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Abstract

We present a fully automatic system for 2D
model-based image coding of human faces for
potential applications such as video telephony,
database image compression, and face recogni-
tion. The system operates by locating a face in
the input image, normalizing its scale and geom-
etry and representing it in terms of a parametric
image model obtained with a Karhunen-Loeve
basis. This leads to a compact representation
of the face that can be used for both recogni-
tion as well as image compression. Good-quality
facial images are automatically generated using
approximately 100-bytes worth of encoded data.
The system has been successfully tested on a
database of nearly 2000 facial photographs.

1 Introduction

Model-based image coding of human faces has been pro-
posed as a means of achieving quality at reduced bit-rates
in applications such as video telephony. However, most
existing systems rely on complex and brittle methods for
the segmentation of the face from the background. It is
clear that the success of any facial image coder depends on
the ability to successfully segment the face from the scene
and the ability to represent the facial appearance in a com-
pact and parametric representation which is amenable to
low-bit rate compression. The Karhunen-Loeve (KL) or
principal component representation of 2D facial images is
one parametric image model which is especially attractive
from an image compression point-of-view: it yields statis-
tically uncorrelated coe�cients which are optimal in the
mean-square-error sense for reconstruction.
Our system is computationally simple and is able to lo-

cate a face in an input scene despite changes in head scale,
slight head tilts (< 15�), moderate lighting variations and
variable image contrast. This detection technique is based
on eigentemplates [5] and is a generalization of the standard
matched �lter formulation and uses the KL expansion of a
set of training faces. The use of an eigenspace formulation
in the detection stage naturally suggests a similar approach
for coding, but the detection system is general enough to
be of utility to any model-based facial coding system.
Portions of the face processing system described in this

paper were originally developed as part of a face recogni-
tion system [3]. The interface to the recognition system
consists of a browsing tool called Photobook which allows
the user to interactively search through the database based
on facial similarity. The user begins by selecting the types

of faces he/she wishes to examine; e.g., adult Caucasian
males. Photobook then presents the user with a screenful
of the selected type of images. The user can select a face
from among those presented and issue a search query. Pho-
tobook will then use the encoded parametric description
of that face (derived by techniques described later in this
paper) to search the entire database for possible matches.
The user is then presented with the top candidates sorted
by degree of similarity to the selected face. Figure 1 shows
an example of a Photobook query. The face at the up-
per left selected by the user; the remainder of the faces
are the most-similar faces amongst 575 images from the
FERET database. Note that the �rst four images (in the
top row) are all of the same person (taken a month apart
and exhibiting di�erent hairstyles, clothing, scale, etc.).
Previously, the face recognition system has achieved a 95%
recognition accuracy on the Media Lab database of 7,562
facial images [5].

2 KL Expansions for Facial Image
Coding

The use of the KL expansion for characterization of human
faces was �rst suggested by Sirovich & Kirby [7]. This
scheme was later extended by Turk & Pentland [8] and
others [4] to the problem of automatic face recognition.
Welsh & Shah [10] also demonstrated a low-bit rate com-
pression scheme for transmission of facial features such as
lips, using a KL expansion.
Most of these systems (with the exception of [8] and

later [5]) did not address the problem of detection, and
used manual registration of images for demonstrating the
concept. For a KL compression scheme to be useful in
real-life coding applications, the face must �rst be detected
and normalized prior to the computation of the expansion
coe�cients. This requires the ability to locate the face, es-
timate its scale and hence correct for positional and scale
variations. In addition, individual facial features (such as
eyes, nose and mouth) must be detected and used to ge-
ometrically normalize the shape of the face. Our systems
accomplishes these pre-processing steps using a series of
computationally simple image processing operations con-
sisting of linear �ltering, image warping, and point-wise
transforms.

3 Face Detection

The standard detection paradigm in image processing is
that of simple normalized correlation or template match-
ing. This approach however is only optimal in the case of
a deterministic signal embedded in white Gaussian noise.
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Figure 1: Photobook: an interactive image database tool

When we begin to consider a target class detection problem
| e.g., �nding a generic human face in a scene | we must
incorporate the underlying probability distribution of the
signal of interest. Subspace methods, such as Karhunen-
Loeve expansions, allow for the compact representation of
the statistical variability of the signal model and lead to
much more robust signal detection schemes.

Indeed, the eigenspace formulation leads to a powerful
alternative to simple template matching. The residual er-
ror in a KL expansion (referred to as the \distance-from-
face-space" in the context of \eigenfaces" [8]) is a an e�ec-
tive indicator of a match. The residual error is easily com-
puted using the projection coe�cients and original signal
energy. This detection strategy is equivalent to matching
with eigentemplates and allows for a greater range of distor-
tions in the input signal (including lighting, rotation and
scale). In a statistical signal detection framework, the use
of eigentemplates has been shown to yield superior perfor-
mance in comparison with standard matched �ltering [2].

Pentland et al. [5] used this same formulation for
eigenspace representation of facial features (e.g., eyes, noses
and mouths). In this domain, the equivalent \distance-
from-feature-space" (DFFS) can be e�ectively used for the
detection of visual features. Given an input image, a dis-
tance map is constructed by computing the DFFS at each
pixel. When using M eigenvectors, this requires M convo-
lutions (which can be e�ciently computed using an FFT)
plus an additional local energy computation. The global
minimum of this distance map is then selected as the best

Figure 2: Multiscale Face Detection

location of the target.

3.1 Multiscale Face Detection

This detection technique can be easily extended to a mul-

tiscale search by using a single set of eigentemplates (at
a �xed scale) and linearly remapping the input image
through a given range of scales and computing a separate
distance map at each scale. The estimate of the position
and scale is obtained by identifying the best global min-
imum among all scale-indexed distance maps. Figure 2
shows several examples of the resulting detections. The es-
timated center of the face (midpoint of the eyes) is marked
by crosshairs and the face scale is indicated by the dashed
rectangle. This image region is then rescaled and reposi-
tioned in a �xed reference frame for subsequent processing.
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Figure 3: (a) Examples of facial feature training templates
used and (b) the resulting typical detections.

3.2 Facial Feature Detection

In addition to whole-face detection, automatic detection of
facial features is also an important component for face pro-
cessing. Over the years, various strategies for facial feature
detection have been proposed, ranging from the early work
of Kanade with edge-map projections [1], to more recent
techniques using generalized symmetry operators [6] and
multilayer perceptrons [9]. In our face processing system
this task is critically important since after face detection,
the scale-normalized face must then be geometrically nor-
malized by aligning it with a canonical geometrical model.
The eigentemplate technique can be simply extended

to the detection and coding of facial features, yielding
eigeneyes, eigennoses and eigenmouths. In this eigenfea-
ture representation the equivalent \distance-from-feature-
space" (DFFS) can be e�ectively used for the detection of
facial features. Given an input image, a feature distance-
map is built by computing the DFFS at each pixel. When
using n eigenvectors, this requires n convolutions (which
can be e�ciently computed using an FFT) plus an ad-
ditional local energy computation. The global minimum
of this distance map is then selected as the best feature
match. The performance of the eigentemplate technique
was recently tested on a database of approximately 8,000
\mugshot" photographs, where it achieved a 94% detec-
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Figure 4: The face processing system.

tion rate showing an order of magnitude improvement over
standard template matching [5].
Our system conducts a parallel search for the eyes, nose

and mouth using separate sets of eigentemplates for each
feature. However, in order to rule out single-point fail-
ures in detecting a feature's location, multiple local min-
ima in each distance map are examined to determine the
one combination of candidates which represent the most
likely spatial con�guration of features (consistent with a

priori geometric constraints). The incorporation of ge-
ometrical constraints leads to a more robust method for
detecting facial features. Figure 3 shows several examples
of the training subimages used for computing the eigenfea-
tures and the resulting typical detections on novel images.
The ability to automatically locate a face, normalize for
scale and detect salient facial features leads naturally to
a modular or layered representation, where a coarse (low-
resolution) description of the whole head is augmented by
additional (higher-resolution) details in terms of salient fa-
cial features. This modularity in face description has dis-
tinct advantages for face coding in low-bit rate video tele-
conferencing. This detection system was recently tested on
the ARPA FERET face database where over two thousand
facial photographs were processed with 97% reliability [3].

4 System Description

The block diagram of our face processing and coding sys-
tem is shown in Figure 4. The �rst stage is a multiscale
search for a face. After the position and scale have been
identi�ed the image is warped (scaled) to center the face
at a standard scale. The feature detection stage then op-
erates on this scale-normalized image. Figure 5 illustrates
the results of the detection stages on an input image.
The coding power of the KL expansion is best exploited

when the facial images are spatially registered and nor-
malized with respect to lighting and contrast variations.
Therefore, the face is geometrically warped by aligning
the location of the detected facial features with those of
a standard model. Next the image is masked so as to only
include the interior of the face so as to concentrate the
descriptive power of the KL expansion on the most salient
parts of the face. In addition, after masking the image
is contrast-normalized to compensate for changing global
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Figure 5: (a) Input image, (b) face detection, (c) feature
detections

Figure 6: The KL basis functions for normalized faces.

illuminations as well as linear changes in the CCD camera's
gain and o�set.
Once the image is suitably normalized with respect to

individual geometry and contrast, it is projected onto a
set of eigenfaces. Figure 6 shows the �rst few eigenfaces
obtained from a KL expansion on an ensemble of 500 nor-
malized faces. In our system, the projection coe�cients
are used to index through a database to perform identity
veri�cation and recognition. In addition, For coding pur-
poses, these coe�cients are normalized by their standard
deviations (the square-roots of the eigenvalues computed
by the KL expansion) and quantized using a Lloyd-Max
quantizer for a Gaussian source. Since the coe�cients are
ranked, we also use a variable number of quantization levels
for di�erent coe�cients: the number of bits allocated to a
given coe�cient is proportional to its eigenvalue.
Figure 7 shows the normalized image, along with the

reconstruction obtained using an 85-byte coding of the
expansion coe�cients. In order to compare our model-
based compression scheme to a standard transform coder,
we have also shown the lowest-quality acceptable JPEG
compression of the normalized image (yielding a total of
540 bytes at a Q-factor of 2%).
Note that since all the transformations leading to the

normalized image are reversible (with the exception of the
masking), we can remap the reconstruction back into the
original image, placing it at the correct location, with the
correct scale and contrast. This leads to a partial face-
only coded image as shown in Figure 8, where an addi-
tional 30-bytes are used to encode the 6 a�ne parameters
of the inverse warp and the 2 parameters of the contrast
normalization step. This partial coded image (at a cost of
a mere 105-bytes) can then be used in conjunction with
the original image for a variety of possible image com-
pression schemes (e.g., error-coding of the facial region).
Note that this system leads very naturally to an attention-

based coding scheme where, for example, only the salient
region of the input image (i.e., that containing the face)
is coded with �delity and the remainder is transmitted
with a lossy compression scheme at low bit-rates. Such
a scheme will preserve the quality of the facial image (nec-

(a) (b) (c)

Figure 7: (a) Normalized face, (b) 85-byte KL reconstruc-
tion, (c) 540-byte JPEG reconstruction (Q = 2%).

(a) (b)

Figure 8: (a) Original image, (b) 105-byte facial-coded par-
tial image.

essary for recognition, etc.) while maintaining the reduced
bandwidth needed in limited-capacity transmissions.

Finally, we note that our current system is implemented
in general-purpose hardware (using standard UNIX work-
stations) and takes approximately 15 seconds to process an
image. The majority of the processing load is in perform-
ing the convolutions required in computing the eigenspace
projections. Therefore, with specialized image processing
hardware, real-time operation at video frame rates should
be feasible, especially in view of the fact that the temporal
continuity of the video stream can be exploited to limit the
search regions used by the detection subsystems from one
frame to the next.

5 Conclusions

We have described a system that automatically detects
faces and face features, and then maps them to a canonical
view (i.e., �xed position, scale, geometry and contrast)
suitable for model-based compression. The system has
been tested on more than 2,000 images, including wide
variations in scale, contrast, etc., and has achieved a de-
tection accuracy of 97%.
Our system is an unbalanced (asymmetric) coding

scheme, requiring modest computational resources at the
transmitter (mainly for the detection stages), but no more
than standard decoding power at the receiver. Face detec-
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tion and encoding requires approximately 15 seconds on
a modern computer workstation; the reconstruction of a
face image from its encoded representation requires less
than one-hundredth of a second.
The ability to normalize extrinsic variations caused by

scale and position mis-alignment, global illumination and
contrast changes, has allowed us to fully exploit the power
of the KL expansion for encoding di�erences in facial ge-
ometry between di�erent individuals. This facial detection
algorithm can also be used in conjunction with a conven-
tional coding scheme, allowing preferential bit allocation
to faces and facial features.
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