External Interfaces/API |
Handling Sparse Arrays
The MATLAB API provides a set of functions that allow you to create and manipulate sparse arrays from within your MEX-files. These API routines access and manipulate ir
and jc
, two of the parameters associated with sparse arrays. For more information on how MATLAB stores sparse arrays, refer to the section, The MATLAB Array.
This example illustrates how to populate a sparse matrix.
/* * ============================================================= * fulltosparse.c * This example demonstrates how to populate a sparse * matrix. For the purpose of this example, you must pass in a * non-sparse 2-dimensional argument of type double. * * Comment: You might want to modify this MEX-file so that you can * use it to read large sparse data sets into MATLAB. * * This is a MEX-file for MATLAB. * Copyright (c) 1984-2000 The MathWorks, Inc. * ============================================================= */ /* $Revision: 1.9 $ */ #include <math.h> /* Needed for the ceil() prototype. */ #include "mex.h" /* If you are using a compiler that equates NaN to be zero, you * must compile this example using the flag -DNAN_EQUALS_ZERO. * For example: * * mex -DNAN_EQUALS_ZERO fulltosparse.c * * This will correctly define the IsNonZero macro for your C * compiler. */ #if defined(NAN_EQUALS_ZERO) #define IsNonZero(d) ((d) != 0.0 || mxIsNaN(d)) #else #define IsNonZero(d) ((d) != 0.0) #endif void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] ) { /* Declare variables. */ int j,k,m,n,nzmax,*irs,*jcs,cmplx,isfull; double *pr,*pi,*si,*sr; double percent_sparse; /* Check for proper number of input and output arguments. */ if (nrhs != 1) { mexErrMsgTxt("One input argument required."); } if (nlhs > 1) { mexErrMsgTxt("Too many output arguments."); } /* Check data type of input argument. */ if (!(mxIsDouble(prhs[0]))) { mexErrMsgTxt("Input argument must be of type double."); } if (mxGetNumberOfDimensions(prhs[0]) != 2) { mexErrMsgTxt("Input argument must be two dimensional\n"); } /* Get the size and pointers to input data. */ m = mxGetM(prhs[0]); n = mxGetN(prhs[0]); pr = mxGetPr(prhs[0]); pi = mxGetPi(prhs[0]); cmplx = (pi == NULL ? 0 : 1); /* Allocate space for sparse matrix. * NOTE: Assume at most 20% of the data is sparse. Use ceil * to cause it to round up. */ percent_sparse = 0.2; nzmax = (int)ceil((double)m*(double)n*percent_sparse); plhs[0] = mxCreateSparse(m,n,nzmax,cmplx); sr = mxGetPr(plhs[0]); si = mxGetPi(plhs[0]); irs = mxGetIr(plhs[0]); jcs = mxGetJc(plhs[0]); /* Copy nonzeros. */ k = 0; isfull = 0; for (j = 0; (j < n); j++) { int i; jcs[j] = k; for (i = 0; (i < m); i++) { if (IsNonZero(pr[i]) || (cmplx && IsNonZero(pi[i]))) { /* Check to see if non-zero element will fit in * allocated output array. If not, increase * percent_sparse by 10%, recalculate nzmax, and augment * the sparse array. */ if (k >= nzmax) { int oldnzmax = nzmax; percent_sparse += 0.1; nzmax = (int)ceil((double)m*(double)n*percent_sparse); /* Make sure nzmax increases atleast by 1. */ if (oldnzmax == nzmax) nzmax++; mxSetNzmax(plhs[0], nzmax); mxSetPr(plhs[0], mxRealloc(sr, nzmax*sizeof(double))); if (si != NULL) mxSetPi(plhs[0], mxRealloc(si, nzmax*sizeof(double))); mxSetIr(plhs[0], mxRealloc(irs, nzmax*sizeof(int))); sr = mxGetPr(plhs[0]); si = mxGetPi(plhs[0]); irs = mxGetIr(plhs[0]); } sr[k] = pr[i]; if (cmplx) { si[k] = pi[i]; } irs[k] = i; k++; } } pr += m; pi += m; } jcs[n] = k; }
At the MATLAB prompt, entering
creates a full, 5-by-5 identity matrix. Using fulltosparse
on the full matrix produces the corresponding sparse matrix.
Manipulating Multidimensional Numerical Arrays | Calling Functions from C MEX-Files |