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Prologue
Motivation

The Question: Can we computationally structure a sensor record of an 
individual’s day-to-day life? 

 sensor record - “dumb” measurements via sensors

 structure - similarity measure, perplexity, prediction, classification

The Applications:
 memory prosthesis
 automatic diary
 the frame problem
 “the past explains”
 context-aware agents
 



Prologue
Background

Vannevar Bush - memex (1945)

Wearable Sensing
 Steve Mann - wearable cameras (1997)
 Thad Starner - Patrol system (1999)
 Farringdon et. al. - sensory badges & jackets (1999)
 Jennifer Healey - wearable bio-sensing (1998)

Context-Awareness
 Brad Rhodes - Remembrance Agent (2000)
 Lamming & Flynn - “Forget-me-not” (1994)

Robotics & AI
 Grimson et. al. - long-time monitoring of a site (1998) 
 Jogan & Leonardis - localization via panoramic views



Prologue
Talk Outline

Why?

Data Collection

Similarity Measure
Life's Perplexity

Situation Classification



The “I Sensed” Data Set
Mr. Kawara On [1933- ]

Date paintings



The “I Sensed” Data Set
Mr. Kawara On [1933- ]

The “I Got Up” Series

I Went
I Met
I Am Alive
I Read ...



The “I Sensed” Data Set
Data Collection Wearable



The “I Sensed” Data Set
Data Collection Wearable
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Key Properties: low resolution, wide field-of-view

compared to humans:
- 100,000 times fewer photoreceptors
- 360-deg field of view
- 800 eye units, each having 8 photoreceptors

copyright: www.eyeofscience.com

The “I Sensed” Data Set
Insect Perception



The Similarity Measure

Without target of attention

With target of attention

Walking over a bridge Shopping at BestBuy

Renting a video Working at the desk

Walking over a bridge Walking over a bridge

Peripheral vs. Attentive

Peripheral sensing is robust to 
small changes in the environment.

Peripheral Perception

Direct image matching without correspondence is potentially useful!



The Similarity Measure
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Principle Components

Front View Eigenvectors Rear View Eigenvectors

Bell & Sejnowski - PCA of natural scenes yields Fourier basis
     ICA of natural scenes yields localized edge filters

Trained on 32x24 pixel images over 30 days of video.



The Similarity Measure
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Variance Accounted For

- Compression without loss of detail is difficult.
- We use the top 100 eigenimages for the remaining experiments.



The Similarity Measure
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Feature Computation Pipeline

- The result is a 200-dimensional feature vector per frame
- To compare frames, we use the L-1 norm.



Sequence Similarity

Approaching entrance Passing through door Leaving entrance

Approaching entrance Passing through door Leaving entrance lobby 7

The Similarity Measure

How do we compare a pair of frames sequences?



Approaching entrance Passing through door Leaving entrance

Approaching entrance Passing through door Leaving entrance lobby 7

The Similarity Measure
Sequence Similarity

Match one sequence to the other and accumulate frame-by-frame similarities.



The Similarity Measure

Approaching entrance Approaching entrance Passing through door Leaving entrance Leaving entrance

states:

skips

Alignment Model

A sequence of frames becomes a Hidden Markov Model.

the transitions...



The Similarity Measure
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The Similarity Measure
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Alignment Path

The Viterbi Algorithm produces the best possible alignment.



The Similarity Measure

Similarity Matrix for Two Sequences of "Walking to Lab"

Source Sequence (minutes)
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Alignment of Two Sequences of "Walking to Lab"

Source Sequence (minutes)

D
es

tin
at

io
n 

S
eq

ue
nc

e 
(m

in
ut

es
)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

An Example: walking to lab

demo available

these are very similar events...

3000 frames thus 3000 states (computationally heavy!)



The Similarity Measure

Similarity Matrix of Two Sequences of "Japanese Class to Lab"
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Alignment of Two Sequences of "Japanese Class to Lab"
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Another Example: leaving class

similar at times, dissimilar at others

demo available



The Similarity Measure
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Run Length Encoding

Remove Redundancy
via Image Similarity

Before
 1 day = 200,000 images

After
 1 day = 3,000 images

demo available



The Similarity Measure

Alignment of Two Days

Source Sequence (hours)
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Alignment of a day

RLE at 15% allows alignment of a pair of days!



The Similarity Measure
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The finer detail in the morning...

demo available



The Similarity Measure
Alignment of a month

Problem:
 - A pair of days typically only align sensibly for a few situations.

Solution:
 - Keep adding more sequences to the alignment HMM.

Aligning 1 day to 30 days:
 - Build similarity matrix of 30 days at 5 minute resolution.
 - Build alignment HMM from each 5 minute chunk in 29 days.
 - Align remaining day to the 29 days using the HMM.
 - repeat 30 times...



The Similarity Measure
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The Similarity Measure

31

29

30

Alignment of a month

Each moment can be aligned to any moment in 29 days.

we will use 
this later...



Life’s Perplexity
Motivation

“When you come to a fork in the road, take it.”
             - Yogi Berra

hang
out

eat
lunch

office

home

gym

nap

class

?

- Where are the decision points? (i.e. what are the nodes)
- What is the perplexity each time a decision is made?
- How consistent is the decision?
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Scene Change Score

Life’s Perplexity
Scene Segmentation

β-transitions denote moments of divergence from past behavior.

Score each β-transition by its 
size in time.
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Life’s Perplexity
Scene Segmentation

Sweeping a threshold 
yields a hierarchy of 
scene segmentations.
30 days = ~1000 scenes

To get scenes cluster 
using alignment as the 
similarity measure.
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Life’s Perplexity
How many nodes?

Degree of redundancy is independent of the # of nodes. 

30 scenes
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Life’s Perplexity
30 Scene Clusters

Accuracy is independent of perplexity!
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Situation Classification
What is a situation?

situation = location + activity



home
neighborhood

bridge
street

hallway
campus
at work

elevator
stairs
office

lab
meeting
kitchen

bathroom
gym

vehicle
store

restaurant
class

apartment
Beacon St., Mass. Ave. (Boston-side)
Harvard Bridge, Longfellow Bridge
Kendall Sq., Boston Downtown, Main St., Memorial Dr., and more
Infinite Corridor and more
inside & outside of bldg. 56, 66, 7, 10, and more
anything in the Media Lab
any elevator
any stairs
my office at lab
the area outside of my office
any meeting
kitchen (at home and lab)
any bathroom
Dupont
taxi, subway, bus
any store
any restaurant
any class

Situation Classification
19 Situations

* Every 5 minute interval over 20 days was labeled with its situation(s).
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Far vs. Near in Time

Total:
far = 72%
near = 95%



Situation Classification
with Context
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Total: 
rank-1 = 97%



Epilogue
Conclusions

What have we shown?

- Capturing complete records of an individual’s day-to-day life is practical.
- The capabilities of peripheral and insect-like perception.
- Simple models can capture even the complex structure of human behavior.
- How to compare moments of an individual’s life at multiple time-scales.
- That day-to-day behavior is redundant at multiple scales.
- How to classify situations.



Epilogue
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The End

Life Patterns
structure from wearable sensors


