically learned through a Principal Compo-
nents Analysis, thus providing a priori knowledge
about object-speci�c deformations. We demon-
strate the power of the approach by examples
such as image matching and interpolation of
missing data. Moreover this approach dramat-
ically reduces the computational cost of solving
the governing equation for the physically based
system by approximately three orders of magni-
tude.

1 Introduction

In recent years, computer vision research has witnessed
a growing interest in eigenvector analysis and subspace
decomposition methods [15]. This general analysis frame-
work lends itself to several closely related formulations
in object modeling and recognition which employ the
principal modes or characteristic degrees-of-freedom for de-
scription. The identi�cation and parametric representation
of a system in terms of these principal modes is at the
core of recent advances in physically-based modeling [20,
17] and parametric descriptions of shape [7, 2, 11]. On
the other hand, view-based eigentechniques have recently
provided some of the best results in object recognition [21,
19].
In this paper, we propose a new method which combines

both the physically-based modes of vibration and the
statistically-based modes of variation. In view of some
recent critiques of physical modeling (e.g. [4]) our moti-
vation here is to ground physically-based models in actual
real-world statistics in order to obtain a more realistic and
data-driven model for the underlying phenomenon [13, 6].
Furthermore, we seek to unify the shape and texture

components of an image in a single compact mathematical
framework. Current work in the area of image-based object
modeling deals with the shape (2D) and texture (grayscale)
components of an image in an independant manner [3,
5]. Our novel representation combines both the spatial
(XY) and grayscale (I) components of the image into a 3D
surface (or manifold) and then e�ciently solves for a dense

correspondance map in the XY I space. This \manifold
matching" technique can be viewed as a more general
formulation for image correspondance which, unlike optical
ow, does not require a constant brightness assumption.
In principal, any two image manifolds can be matched

in this way (though sometimes erroneously), therefore we
must further constrain the space of allowable manifold
deformations to speci�c object classes (eg., frontal views
of faces). These characteristic deformations (or \principal
warps") are learned through a statistical Principal Com-
ponents Analysis (PCA) [10] which identi�es the principal
subspace in which the �nal correspondance �eld must
lie. Since the Karhunen-Loeve Transform (KLT) [12] in
PCA corresponds to a unitary linear change of basis,
which can be appended to the modal transform used in
solving the physical system, we can ultimately derive a
compact reduced-order form of the governing equation
which combines both the dynamics of the physical system
and the \learned" deformations which were observed in
actual training data.

2 Deformable Intensity Surfaces for
Image Matching

Our idea of using intensity surfaces for matching and
recognition comes from the observation that the transfor-
mation of shape to intensity is quasi-linear under controlled
lighting conditions ; in other terms, the intensity of the 2D
image reects the actual 3D shape. Our system focuses
on matching and recognition in the 3D space de�ned by
(x;y; I(x;y)), that we will call the XY I space (see [18] for
details).
In our formulation, deforming the intensity surface of

image1 into the one of image2 in XY I takes place in 5
steps :

1. Reduce, if necessary, the number of graylevels in
image1 and image2 down to the same number g of
graylevels (typically g = 32).

2. Initialize the deformable surface S as a subsampling
of the intensity surface of image1.

3. Convert image2 to its 3D binary representation,
image3.

4. Compute Euclidean distance maps at each voxel of
image3 [8, 22].

5. Let S deform dynamically in image3 with the external
force derived from the distance maps created at step
2.

Note that steps 1 to 4 are pre-processing steps. Steps 1
and 2 provide respectively intensity and spatial smoothing
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Figure 1: Intensity surface S being pulled towards S0 by image forces

of the image. The dynamic process of step 5 is described
in [17] ; to sum up, the intensity surface S is modeled as
a deformable mesh of size N = n � n

0 nodes, ruled by
Lagrangian dynamics :

M�U+C _U+KU = F(t) (1)

where U = [: : : ;�xi;�yi;�zi; : : :]
T is a vector storing

nodal displacements, M, C and K are respectively the
mass, damping and sti�ness matrices of the system, and
F is the external (or \image") force. The above equation
is of order 3N .
At each node Mi of the mesh, the image force points

to the closest point Pi in the 3D binary image image3
[17]. Figure 1 shows a representation of the deformation
process. Note that the external forces (dashed arrows) do
not necessarily correspond to the �nal displacement �eld
of the surface since the closest point Pi is updated at
each time iteration. The elasticity of the surface provides
an intrinsic smoothness constraint for computing the �nal
displacement �eld.
Note that our formulation provides an interesting al-

ternative to optical ow methods, without the classical
brightness constraint [9]. Indeed, the brightness constraint
corresponds to a particular case of our formulation1 where
the closest point Pi has to have the same intensity as Mi

(
���!
MiPi is parallel to the XY plane). We do not make that
assumption here.
The vibration modes �(i) of the previous deformable

surface are the vector solutions of the eigenproblem [1] :

K� = !
2
M� (2)

where !(i) is the i-th eigenfrequency of the system. Solving
the governing equations in the modal basis leads to scalar
equations where the unknown ~u(i) is the amplitude of mode
i :

�~u(i) + ~ci _~u(i) + !(i)
2
~u(i) = ~fi(t) i = 1; : : : ; 3N: (3)

The closed-form expression of the displacement �eld is
now :

U �
PX

i=1

~u(i)�(i) (4)

1In fact, by simply disabling the I component of our
deformations we can obtain a standard 2D deformable
mesh which yields correspondances similar to an optical
ow technique with thin-plate regularizers.

with P � 3N , which means that only P scalar equations of
the type of (3) need to be solved. The modal superposition
equation (4) can be seen as a Fourier expansion with high-
frequencies neglected [16].
We make use of the analytic expressions of the modes

which are known sine and cosine functions for speci�c
surface topologies. For quadrilateral surface meshes that
have plane topology (which is the case of the intensity
surfaces), the eigenfrequencies of the system are [16] :

!
2(p; p0) = 4K=M (sin2

p�

2n
+ sin2

p
0
�

2n0
) (5)

K is the sti�ness of each spring, M the mass of each node,
p and p0 are the mode parameters. The modes of vibration
are :

�(p; p0) = [: : : ; cos
p�(2i� 1)

2n
cos

p
0
�(2j � 1)

2n0
; : : :]T (6)

where i = 1; : : : ; n and j = 1; : : : ; n0. These analytic
expressions avoid the call to costly eigenvector-extraction
routines ; moreover, they allow the total number of modes
to be easily adjusted.

3 Statistical Modeling

In theory, our deformable intensity surface can undergo any
possible deformation. Thus, it seems interesting to learn
the deformations of a speci�c class of objects and add them
as constraints into our system. This is an important step
for guiding the deformations of our mesh when performed
within a speci�c object class and also allows us to deal with
occlusions and missing data, as we shall see later.
Our approach to learning the space of allowable man-

ifold deformations particular to a speci�c object class

 (eg., frontal faces) is that of unsupervised learning.
Particularly, we perform a PCA on a selected training
set of deformations in order to recover the principal
components of the warps. This approach is actually part
of a more complete statistical formulation for estimating
the probability density function of these warps in the high-

dimensional vector space ~U 2 RP (see [14]). The estimated

class-conditional density P (~Uj
) can be ultimately used
in a Bayesian framework for a variety of tasks such
as regression, interpolation, inference and classi�cation.
However, in this paper, we have concentrated mainly on
the dimensionality-reduction aspect of PCA in order to
obtain a lower-dimensional subspace in which to solve for
the manifold correspondance �eld.

Given a training set of suitable warp vectors f~Utg for
t = 1:::NT , the principal warps are obtained by solving the
eigenvalue problem

� = E
T�E (7)

where � is the covariance matrix of the training set, E
is the eigenvector matrix of � and � is the corresponding
diagonal matrix of eigenvalues. The unitary matrix E de-
�nes a coordinate transform (rotation) which decorrelates
the data and makes explicit the invariant subspaces of the
matrix operator �. In PCA, a partial KLT is performed
to identify the largest-eigenvalue eigenvectors and obtain

a principal component feature vector Û = ETM (~U� ~U0),

where ~U0 the mean warp vector and EM is a submatrix
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of E containing the principal eigenvectors. This KLT

can be seen as a linear transformation Û = T (~U) :

RP ! RL which extracts a lower-dimensional subspace
of the KL basis corresponding to the maximal eigenvalues.
These principal components preserve the major linear
correlations in the data and discard the minor ones.2

By ranking the eigenvectors of the KL expansion with
respect to their eigenvalues and selecting the �rst L prin-
cipal components we form an orthogonal decomposition of
the vector space RP into two mutually exclusive and com-
plementary subspaces: the principal subspace (or feature

space) fEigLi=1 containing the principal components and its
orthogonal complement �F = fEigPi=L+1. In this paper, we
simply discard the orthogonal subspace and work entirely
within the principal subspace fEigLi=1, hereafter referred
to simply by the matrix E.

4 Combining Physics and Statistics

Instead of solving the unconstrained governing equation
(1), we compute the projection of the unknown U (dimen-
sion : 3N = 3nn'), �rst into a modal sub-basis (dimension
P), then into a KL subspace (dimension L) :

U
��! ~U

E�! Û (8)

The �rst transform is the projection into the modal
subspace :

U = �~U (9)

The second transform is the projection of the modal
amplitudes into the PCA subspace :

~U = EÛ+ ~U0 (10)

Equations (9) and (10) yield the global transform :

U =	Û+U0 (11)

where the global transformation matrix 	 is simply :

	 = �E and U0 = �~U0. Note that 	 is a rectangular
orthogonal matrix.
By premultiplying equation (1) by 	T and changing

unknowns (equation (11)), we obtain :

	
T
M	

�̂
U+	

T
C	

_̂
U+	

T
K	Û =	

T
F(t)�	T

KU0

(12)
Let :

M̂ =	T
M	 (13)

Ĉ =	T
C	 (14)

K̂ =	T
K	 =ET
2

E (15)

F̂(t) = 	
T
F(t)�	

T
KU0 = 	

T
F(t)�E

T


2 ~U0 (16)

Note that the new mass, damping and sti�ness matrices, as
well as the new external force, do not involve heavy com-
putations because : (i) we make the common assumption
that M and C are scalar matrices (M = MI, C = CI

2In practice the number of training images NT is far
less than the dimensionality of the data, P , consequently
the covariance matrix � is singular. However, the �rst
L < NT eigenvectors can always be computed (estimated)
from NT samples using, for example, a Singular Value
Decomposition.
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Figure 3: Left : Eigenvalue spectrum of the PCA transform. Right :
Cumulative eigenvalue spectrum of the PCA transform

where M and C are mass and damping scalars) , and (ii)

2 is a diagonal matrix. We now end up with the standard

Lagrangian equation of unknown Û .

M̂
�̂
U+ Ĉ

_̂
U + K̂Û = F̂(t) (17)

Solving this equation for Û and then changing basis back to
the canonical basis (equation (11)) provides the estimated
displacement U. By using this method, the resulting
displacement U is constrained to lie along those learned
deformation modes that are characteristic of the object
class.

5 Experimental Results

We conduct our experiments with facial imagery. The
manifold matching technique described in this paper re-
quires rough alignment of the two input images in order
to function properly. In our experiments, this alignment
was obtained using an automatic face-processing system
which extracts faces from the input image and normalizes
for translation, scale and slight rotations (both in-plane
and out-of-plane). This system is described in detail in
[14].
For the learning phase of our technique, we choose a set

of 50 faces to be warped into a reference face. Each of these
faces has a N = 128�128 resolution, and the manifolds are
matched in a modal subspace whose dimension is suitably
chosen P = 3 � 1282=42 = 3072 [18]. We then perform
a Principal Components Analysis on the spectra of these
warps.
Figure 2 shows the modes of variation along individual

KL-eigenvectors extracted from the learning set. For

example, we can see that
�!
E1 represents change in global

headshape (as well as the size of the eyes). Eigenvectors
�!
E2

and
�!
E3 represent a change in the chin size and forehead,

respectively. Higher-order eigenvectors, for example
�!
E10

represent subtler variations in facial appearance (e.g. eye
shape).
By looking at the KL-eigenvalues, it is easy to draw the

percentage of the data variance that is captured versus the
number of eigenvalues. Figure 3 shows that 90% of the data
is adequately captured by L = 25 principal eigenvectors.

5.1 Subspace Warps

Figure 4 shows an example of matching a test image to
that of the reference using both the unconstrained and
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Figure 2: Modes of variation of the manifold

Figure 4: From left to right : test image ; reference image ;
unconstrained warp in modal space ; constrained warp in KL-space

constrained warps. This basic example illustrates how a
dense correspondence �eld can be obtained between two
images from di�erent objects.

Figure 5 displays the modal spectrum and its reconstruc-
tion in the KL space. The total reconstruction error is
on the order of 4%, demonstrating that by solving the
reduced-order physical system (equation (12)), we have
not signi�cantly sacri�ced accuracy. In addition, solving
this equation requires considerably less computation. The
degrees of freedom in the original mesh were 3N = 3 �
128 � 128 � 50; 000. In the modal subspace, the degrees
of freedom were reduced to P = 3� 32 � 32 � 3; 000, and
�nally in the KL subspace, the degrees of freedom were
further reduced to L = 25, thus achieving a compression
factor of approximately 5000 : 1.
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Figure 5: Left : the original spectrum of the deformation. Right :
reconstruction of the spectrum in the KL-subspace.
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Figure 6: Top : we wish to warp the left image into the right image
Bottom : image warps ; left : in the real space. center : in the
unconstrained modal subspace. right : in the constrained principal
subspace

5.2 Interpolation of Missing data

One of the advantages of learned warps is that, during
the matching process, the deformations are constrained
for a speci�c object. Consequently, invalid deformations
arising out of missing data (e.g. object occlusion) are
automatically disallowed.
The �rst example illustrates an experiment where re-

gions of the face were occluded with a black bar (to
simulate occlusion or incomplete data), as shown in �gure
6 (top row). If we attempt an unconstrained warp in the
modal space, an invalid reconstruction will be obtained
(�gure 6 bottom left and center). On the other hand, if
the deformation is constrained by the learned modes, we
obtain a better reconstruction of the missing data as shown
in �gure 6 (bottom right). This example illustrates how
our principal warp formulation e�ectively functions as a
model-based image interpolant for a given class of objects.
The second example is similar in spirit to the �rst,

except where the missing data is replaced by an arbitrary
image region (in this case a texture), for example when one
object partially occludes another. Here once again we see
how the learned principal warps can yield a much better
reconstruction and interpolation of non-matching image
regions (�gures 7).

6 Conclusions

We have described a novel approach for image matching
based on deformable intensity surfaces. In this approach,
the intensity surface of the image is modeled as a de-
formable surface embedded in XY I space. Our approach is
thus a generalization of optical ow and deformable shape
matching methods (which consider only changes in XY ),
of statistical texture models such as \eigenfaces" (which
consider only changes in I an assume an already existing
XY correspondance), and of hybrid methods which treat
shape and texture separately and sequentially.
We have further shown how to tailor the space of

allowable XY I deformations to �t the actual variation
found in individual target classes. This was accomplished
by a statistical analysis of observed image-to-image de-
formations using a Principal Components Analysis. The

Figure 7: See caption of �gure 6

result is that the image deformation is restricted to the
subspace of physically-plausible deformations. In the
process, the dimensionality of the matching and the numer-
ical complexity of the governing equation are drastically
reduced.
By considering only the low-dimensional subspace of

plausible deformations, we make the image matching
process more robust and more e�cient. We in e�ect
\build in" statistical a priori knowledge about how the
object can vary in order to obtain the best image-to-image
match possible. To illustrate the power of this method we
have shown that we can interpolate missing data despite
occlusions and noise, and that we can use this method to
obtain very compact image descriptions.
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