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Abstract

In this paper we describe experiments using
etgenfaces for recognition and interactive search
in the FERET face database. A recognition ac-
curacy of 99.35% is obtained using frontal views
of 155 individuals. This figure is consistent with
the 95% recognition rate obtained previously on
a much larger database of 7,562 “mugshots” of
approximately 3,000 individuals, consisting of a
mix of all age and ethnic groups. We also demon-
strate that we can automatically determine head
pose without significantly lowering recognition
accuracy; this is accomplished by use of a view-
based multiple-observer eigenspace technique. In
addition, a modular eigenspace description is
used which incorporates salient facial features
such as the eyes, nose and mouth, in an eigen-
featurelayer. This modular representation yields
slightly higher recognition rates as well as a more
robust framework for face recognition. In addi-
tion, a robust and automatic feature detection
technique using etgentemplates is demonstrated.

1 INTRODUCTION

In recent years considerable progress has been made on the
problems of face detection and recognition, especially in
the processing of “mug shots,” i.e., head-on face pictures
with controlled illumination and scale. The best results
have been obtained for 2-D, view-based techniques based
on either template matching (e.g., [2]), combined feature-
and-template matching (e.g., [1]) or matching using “eigen-
faces,” i.e. template matching using the Karhunen-Loeve
transformation of a set of face pictures (e.g., [11, 12, 5]).
However to date tests of these methods have been con-
fined to datasets of only a few hundred images. For real-
world applications, we must be able to reliably discriminate
among thousands of individuals. Moreover, the problem
of recognizing a human face from a general view remains
largely unsolved, because transformations such as position,
orientation, scale, and illumination cause the face’s appear-
ance to vary substantially. It is therefore important to ask
if we can extend these successful 2-D; view-based recogni-
tion approaches to large databases with more general view-
ing conditions.

In this paper we first explore how the eigenface tech-
nique of Turk and Pentland [12] scales when applied to
much larger recognition problems. We have recently ex-
tended the eigenface technique to a view-based and mod-
ular framework for automatic detection and recognition

[9]. The view-based formulation allows us to automati-
cally determine head orientation and scale. The modular
description allows for the incorporation of important facial
features such as eyes, nose and mouth. These extensions
account for variations in head orientation, scale, hairstyle,
and makeup, thus leading to a more robust face recognition
system. Although the application reported in this paper is
that of face recognition, the same technique can be applied
to recognition and detection of most rigid, roughly convex
objects. The general applicability of eigenvector decompo-
sition methods for appearance-based 3D object recognition
has recently been convincingly demonstrated by Murase
and Nayar [7].

2 PHOTOBOOK: A database tool

To date, most face recognition experiments have had at
most a few hundred faces. Thus how face recognition per-
formance scales with the number of faces is almost com-
pletely unknown. In order to have an estimate of the recog-
nition performance on much larger databases, we have con-
ducted tests on a Media Lab database of 7,562 images
of approximately 3,000 people. The eigenfaces for this
database were approximated using a principal components
analysis on a representative sample of 100 faces. Every
image in the database was then encoded by a projection
onto a 100-dimensional basis corresponding to the prin-
cipal eigenvectors of the training data. Recognition and
matching is then performed using a nearest-neighbor pat-
tern matching. In addition, each image was then annotated
(by hand) as to sex, race, approximate age, facial expres-
sion, and other salient features. Almost every person has at
least two images in the database; several people have many
images with varying expression, headwear, facial hair, etc.

Photobook is an X-windows browsing tool that allows
the user to interactively search through image databases
[8]. The user begins by selecting the types of faces they
wish to examine; e.g., FERET faces or caucasian males
from the Media Lab database of 7,562 images. This subset
selection is accomplished using an object-oriented database
to search through the face image annotations. Photobook
then presents the user with a screenful of the selected type
of images, the rest of the images can be viewed by “paging”
through the database. At any time the user can select
a face from among those presented, and Photobook will
then use the eigenvector description of that face to sort
the entire set of faces in terms of their similarity to the
selected face. Photobook then re-presents the user with
the face images, now sorted by similarity to the selected
face.

Figure 1(a) shows the typical results of such a similarity
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Figure 1: (a) The face at the upper left was selected by the user; the remainder of the faces are the 20 most-similar faces
found from among the entire 7, 562 individuals in the database. Similarity decreases left to right, top to bottom. (b) An
example using the FERET database; note the first four images are all of the same person.



search using the Media Lab face database. The face at
the upper left of each set of images was selected by the
user; the remainder of the faces are the next most-similar
faces from among the entire 7,562 Media Lab database.
Similarity decreases left to right, top to bottom. Figure
1(b) shows the typical results of such a similarity search
using the FERET database. The face at the upper left of
each set of images was selected by the user; the remainder
of the faces are the most-similar faces from the 575 frontal
views in the FERET database. Note that the first four
images (in the top row) are all of the same person (taken
a month apart and exhibiting different hairstyles). Note
that this database represents a more realistic application
scenario where position, scale, lighting and background are
not uniform. Consequently, an off-line pre-processing stage
is used to correct for translation, scale, and contrast. Once
the images are geometrically and photometrically normal-
ized, they can be used in the standard eigenface technique.
The entire searching and sorting operation takes less than
one second on a standard Sun Sparcstation, because each
face is described using only a very small number of eigen-
vector coefficients. Of particular importance is the ability
to find the same person despite wide variations in expres-
sion, hairstyle, image size, and eyewear.

2.1 Recognition Accuracy

An early version of our face recognition system has ob-
tained an accuracy of 95% on the Media Lab database of
7,562 frontal images of 3,000 people. Since this database
has accurate registration and alignment, no normalization
or pre-processing was used. This level of performance has
proven that the eigenface technique does indeed scale fa-
vorably with larger databases.

To assess the recognition accuracy of our new system
on the more challenging FERET database, we selected a
subset consisting of the images of the 150 people for which
all views were available. This subset of images includes
the most recent imagery in which lighting and scale were
approximately standardized. As in our previous work[9]
we have used a view-based recognition paradigm for the
multiple head orientations. This yields 5 separate eigen-
sapces, one for every available view (frontal, half left, half
right, profile left, profile right). Recognition and matching
are performed in each space as with the standard eigen-
face technique. Figure 2 shows the recognition accuracies
obtained with our system. Perhaps most important is the
case of frontal view versus frontal view, which is the tra-
ditional “mugshot” situation. The accuracy of 99.4 corre-
sponds to only one mistake in matching two frontal views
of 150 people. Furthermore, this performance corresponds
to completely automatic processing of the raw imagery.
The front-end to our eigenface recognition system consists
of several pre-processing stages which first detect and es-
timate the head location and scale, find the facial features
and then normalize the geometry of the face. These stages
correct for translation, scale, lighting, contrast, as well as
slight rotations in the image plane.

Surprisingly, we found that the accuracy obtained by
comparing left and right profiles, or left and right half
views, is much lower than might have been expected. We
believe there are two factors responsible for this decline in
recognition accuracy: facial assymetry and a lack of con-
sistency in head orientations in the left and right views.

Although human faces are generally bilaterally symmetric,
there are differences (confounded by hairstyle) which may
be a problem in matching opposite views. The latter fac-
tor is merely a lack of calibration in the image acquisition
which can not guarantee that a pair of left and right views
are at the same angular offset from frontal.

Note that because of the lack of multiple images in all
views, the off-frontal diagonal accuracies (profile vs. pro-
file, half vs. half) were estimated in a manner different
from the other entries. In these cases the data set is ge-
ometrically normalized according to ground truth data on
facial feature locations (eyes, nose mouth, etc.). These
normalized images are then treated as the training set, and
matched with automatically normalized images. The slight
variations between the manual and automatic alignment
procedures will therefore simulate two different images for
each person. The recognition rates obtained for this type
of simulated test are shown in parentheses.

3 HEAD ORIENTATION

Our approach to automatically determining head orienta-
tion is to build a view-based set of M separate eigenspaces,
each capturing the variation of the N individuals in a com-
mon view. The view-based eigenspace is essentially an ex-
tension of the eigenface technique to multiple sets of eigen-
vectors, one for each combination of scale and orientation.
One can think of this architecture as a set of parallel “ob-
servers” each trying to explain the image data with their
set of eigenvectors (see also Darrell and Pentland [3]).

In this view-based, multiple-observer approach, the first
step is to determine the location and orientation of the
target object by selecting the eigenspace which best de-
scribes the input image. This is accomplished by calcu-
lating the residual description error (the “distance-from-
face-space” metric [12]) using each viewspace’s eigenvec-
tors. Once the proper viewspace is determined, the image
is described using the eigenvectors of that viewspace, and
then recognized. We have evaluated this approach using
data similar to that shown in Figure 3. This data consists
of 189 images consisting of nine views of 21 people. The
nine views of each person were evenly spaced from —90° to
+90° along the horizontal plane. Data were provided by
Westinghouse Electronic Systems. The interpolation per-
formance was tested by training on a subset of the avail-
able views {+90°,+45°,0°} and testing on the interme-
diate views {£68°,+23°}. The average recognition rate
obtained was 92%.

4 EIGENFEATURES

The eigenface technique is easily extended to the descrip-
tion and coding of facial features, yielding “eigeneyes”,
“eigennoses” and “eigenmouths”. Eye-movement studies
indicate that these particular facial features represent im-
portant landmarks for fixation, especially in an attentive
discrimination task. Therefore we should expect an im-
provement in recognition performance by incorporating an
additional layer of description in terms of facial features.
This can be viewed as either a modular or layered repre-
sentation of a face, where a coarse (low-resolution) descrip-
tion of the whole head is augmented by additional (higher-
resolution) details in terms of salient facial features.
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Frontal 99 ok ok ok ok
Half left ok (87) 38 ok ok
Half right ok 38 (82) ok ok
Profile left ok ok ok (70) 32
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Figure 2: Percent correct recognitions for the FERET database.

Figure 3: Some of the images used to test accuracy at
face recognition despite wide variations in head orientation.
Average recognition accuracy was 92%, the orientation er-
ror had a standard deviation of 15°

This modularity in face description also has distinct ad-
vantages for face coding in teleconferencing. For exam-
ple, a layered representation consisting of the face and
eigenmouths has recently been implemented for low bit-
rate transmission of visual telephony by Welsh and Shah
[14]. In section 5, we will demonstrate the potential utility
of eigenfeatures for face recognition.

4.1 Detection of facial features

An important pre-processing step in an eigenvector recog-
nition system is that of registration. A face in an input im-
age must first be located and registered in a standard-size
frame before being processed. In addition to head detection
and tracking, automatic detection of facial features is also
an important component for face recognition. Over the
years, various strategies for facial feature detection have
been proposed, ranging from the early work of Kanade

with edge-map projections [4], to more recent techniques
using generalized symmetry operators [10] and multilayer
perceptrons [13].

By far, the standard detection paradigm in computer
vision 1s that of simple correlation or template matching.
The eigenspace formulation, however, leads to a powerful
alternative to simple template matching. The reconstruc-
tion error (or residual) of the principal component repre-
sentation (referred to as the “distance-from-face-space” in
the context of our earlier work [12]) is a an effective in-
dicator of a match. The residual error is easily computed
using the projection coefficients and signal energy. This
detection strategy is equivalent to matching with eigen-
templates and allows for a greater range of distortions in
the input signal (including lighting, rotation and scale). In
a statistical signal detection framework, the use of eigen-
templates has been shown to yield superior performance in
comparison with standard matched filtering [6].

In the eigenfeature representation the equivalent
“distance-from-feature-space” (DFFS) can be effectively
used for the detection of facial features. Given an input
image, a feature distance-map is built by computing the
DFFS at each pixel. When using n eigenvectors, this re-
quires n convolutions (which can be efficiently computed
using an FFT) plus an additional local energy computa-
tion. The global minimum of this distance map is then
selected as the best feature match.

4.2 Detection on a large database

The DFFS feature detector was also used for the auto-
matic detection and coding of the facial features in our
large database of 7,562 faces. The same representative
sample of 100 individuals used in computing the eigenfaces
was used to compute a set of corresponding eigenfeatures.
Figure 4(a) shows examples of the training templates used
for the facial features (left eye, right eye, nose and mouth).
The entire database was processed by using independent
detectors for each feature (with the DFFS computed based
on projection on the first 10 eigenvectors). The matches
were obtained by independently selecting the global mini-
mum in each of the four distance maps. Typical detections
are shown in Figure 4(b).

The DFFS metric associated with each detection can
be used in conjunction with a threshold — i.e., only the
global minima with a DFFS value less than the threshold
are declared to be a possible match. Consequently we can
characterize the detection vs. false-alarm tradeoff by vary-
ing this threshold and generating a receiver operating char-



Figure 4: (a) Examples of facial feature training templates
used and (b) the resulting typical detections.

acteristics (ROC) curve. Figure 5 shows the ROC curves
for the left eye using the first and first 10 eigenvectors
in the DFFS detector. A correct detection was defined
as a below-threshold global minimum within 5 pixels of
the mean left eye position. Similarly, a false alarm was
defined as a below-threshold detection located outside the
5-pixel radius. Global minima above the threshold were
undeclared. The peak performance of the DFFS detector
using the first 10 eigenvectors corresponds to a 94% detec-
tion rate at a false alarm rate of 6%. Conversely, at a zero
false-alarm rate, 52% of the eyes were correctly detected.
To calibrate the performance of the DFFS detector, we
have also shown the ROC curve corresponding to a stan-
dard sum-of-square-differences (SSD) template matching
technique. The templates used in this case were the mean
features in each case.

Note that the SSD can be considered a degenerate case
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Figure 5: ROC curve for left eye using DFFS detectors
with 1 and 10 eigenvectors. An SSD detector is shown for
comparison.

of a DFFS detector, corresponding to a zero-th order en-
coding — i.e., using only the mean vector for description.
The addition of the principal components results in incre-
mental improvements in detection performance, resulting
in a gradation of ROC curves similar to those shown in
Figure 5. Naturally, the incorporation of each additional
eigenvector means an extra correlation. However, the in-
crease in computational cost is linear with the number of
eigenvectors and is typically offset by the subsequent gain
in performance. In fact, as the ROC curves indicate, by us-
ing only the first eigenvector (at the cost of one additional
convolution over SSD) we have substantially increased de-
tection performance.

Finally, we note that the detection of facial features
can be made more robust by incorporating constraints on
the geometry of a face in terms of relative feature loca-
tions. These constraints can be used to guide the search for
matches and thus restrict the regions over which a DFFS
map is computed. This will not only reduce the number of
false alarms but will also significantly reduce the computa-
tional cost. Preliminary experiments with such constraints
indicate that the detection rate of mouths and noses can be
greatly improved by “anchoring” the search with respect
to more easily detected features, such as eyes.

5 MODULAR EIGENSPACES

With the ability to reliably detect facial features across a
wide range of faces, we can automatically generate a mod-
ular representation of a face. The utility of this layered
representation (eigenface plus eigenfeatures) was tested on
a small subset of our face database. We selected a represen-
tative sample of 45 individuals with two views per person,
corresponding to different facial expressions (neutral vs.
smiling). These set of images was partitioned into a train-
ing set (neutral) and a testing set (smiling). Since the dif-
ference in the facial expressions is primarily articulated in
the mouth, this particular feature was discarded for recog-



0.8 B

]
/

& , o

0.6 B
S ;roe
= /
5 X
o
(5]
j]
o

0.4r o - wholeface B

x - features

+ - combined
0.2 B

0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

# of Eigenvectors

Figure 6: Recognition rates for eigenfaces, eigenfeatures
and the combined modular representation.

nition purposes. Figure 6 shows the recognition rates as a
function of the number of eigenvectors for eigenface-only,
eigenfeature-only and the combined representation. What
is surprising is that (for this small dataset at least) the
eigenfeatures alone were sufficient in achieving an (asymp-
totic) recognition rate of 95% (equal to that of the eigen-
faces). More surprising, perhaps, is the observation that
in the lower dimensions of eigenspace, eigenfeatures out-
performed the eigenface recognition. Finally, by using the
combined representation, we gain a slight improvement in
the asymptotic recognition rate (98%). A similar effect has
recently been reported by Brunelli and Poggio [2] where the
cumulative normalized correlation scores of templates for
the face, eyes, nose and mouth showed improved perfor-
mance over the face-only templates.

A potential advantage of the eigenfeature layer is the
ability to overcome the shortcomings of the standard eigen-
face method. A pure eigenface recognition system can be
fooled by gross variations in the input image (hats, beards,
etc.). Figure 7(a) shows additional testing views of 3 indi-
viduals in the above dataset of 45. These test images are
indicative of the type of variations which can lead to false
matches: a hand near the face, a painted face, and a beard.
Figure 7(b) shows the nearest matches found based on a
standard eigenface classification. Neither of the 3 matches
correspond to the correct individual. On the other hand,
Figure 7(c) shows the nearest matches based on the eyes
and nose, and results in correct identification in each case.
This simple example illustrates the advantage of a modular
representation in disambiguating false eigenface matches.

We are currently exploring strategies for the optimal
fusion of the available information in the modular repre-
sentation. One simple approach is to form a cumulative
score 1n terms of equal contributions by each of the com-
ponents (head, eyes, nose and mouth). Alternatively, psy-
chophysical data can be used in formulating a more elabo-
rate weighting scheme for classification (e.g., eyes tend to
be the most salient features). A more ambitious scheme

Figure 7: (a) Test views, (b) Eigenface matches, (c) Eigen-
feature matches.

would be to modulate the contribution of each module in
a task or state-dependent manner.

An attractive recognition strategy is to combine a se-
quential classifier with a coarse-to-fine matching procedure,
whereby a pyramid sequence of (low-resolution) eigenface
projections is used to limit the database search to a local
region of facespace, and finally a (high-resolution) facial
feature description is used to perform the final classifica-
tion. By embedding this mechanism in the framework of
our view-based eigenspace method, the overall system can
perform robust face recognition under varying viewing ge-
ometries.

6 CONCLUSIONS

Our experimental results have demonstrated the success
of eigenspace techniques for detection and recognition in
a large face database. We have generalized this technique
to handle a variable viewing geometry, using a view-based
approach. We have described target objects in terms of
their 2-D “aspects” (their appearance from a particular
viewpoint). The key to the success of such a view-based
approach is the ability to localize the object (or features on
an object) and identify the correct aspect. We have also
shown that the distance-from-feature-space computation in
a view-based eigenspace formulation is an effective tool for
robust detection and pose estimation.

Finally, we have extended the approach to a modular
representation by incorporating information from differ-
ent levels of description. Once again, the ability of the
distance-from-feature-space computation to accurately and
reliably detect features was critical for successfully incor-
porating a parts-based description. By using this modular



approach we have been able to demonstrate robustness to
localized variations in object appearance.
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