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Abstract

We present an unsupervised technique for visual
learning which is based on density estimation
in high-dimensional spaces using an eigenspace
decomposition. Two types of density estimates
are derived for modeling the training data: a
multivariate Gaussian (for a unimodal distribu-
tion) and a multivariate Mixture-of-Gaussians
model (for multimodal distributions). These
probability densities are then used to formulate
a maximum-likelihood estimation framework for
visual search and target detection for automatic
object recognition. This learning technique is
tested in experiments with modeling and sub-
sequent detection of human faces and non-rigid
objects such as hands.

1 Introduction

The standard detection paradigm in image processing
is that of normalized correlation or template matching.
However this approach is only optimal in the simplistic
case of a deterministic signal embedded in additive white
Gaussian noise. When we begin to consider a target
class detection problem | e.g., �nding a generic human
face in a scene | we must incorporate the underlying
probability distribution of the object. Subspace methods
and eigenspace decompositions are particularly well-suited
to such a task since they provide a compact and parametric
description of the object's appearance and also automat-
ically identify the degrees-of-freedom of the underlying
statistical variability.
In particular, the eigenspace formulation leads to a

powerful alternative to standard detection techniques such
as template matching or normalized correlation. The
reconstruction error (or residual) of the eigenspace de-
composition (referred to as the \distance-from-face-space"
in the context of the work with \eigenfaces" [14]) is an
e�ective indicator of similarity. The residual error is
easily computed using the projection coe�cients and the
original signal energy. This detection strategy is equivalent
to matching with a linear combination of eigentemplates
and allows for a greater range of distortions in the input
signal (including lighting, and moderate rotation and
scale). In a statistical signal detection framework, the
use of eigentemplates has been shown to yield superior
performance in comparison with standard matched �ltering
[6][10].
Pentland et al. [10] used this formulation for a modular

eigenspace representation of facial features where the corre-

sponding residual | referred to as \distance-from-feature-
space" (DFFS) | was used for localization and detection.
Given an input image, a saliency map was constructed
by computing the DFFS at each pixel. When using M

eigenvectors, this requires M convolutions (which can be
e�ciently computed using an FFT) plus an additional local
energy computation. The global minimum of this distance
map was then selected as the best estimate of the target
location.
We will show that the DFFS can be interpreted as an es-

timate of a marginal component of the probability density
of the object in image space and that a complete estimate
must also incorporate a second marginal density based on a
complementary \distance-in-feature-space" (DIFS). Using
the probability density of the object, we formulate the
problem of target detection in a maximum likelihood (ML)
estimation framework.

2 Density Estimation

Our approach to automatic visual learning is based on
density estimation. However, instead of applying estima-
tion techniques directly to the original high-dimensional
space of the imagery, we use an eigenspace decomposition
to yield a computationally feasible estimate. Speci�cally,

given a set of training images fxtg
NT
t=1, from an object

class 
, we wish to estimate the class membership or
likelihood function for this data | i.e., P (xj
). In this
section, we examine two density estimation techniques for
visual learning of high-dimensional data. The �rst method
is based on the assumption of a Gaussian distribution
while the second method generalizes to arbitrarily complex
distributions using a Mixture-of-Gaussians density model.
Before introducing these estimators we brie
y review
eigenvector decomposition as commonly used in principal
component analysis (PCA) [5].

2.1 Principal Component Imagery

Given a set of m-by-n images fItg
NT
t=1, we can form a

training set of vectors fxtg, where x 2 RN=mn, by
lexicographic ordering of the pixel elements of each image
It. The basis functions in a Karhunen-Loeve Transform
(KLT) [7] are obtained by solving the eigenvalue problem

� = �T�� (1)

where � is the covariance matrix of the data, � is the eigen-
vector matrix of � and � is the corresponding diagonal
matrix of eigenvalues. In PCA, a partial KLT is performed
to identify the largest-eigenvalue eigenvectors and obtain
a principal component feature vector y = �T

M ~x, where
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Figure 1: The principal subspace F and its orthogonal
complement �F for a Gaussian density.

~x = x��x is the mean-normalized image vector and �M is a
submatrix of � containing the principal eigenvectors. PCA
can be seen as a linear transformation y = T (x) : RN !
RM which extracts a lower-dimensional subspace of the
KL basis corresponding to the maximal eigenvalues. This
corresponds to an orthogonal decomposition of the vector
space RN into two mutually exclusive and complemen-
tary subspaces: the principal subspace (or feature space)

F = f�ig
M
i=1 containing the principal components and its

orthogonal complement �F = f�ig
N
i=M+1, as illustrated in

Figure 1.
In a partial KL expansion, the residual reconstruction

error is de�ned as

�
2(x) =

NX
i=M+1

y
2
i = jj~xjj2 �

MX
i=1

y
2
i (2)

and can be easily computed from the �rst M principal
components and the L2-norm of the mean-normalized im-
age ~x. Consequently the L2 norm of every element x 2 RN

can be decomposed in terms of its projections in these two
subspaces. We refer to the component in the orthogonal
subspace �F as the \distance-from-feature-space" (DFFS)
which is a simple Euclidean distance and is equivalent to
the residual error �2(x) in Eq.(2). The component of x
which lies in the feature space F is referred to as the
\distance-in-feature-space" (DIFS) but is generally not a
distance-based norm, but can be interpreted in terms of
the probability distribution of y in F .

2.2 Gaussian F -Space Densities

We begin by considering an optimal approach for estimat-
ing high-dimensional Gaussian densities. We assume that
we have (robustly) estimated the mean �x and covariance �
of the distribution from the given training set fxtg. Under
this assumption, the likelihood of a input pattern x is given
by

P (xj
) =
exp

�
� 1

2
(x� �x)T��1(x � �x)

�
(2�)N=2 j�j1=2

(3)

The su�cient statistic for characterizing this likelihood is
the Mahalanobis distance

d(x) = ~x
T��1~x (4)

where ~x = x � �x. Using the eigenvectors and eigenvalues
of � we can rewrite ��1 in the diagonalized form

d(x) = ~xT��1~x

= ~xT
�
���1�T

�
~x

= yT��1y

(5)

where y = �T~x are the new variables obtained by the
change of coordinates in a KLT. Because of the diagonal-
ized form, the Mahalanobis distance can also be expressed
in terms of the sum

d(x) =

NX
i=1

y2i

�i
(6)

We now seek to estimate d(x) using only the M principal
projections. Therefore, we formulate an estimator for d(x)
as follows

d̂(x) =

MX
i=1

y2i

�i
+

1

�

"
NX

i=M+1

y
2
i

#

=

MX
i=1

y2i

�i
+

1

�
�
2(x)

(7)

where the term in the brackets is the DFFS �2(x), which as
we have seen can be computed using the �rst M principal
components. We can therefore write the form of the

likelihood estimate based on d̂(x) as the product of two
marginal and independent Gaussian densities

P̂ (xj
) =

2
4 exp

�
�

1
2

P
M

i=1

y2
i
�i

�
(2�)M=2

Q
M

i=1
�
1=2

i

3
5 �
2
4exp

�
�

�2(x)
2�

�
(2��)(N�M)=2

3
5

= PF (xj
) P̂ �F (xj
)
(8)

where PF (xj
) is the true marginal density in F -space

and P̂ �F (xj
) is the estimated marginal density in the
orthogonal complement �F -space. The optimal value of
� can now be determined by minimizing a suitable cost
function J(�). From an information-theoretic point of
view, this cost function should be the Kullback-Leibler
divergence [3] between the true density P (xj
) and its

estimate P̂ (xj
)

J(�) = E

�
log

P (xj
)

P̂ (xj
)

�
(9)

Using the diagonalized forms of the Mahalanobis distance

d(x) and its estimate d̂(x) and the fact that E[y2i ] = �i , it
can be easily shown that

J(�) =
1

2

NX
i=M+1

�
�i

�
� 1 + log

�

�i

�
(10)

The optimal weight �� can be then found by minimizing
this cost function with respect to �. Solving the equation
@J

@�
= 0 yields

�
� =

1

N �M

NX
i=M+1

�i (11)
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Figure 2: The principal subspace F and its orthogonal
complement �F for an arbitrary density.

which is simply the arithmetic average of the eigenvalues in
the orthogonal subspace �F . In addition to its optimality,
�� also results in an unbiased estimate of the Mahalanobis

distance | i.e, E[d̂(x;��)] = E[d(x)]. What this derivation
shows is that once we select the M -dimensional principal
subspace F (as indicated, for example, by PCA), the

optimal density estimate P̂ (xj
) has the form of Eq.(8)
with � given by Eq.(11).

2.3 Multimodal F -space Densities

When the training set represents multiple views or multiple
objects under varying illumination conditions, the distribu-
tion of training views in F -space is no longer unimodal.
In fact the training data tends to lie on complex and
non-separable low-dimensional manifolds in image space
[1]. One way to tackle this multimodality is to build a
view-based (or object-based) formulation where separate
eigenspaces are used for each view [10]. Another approach
is to capture the complexity of these manifolds in a
universal or parametric eigenspace using splines [9], or local
basis functions [2].
If we assume that the �F -space components are Gaussian

and independent of the principal features in F (this would
be true in the case of pure observation noise in �F) we can

still use the separable form of the density estimate P̂ (xj
)
in Eq.(8) where PF (xj
) is now an arbitrary density P (y)
in the principal component vector y. Figure 2 illustrates
the decomposition, where the DFFS is the residual �2(x)
as before. The DIFS, however, is no longer a simple
Mahalanobis distance but can nevertheless be interpreted
as a \distance" by relating it to P (y) | e.g., as DIFS =
� log P (y).
The density P (y) can be estimated using a parametric

mixture model. Speci�cally, we can model arbitrarily
complex densities using a Mixture-of-Gaussians

P (yj�) =

NcX
i=1

�i g(y;�i;�i) (12)

where g(y; �;�) is an M -dimensional Gaussian density
with mean vector � and covariance �, and the �i are the
mixing parameters of the components, satisfying

P
�i = 1.

The mixture is completely speci�ed by the parameter � =

f�i; �i;�ig
Nc
i=1. Given a training set fytg

NT
t=1 the mixture

parameters can be estimated using the ML principle

�
�

= argmax

"
NTY
t=1

P (y
tj�)

#
(13)

This estimation problem is best solved using the
Expectation-Maximization (EM) algorithm [4]. The EM
algorithm is monotonically convergent in likelihood and
is thus guaranteed to �nd a local maximum in the total
likelihood of the training set. Further details of the EM
algorithm for estimation of mixture densities can be found
in [12].
Given our operating assumptions | that the training

data is truly M -dimensional (at most) and resides solely
in the principal subspace F with the exception of per-
turbations due to white Gaussian measurement noise, or
equivalently that the �F -space component of the data is
itself a separable Gaussian density | the estimate of the
complete likelihood function P (xj
) is given by

P̂(xj
) = P (yj��) P̂ �F (xj
) (14)

where P̂ �F (xj
) is a Gaussian component density based on
the DFFS, as before.

3 Maximum Likelihood Detection

The density estimate P̂ (xj
) can be used to compute a
local measure of target saliency at each spatial position
(i; j) in an input image based on the vector x obtained
by the lexicographic ordering of the pixel values in a local

neighborhood Rij | i.e., S(i; j; 
) = P̂ (xj
) where x is
the vectorized region Rij. The ML estimate of position of
the target 
 is then given by

(i; j)
ML

= argmax S(i; j; 
) (15)

Similarly, we can extend the parameter space to include
scale, resulting in multiscale saliency maps. The likelihood
computation is performed (in parallel) on linearly scaled

versions of the input image I(�) corresponding to a pre-
determined set of (linearly spaced) scales f�1; �2; � � ��ng

S(i; j; k; 
) = P̂ (xijk j
) (16)

where xijk is the vector obtained from a local subimage
in the multiscale representation. The ML estimate of the
spatial position and scale of the object is then de�ned as

(i; j; k)ML = argmax S(i; j; k; 
) (17)

4 Applications

The above ML detection technique has been tested in
the detection of complex natural objects including human
faces, facial features (e.g., eyes), as well as non-rigid and
articulated objects such as human hands. In this section
we will present several examples from these application
domains.

4.1 Faces

The eigentemplate approach to the detection of facial fea-
tures in \mugshots" was proposed in [10], where the DFFS
metric was shown to be superior to standard template
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Figure 3: (a) Examples of facial feature training templates
and (b) the resulting typical detections.
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Figure 4: Performance of an SSD, DFFS and a ML
detector.

matching for target detection. The detection task was the
estimation of the position of facial features (the left and
right eyes, the tip of the nose and the center of the mouth)
in frontal view photographs of faces at �xed scale. Figure 3
shows examples of facial feature training templates and
the resulting detections on the MIT Media Laboratory's
database of 7,562 \mugshots".
We have compared the detection performance of three

di�erent detectors on approximately 7,000 test images
from this database: a sum-of-square-di�erences (SSD)
detector based on the average facial feature (in this case
the left eye), an eigentemplate or DFFS detector and a ML
detector based on S(i; j; 
) as de�ned in section 3 and using
a unimodal F -space density as in section 2.2. Figure 4(a)
shows the receiver operating characteristic (ROC) curves
for these detectors, obtained by varying the detection
threshold independently for each detector. The DFFS and
ML detectors were computed based on a 5-dimensional
principal subspace. Since the projection coe�cients were
unimodal a Gaussian distribution was used in modeling
the true distribution for the ML detector as in section
2.2. Note that the ML detector exhibits the best detection
vs. false-alarm tradeo� and yields the highest detection
rate (of 95%). Indeed, at the same detection rate the ML

Figure 5: Examples of multiscale face detection.

(a) (b)

(c) (d)

Figure 7: (a) original image, (b) position and scale
estimate, (c) normalized head image, (d) position of facial
features.

detector has a false-alarm rate which is nearly 2 orders of
magnitude lower than the SSD.
We have also incorporated and tested the multiscale

version of the ML detection technique in a face detection
task. This multiscale head �nder was tested on the ARPA
FERET database where 97% of 2,000 faces were correctly
detected. Figure 5 shows examples of the ML estimate of
the position and scale on these images. The multiscale
saliency maps S(i; j; k; 
) were computed based on the

likelihood estimate P̂ (xj
) in a 10-dimensional principal
subspace using a Gaussian model (section 2.2). Note that
this detector is able to localize the position and scale of
the head despite variations in hair style and hair color, as
well as presence of sunglasses. Illumination invariance was
obtained by normalizing the input subimage x to a zero-
mean unit-norm vector.
This multiscale face detector has also been used as

the attentional component of an automatic system for
recognition and model-based coding of faces. The block
diagram of this system is shown in Figure 6 which consists
of a two-stage object detection and alignment stage, a
contrast normalization stage, and a feature extraction
stage whose output is used for both recognition and coding.
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Figure 6: The face processing system.

(a) (b) (c)

Figure 8: (a) aligned face, (b) eigenspace reconstruction
(85 bytes) (c) JPEG reconstruction (530 bytes).

Figure 7 illustrates the operation of the detection and
alignment stage on a natural test image containing a
human face.
The �rst step in this process is illustrated in Figure 7(b)

where the ML estimate of the position and scale of the
face are indicated by the cross-hairs and bounding box.
Once these regions have been identi�ed, the estimated
scale and position are used to normalize for translation
and scale, yielding a standard \head-in-the-box" format
image (Figure 7(c)). A second feature detection stage
operates at this �xed scale to estimate the position of 4
facial features: the left and right eyes, the tip of the nose
and the center of the mouth (Figure 7(d)). Once the facial
features have been detected, the face image is warped to
align the geometry and shape of the face with that of a
canonical model. Then the facial region is extracted (by
applying a �xed mask) and subsequently normalized for
contrast. The geometrically aligned and normalized image
(shown in Figure 8(a)) is then projected onto a custom set
of eigenfaces to obtain a feature vector which is then used
for recognition purposes as well as facial image coding.
Figure 8 shows the normalized facial image ex-

tracted from Figure 7(d), its reconstruction using a 100-
dimensional eigenspace representation (requiring only 85
bytes to encode) and a comparable non-parametric re-
construction obtained using a standard transform-coding
approach for image compression (requiring 530 bytes to
encode). This example illustrates that the eigenface
representation used for recognition is also an e�ective
model-based representation for data compression. The �rst
8 eigenfaces used for this representation are shown in
Figure 9.
Figure 10 shows the results of a similarity search in

an image database tool called Photobook [11]. Each face

Figure 9: The �rst 8 eigenfaces.

Figure 10: Photobook: FERET face database.

in the database was automatically detected and aligned
by the face processing system in Figure 6. The nor-
malized faces were then projected onto a 100-dimensional
eigenspace. The image in the upper left is the one searched
on and the remainder are the ranked nearest neighbors in
the FERET database. The top three matches in this case
are images of the same person taken a month apart and at
di�erent scales. The recognition accuracy (de�ned as the
percent correct rank-one matches) on a database of 155
individuals is 99% [8].

We have also extended the normalized eigenface repre-
sentation into an edge-based domain for facial description.
We simply run the normalized facial image through a
Canny edge detector to yield an edge-map. Unfortunately
binary edge maps, are highly uncorrelated with each other
due to their sparse nature, and therefore result in a very
high-dimensional principal subspace. Therefore, to reduce
the intrinsic dimensionality, we induced spatial correlation
via a di�usion process on the binary edge map, which
e�ectively broadens and \smears" the edges, yielding a
continuous-valued edge-map as shown in Figure 11(a).
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(a)

(b)

Figure 11: (a) Examples of combined texture/edge-based
face representations and (b) few of the resulting eigenvec-
tors.

(a)

(b)

Figure 12: (a) Examples of hand gestures and (b) their
di�used edge-based representation.

Such an edge-map is simply an alternative representation
which imparts mostly shape (as opposed to texture) in-
formation and has the distinct advantage of being less
susceptible to illumination changes. The recognition rate of
a pure edge-based normalized eigenface representation (on
the same database of 155 individuals) was found to be 95%
which is surprising considering that it utilizes what appears
to be (to humans at least) a rather impoverished represen-
tation. The slight drop in recognition rate is most likely
due to the increased dimensionality of this representation
space and its greater sensitivity to expression changes, etc.
Interestingly, we can combine both texture and edge-

based representations of the object by simply performing
a KL expansion on the augmented images shown in Fig-
ure 11. The resulting principal eigenvectors conveniently
decorrelate the joint representation and provide a basis set
which optimally spans both domains simultaneously. With
this bimodal representation, the recognition rate was found
to be 97%. Though still less than a normalized grayscale
representation, we believe a bimodal representation can
have distinct advantages for tasks other than recognition,
such as detection and image interpolation.

4.2 Hands

We have also applied our eigenspace density estimation
technique to articulated and non-rigid objects such as
hands. In this particular domain, however, the normalized

(a)

(b)

Figure 13: (a) A random assortment of hand gestures (b)
images ordered by similarity (left-to-right, top-to-bottom)
to the image at the upper left.

grayscale image is an unsuitable representation since, un-
like faces, hands are essentially textureless objects. Their
identity is characterized by the variety of shapes they
can assume. For this reason we have chosen an edge-
based representation of hand shapes which is invariant to
illumination, contrast and scene background. A training
video sequence of hand gestures was obtained against a
black background. The 2D contour of the hand was then
extracted using a Canny edge-operator and di�used as in
the case of facial edge maps (see Figure 12). We note
that this spatiotopic representation of shape is biologically
motivated and is di�erent from shape representations
which are based on computational considerations (e.g.,
Fourier descriptors and \snakes").

It is important to verify whether such a representation
is valid for modeling hand shapes. Therefore we tested
the di�used contour image representation in a recognition
experiment which yielded a 100% rank-one accuracy on the
375-frame image sequence containing multiple examples of
7 hand gestures. The matching technique was a nearest-
neighbor classi�cation rule in a 16-dimensional principal
subspace. Figure 13(a) shows some examples of the various
hand gestures used in this experiment. Figure 13(b) shows
the 15 images that are most similar to the \two" gesture
appearing in the top left. Note that the hand gestures
judged most similar are all objectively the same gesture.
Naturally, the success of such a recognition system is

critically dependent on the ability to �nd the hand (in any
of its articulated states) in a cluttered scene, to account for
its scale and to align it with respect to an object-centered
reference frame prior to recognition. This localization
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(a) (b)

Figure 14: (a) Distribution of training hand shapes (shown
in the �rst two dimensions of the principal subspace) (b)
Mixture-of-Gaussians representation using 10 components.

(a) (b) (c)

Figure 15: (a) Original grayscale image, (b) negative log-
likelihood map (at most likely scale) and (c) ML estimate
of position and scale superimposed on edge-map.

can be achieved with the same multiscale ML detection
paradigm used with faces, with the exception that the
underlying image representation of the hands is a di�used
edge map rather than the original grayscale image.
The probability distribution of hand shapes in this repre-

sentation was automatically learned using our eigenspace
density estimation technique. In this case, however, the
distribution of training data is multimodal due to the
di�erent hand shapes for each gesture. Therefore the
multimodal density estimation technique in section 2.3 was
used. Figure 14(a) shows a projection of the training
data on the �rst two dimensions of the principal subspace
F (de�ned in this case by M = 16) which exhibit the
underlying multimodality of the data. Figure 14(b) shows
a 10-component Mixture-of-Gaussians density estimate for
the training data. The parameters of this estimate were
obtained with 20 iterations of the EM algorithm. The
orthogonal �F -space component of the density was modeled
with a Gaussian distribution as in section 2.3.
The resulting complete density estimate P̂ (xj
) was

then used in a detection experiment on test imagery of
hand gestures against a cluttered background scene. In
accordance with our representation, the input imagery
was �rst pre-processed to generate a di�used edge map
and then scaled accordingly for a multiscale saliency
computation. Figure 15 shows two examples from the test
sequence, where we have shown the original image, the
negative log-likelihood saliency map, and the ML estimates
of position and scale. Note that these examples represent
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(b)

Figure 16: (a) Example of test frame containing a hand
gesture amidst severe background clutter and (b) ROC
curve performance contrasting SSD and ML detectors.

two di�erent hand gestures at slightly di�erent scales.

To quantify the performance of the ML detector on
hands we carried out the following experiment. The
original 375-frame video sequence of training hand gestures
was divided into 2 parts. The �rst (training) half of this
sequence was used for learning, including computation of
the KL basis and the subsequent EM clustering. For
this experiment we used a 5-component mixture in a 10-
dimensional principal subspace. The 2nd (testing) half of
the sequence was then embedded in the background scene,
which contains a variety of shapes. In addition, severe noise
conditions were simulated as shown in Figure 16(a).

We then compared the detection performance of an SSD
detector (based on the mean edge-based hand representa-
tion) and a probabilistic detector based on the complete
estimated density. The resulting negative-log-likelihood
detection maps were passed through a valley-detector to
isolate local minimum candidates which were then sub-
jected to a ROC analysis. A correct detection was de�ned
as a below-threshold local minimum within a 5-pixel radius
of the ground truth target location. Figure 16(b) shows
the performance curves obtained for the two detectors. We
note, for example, that at an 85% detection probability the
ML detector yields (on the average) 1 false alarm per frame,
where as the SSD detector yields an order of magnitude
more false alarms.
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5 Discussion

We have described a density estimation technique for
unsupervised visual learning which exploits the intrinsic
low-dimensionality of the training imagery to form a com-
putationally simple estimator for the complete likelihood
function of the object. Our estimator is based on a sub-
space decomposition and can be evaluated using only the
M -dimensional principal component vector. We have de-
rived the form for an optimal estimator and its associated
expected cost for the case of a Gaussian density. In contrast
to previous work on learning and characterization | which
uses PCA primarily for dimensionality reduction and/or
feature extraction | our method uses the eigenspace
decomposition as an integral part of estimating complete
density functions in high-dimensional image spaces. These
density estimates were then used in a maximum likelihood
formulation for target detection. The multiscale version of
this detection strategy was demonstrated in applications in
which it functioned as an attentional subsystem for object
recognition. The performance was found to be superior to
existing detection techniques in experimental results on a
large number of test data (on the order of thousands).
We conclude by noting that from a probabilistic per-

spective, the class-conditional density P (xj
) is the most
important data representation to be learned. This density
is the critical component in detection, recognition, predic-
tion, interpolation and general inference. For example,
having learned these densities for several object classes
f
1;
2; � � � ;
ng, one can invoke a Bayesian framework for
classi�cation and recognition:

P (
ijx) =
P (xj
i)P (
i)

nX
j=1

P (xj
j)P (
j)

(18)

Such a framework is also important in detection. In fact,
the ML detection framework can be extended using the
notion of a \not-class" �
, resulting in a posteriori saliency
maps of the form

P (
jx) =
P (xj
)P (
)

P (xj�
)P (�
) + P (xj
)P (
)
(19)

where now a maximum a posteriori (MAP) rule can be
used to estimate the position and scale of the object.
One di�culty with such a formulation is that the \not-
class" �
 is, in practice, too broad a category and is
therefore multimodal and very high-dimensional. One
possible approach to this problem is to use ML detection
to identify the particular subclass of �
 which has high
likelihoods (e.g., typical false alarms) and then to estimate
this distribution and use it in the MAP framework. This
can be viewed as a probabilistic approach to learning using
positive as well as negative examples. The use of negative
examples has been shown to be critically important in
building robust face detection systems [13].
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