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Abstract

This paper reports on a case study aimed at determining prosodic control of vocalizations produced by an adult male with severe dysarthria due to cerebral palsy. Within each prosodic parameter of frequency, intensity and duration, the subject was instructed to sustain production of the vowel /a/ at three levels: low, medium and high. The resulting data were analyzed to determine the number of distinct non-overlapping categories within each prosodic parameter. Results for this individual indicate limited control of frequency, greater control for duration and the most control over intensity. These findings provide the impetus to further investigate prosodic control among individuals with severe dysarthria as a potential channel to convey communicative information.
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Introduction

Problem: Information Bottleneck

Slow, imprecise and variable speech characteristics of indiviudals with dysarthria impose an information bottleneck, impeding efficient and effective communication. Concomitant physical impairments among indivudals with dysarthira due to cerebral palsy pose an even greater challenge for communication efficiency. Through assistive interface technologies, researchers and clinicians have attempted to improve information transfer for individuals who are non-speaking. 

Approach: To Increase the number of Input Modes

A common approach for enhancing the expressive abilities of individuals who are non-speaking is to increase the number of input modes through augmentative and alternative communication (AAC) techniques and devices (Shein, Brownlow, Treviranus & Parnes, 1990). For example, an individual may use his
 eyes, arm movements, facial expressions and/or head rotations to transmit information.Various interface adaptations have been developed to make use of these residual motor skills including optical head pointers, sip and puff switches, and scanning devices (Fried-Oken, 1985). Unfortunately, pointing and scanning methods are slow and can be physically fatiguing. Additionally, although an AAC system which is based on non-vocal input may be functional for vocational and educational needs, it may not sufficiently satisfy the individual’s social communication needs (Beukelman & Mirenda, 1992). In fact, many AAC users with severe dysarthria often prefer speech over other input modes (Ferrier, Jarrell, Carpenter, & Shane, 1992; Fried-Oken, 1985; Treviranus et al., 1992). These reasons provide motivation for addressing the problem of utilizing the vocal channel of individuals with severe dysarthria. A system capable of recognizing dysarthric vocalizations would expand the information bandwidth of a communicative exchange by enabling the AAC communicator to utilize an additional and socially satisfying channel of expression. 

Background

Automatic speech recognition (ASR) is a hands-free interface which lets individuals with physical limitations access computer based assistive technolgy with their voice. Suprisingly, ASR may also be used by individuals with dysarthria since the underlying technology only requires consistently articulated, and not necessarily intelligible, speech (cf. Ferrier et al., 1992; Fried-Oken,1985).

Some ASR systems may even outperform the ability of human listeners to recognize dysarthric speech. Carlson and Bernstein (1987) reported that 35 of 46 individuals with mild-moderate speech impairments were better recognized using a template-based isolated word speech recognizer
 than by human listeners. Stevens and Bernstein (1985) also compared the recognition accuracy of a speaker dependent recognition system
 to that of human listeners. Five hearing impaired individuals, only two of whom used speech for daily communication, produced a list of 40 words. Recognition accuracy for the speech recognition system was reportedly between 75-99%. Four of the five subjects were also judged by human listeners using the same vocabulary. The speech recognition system outperformed human listeners by levels greater than 60%. 

Using vocalizations may be faster and inherently less physically fatiguing than direct manual selection or scanning. Treviranus, Shein, Haataja, Parnes and Milner (1992) compared two access techniques: traditional scanning and a hybrid approach of combining scanning with speech recognition. For all eight individuals with severe physical impairments and non-functional speech, the hybrid approach increased rate of computer input compared to scanning alone. In addition, seven of their eight subjects preferred the hybrid method compared to scanning alone. Similarly, Ferrier et al., (1992) reported a case study of an adult male with mild-moderate dysarthria using the DragonDictate
 speech recognition system. The subject achieved 80-90% recognition accuracy by the second session. Although he demonstrated greater variability in rate and accuracy of text creation between sessions compared to normal speakers, his oral typing rate using DragonDictate was twice as fast as manual typing on a standard keyboard. 

Improvements in communication rate and accuracy are particularly importmant to AAC users given their typical message construction rates of six or less words per minute (Vanderheiden, 1985). Posible benefits include increased naturalness of interactions and reduced physical fatigue. Communication rate can be improved by increasing recognition accuracy. One approach to train the ASR system to attend to the user's speech characteristics. Schmitt and Tobias (1986) used the IntroVoice II
 speaker-dependent speech recognition system with a 18-year old girl with severe physical disabilities and impaired speech. Ten isolated words were spoken three times each during three training sessions. Recognition accuracy improved from 40% in the first session to 60% in the last session. Another approach to improving ASR accuracy is to train speakers to change their articulatory patterns in order to be better understood by the system. Kotler and Thomas-Stonell (1997) demonstrated that speech training with a young man with mild dysarthric speech resulted in a 57% reduction in recognition errors using IBM VoiceType
 (version 1.00). The training has focused on the goal of improving phonetic accuracy and consistency across vocalizations.  

Although ASR has been successfully used by individuals with mild dysarthria, the technology has been less reliable in cases of severe dysarthria. In response, some researchers have attempted to rebuild acoustic models for specific dysarthric populations (cf. Deller, Hsu & Ferrier, 1991; Jayaram & Abdelhamied, 1995). Phonetic transitions which require fine motor control of articulators have been found to be particularly difficult for individuals with dysarthria (Doyle, Raade, St. Pierre & Desai, 1995). On the assumption that phoneme steady states are physically easier to produce because they do not require dynamic movement of the vocal tract, Deller et al., (1991) used techniques to automatically remove transient segments from the speech signal. This resulted in improved but still relatively poor recognition accuracy. Jayaram and Abdelhamied (1995) developed two different artificial neural network based systems for an individual with severe dysarthria. One network used fast Fourier transform coefficients as inputs and the other used formant frequencies as inputs. Results indicated that the neural networks outperformed IntroVoice system
, a commercial system, and human listeners in recognition tasks. These attempts, however, have been only moderately successful. Considerable interspeaker variability in phonetic form remains a significant problem. 
An underlying assumption in most previous work with ASR and AAC has been that the primary channel of information in dysarthric speech is phonetic. This is largely driven by the fact that all current commercial ASR systems only respond to phonetic aspects of the speech signal. Non-phonetic information including many important prosodic factors such as fundamental frequency, intensity, and duration, are explicity factored out based on the premise that they do not convey linguistically salient information (Rabiner, 1993). 
This paper calls for a paradigm change from attempting to discover phonetically consistent features in severely dysarthric speech to identifying salient prosodic features. The fact that individuals with severe speech impairments have highly variable phonetic speech characteristics has been well documented in the literature (cf. Darley, Aronson, Brown, 1969; Dabbagh & Damper, 1985; Deller et al., 1991; Jayaram and Abdelhamied, 1995; Rosenbeck & LaPointe, 1978). In contrast, although perceptual studies have noted restricted range of prosodic control among individual with dysarthria, there is a paucity of findings regarding the amount of control along these dimensions. In addition, the potential for harnessing any residual prosodic control to achieve efficient communication using vocalizaions has not been explored. 

This investigation aimed to determine the capacity of an individual with severe dysarthria to control the frequency, intensity and duration of his vocalizations. It was hypothesized that the subject with severe dysarthria would be able to consistently produce at least two acoustically distinct and statistically non-overlapping levels of control in each prosodic parameter. The assumption was that prosodic features may be more stable parameters of severely dysarthric speech given that they span a larger temporal window than phonetic units and therefore may offer greater vocal stability. 

Participant

A 52 year old adult male with severe dysarthria secondary to cerebral palsy participated in this investigation. He was functionally non-speaking and used an alphanumeric board as his primary means of communication. This subject was selected on the premise that severely dysarthric speech due to cerebral palsy is qualitatively similar to severe dysarthria resulting from other etiologies such as traumatic brain injury, stroke, and multiple sclerosis (Deller et al., 1991; Jayaram & Abdelhamied, 1995; Turner, Tjaden and Weismer, 1995). In fact, since the variability of speech among individuals with cerebral palsy is higher than variability resulting from other etiologies, findings based on this subject are more likely to be generalizable.  Wnted to use severe dysarthria because previosu studies used mild dyarthria and severe would be a more stringent test.

Procedure

To ensure controlled experimental conditions, data collection was conducted in a sound treated audiometric booth at the University of Toronto, Department of Speech Language Pathology. The experiement was recorded using a Sony ® digital audio tape (DAT) recorder (Model PCM-2300), and also video taped with a Pansonic ® AF Piezo VHS Reporter. The subject wore a Shure (Model SM10A) ® professional unidirectional head-worn dynamic microphone which was directly connected to the DAT recorder. Throughtout the experiment, the mouth to microphone distance was carefully manitained at 1 inch from the left hand corner of the mouth. 

The subject's control over each of three prosodic parameters, frequency, intensity, and duration, was examined separately. For each parameter, the subject was asked to sustain the vowel /a/ at three target levels: low, medium and high. Seventeen trials were requested in random order for each of the three target levels. This resulted in a total of 51 vocalizations per parameter. During data collection, approximately three seconds were allowed between the end of the subject's production and the request for the next stimulus
. There was no time pressure to produce vocalizations and breaks were provided after data collection for each parameter, and whenever requested by the subject. 

*TABLE*

* why 51 - based on information theory - looking to see if he could do it and with what accuracy or consistency

For each prosodic parameter, an establishment phase proceeded the experimental phase. During establishment, the subject practiced calibrating his vocal system to produce the three target levels. The Visi-Pitch
 system provided real time visual feedback for monitoring his productions. Based on calibration vocalizations, visual guides in the form of colored stickers were placed directly on the computer screen and served as targets during the experiment.

The Computerized Speech Lab (CSL)
 was used for off-line acoustic analysis of vocalizations recorded on the DAT. The mean fundamental frequency and standard deviation, the average intensity and standard deviation, and the duration of each vocalization were calculated and recorded for the frequency, intensity and duration parameters, respectively. 

Results and Discussion 

Descriptive analysis was performed using the Statistical Application Software SAS (Version 6.11)
  package. In the pitch protocol, the analysis was carried out on the 51 data values of mean fundamental frequency. Similarly, in the intensity protocol, the average intensity level of the vocalization was used for analysis. In the duration protocol, the total time of the vocalization was analyzed. 

Distinct levels in each prosodic parameter were operationally defined as minimally overlapping distributions. Within each protocol, a normal distribution with a sample mean and standard deviation was determined for each level of the parameter using the seventeen mean values collected. It was expected that 95% of the time the subject would be able to produce a vocalization within a specified range corresponding to the intended stimulus level. Lower and upper limits of the 95% confidence intervals around the mean for each stimulus level were also calculated to test the hypothesis of “distinct” levels within each parameter. The 95% confidence limits for two adjacent “distinct levels” could not overlap. 

Table 1

Summary Statistics for the Frequency Protocol

 Level
Mean (Hz)
St. Dev.  (Hz)
Minimum
Maximum
95% Confidence Interval 






lower limit
Upper limit

1 - Low
173.97
30.13
119.41
218.34
159.65
188.30

2 - Medium
181.89
22.04
135.25
218.89
171.41
192.37

3 - High
198.05
20.2
160.54
231.20
187.58
208.52

There was considerable variability of productions within the frequency protocol. Confidence limits for all three target levels of frequency overlap. There is overlap between each adjacent stimulus level indicating fewer than 3 categories of frequency. There is also a small degree of overlap,  between the confidence limits of level 1 (low) and level 3 (high) indicating fewer than 2 categories of frequency control. A graphical illustration of the overlap between stimulus level distributions can be found in figure 1.  

Table 2

Summary Statistics for Duration Protocol

 Level
Mean (sec)
St. Dev.  (sec)
Minimum
Maximum
95% Confidence Interval 






Lower limit
upper limit

1 - Low
0.55
0.13
0.37
0.79
0.49
0.61

2 - Medium
1.56
0.67
0.67
2.64
1.24
1.88

3 - High
2.92
1.08
0.62
3.88
2.40
3.44

In contrast to frequency, the subject showed better control over the duration of his vocalizations. Applying the operatinal definition, he was able to produce three levels of duration. Confidence limits of all three target levels do not overlap. It is important to note, however, that duration results should be interpretted with caution. When the subject was asked to produce vocalizations of medium duration, his productions were not normally distributed about the mean. In addition, clinical observation during the experiment indicated that the subject began to experience fatigue toward the end of the session. The variability of his productions of long duration /a/ was much greater than for short duration /a/. It can be argued that factors of fatigue and learning may be influencing his productions. Figure 3 provides a graphical illustration of the stimulus level distributions for the duration protocol and the relative overlap.

Table 3

Summary Statistics for the Intensity Protocol

 Level
Mean (dB)
.
St. Dev.  (dB)
Minimum
Maximum
95% Confidence Interval 






lower limit
Upper limit

1 - Low
67.13
2.91
62.02
72.17
65.74
68.51

2 - Medium
73.18
1.87
70.35
77.97
72.29
74.07

3 - High
78.24
2.99
69.37
82.25
76.82
79.67

This subject demonstrated the most control over the intensity parameter.There was no overlap of the confidence limits between any of the three target levels. If we apply the operational definition of distinct levels, this subject demonstrated control of 3 distinct levels of intensity. The distribution of soft (L1) and loud (L3) vocalizations were maximally seperated. Figure 3 provides a graphical illustration of the stimulus level distributions and the relative overlap.

Figure 1 is a graph showing control of low (P1), medium (P2) and high (P3) frequency vocalizations. The degree of overlap indicates limited differential control. 
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Figure 2 shows control of short (D1), medium (D2) and long (D3) duration. The distributions have less overlap indicating greater control over this parameter than for frequency. 
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Figure 3 shows control of soft (L1), medium (L2) and loud (L3) intensity vocalizations. Distributions for soft and loud vocalizations overlap minimally suggesting two distinct loudness levels are available for control of a vocalization driven communication aid. 
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The goal of this paper was to demonstrate that the prosodic channel of individuals with severe dysarthria is a viable channel to convey information.This experiment sheds light on the degree of vocal control over prosodic parameters available to an individual with severe dysarthria. Results indicate parameter specific differences in prosodic control during sustained vowel productions. This subject had limited control over frequency, some control over duration and most control over intensity. Although his performance within the frequency parameter was highly variable, he did have better control over intensity and duration, indicating reduced performance rather than reduced competence. Perhaps with training, he may be able to produce at least two distinct levels of frequency. Intensity would appear to be the most reliable paratmeter of prosodic control for this individual. The ability to consistently control soft and loud sounds may serve as a vocal switch for controling  some functions on a voice output communication aid that is interfaced with a vocalization recognition system. 

Conclusions and Future Directions

More Clinical 

Imagine this - a patient comes in who is severely dysarthria but still wants to use his voice for some aspects of his communication system 

Others can't understand him but here is a machine that can and it can serve as a translator to unfamiliar listeners

The output may be text or sysntesized speech with DecTalk

Clinical and research applications of ASR technology to individuals with dysarthria has focused on identifying phonetic consistencies towards improving recognition accuracy. Moderate levels of success have been documented. As a result, ASR is commonly used as a writing aid for individuals with motor and speech impairments. The possibility of using this technology to enhance face to face communication has not received enough attention. In order to do so, recognition accuracy rates would need to be considerable higher. 

Application of speech recognition to AAC users has relied primarily on commercial software. Effective adaptations of commercial systems may be sufficient to meet the needs of individuals with mild speech impairments. In its current state, however, commercial technology is not sufficiently tolerant to recognize individuals with severe dysarthria. AAC users with severe dysarthria, however, report an unequivocal preference to use speech for communication. 

The objective of this investigation was to determine whether an individual with severe dysarthria could control specific prosodic parameters of his vocalizations. This information is necessary to support the development of software capable of analyzing dysarthric vocalizations. First, we must identify acoustic parameters which can be manipulated consistently and reliably. Next, we must determine the amount of control in each parameter. A vocalization recognizer may be programmed to analyze the salient prosodic  parameters. 

There are several shortcomings in the methodology of this initial case study that may be addressed in future work. This investigation examined the prosodic control abilities of one individual with severe dysarthria secondary to cerebral palsy. It will be important to repeat the experiment with other individuals with severe dysarthria. The subtype of dysarthria will also need to be controlled in order to make generalizations about prosodic control. For example, an individual with respiratory involvment may have more difficulty with intensity and duration compared to frequency. 

Future studies should address the issue of small sample bias that may have impacted on the current results. For example, the medium duration vocalizations did not follow a normal distribution. In this study, 17 vocalizations were requested based on previous reports of subject fatigue with increased trails and statistical calculations of sample size. 

A relatively small sample size of 17 vocalizations may not be sufficient to approximate an underlying distribution, if in fact one exists. This may be addressed by requesting a larger number of vocalizations at each stimulus level within each parameter.  

This investigation focused on prosodic control of sustained vowel productions for an individual with severe dysarthria; it does not make claims about utterance level control. Future work will need to explore the differences in prosodic control during spontaneous vocalizations. This work is currently in progress at the University of Toronto by the author.  

New directions to follow are more important than dwelling on these findings further

Control of non-linguistic, suprasegmental features such as frequrncy, intensity and duration may enable an individual with severe dyarthria to control some functions on his VOCA using vocalizations rather than pointing or scanning. In theory, individuals with only a few discrete vocalizations could potentially use various combinations of their vocalizations to formulate an increased number of unique messages. The supposition is that even the distorted speech signal is a channel for transmitting information for the purpose of communication. Ultimately, the communication aid of the future would act as a “familiar facilitator” which would support communication transfer between the non-speaking person and an unfamiliar listener. Some of the far reaching implications of using vocalizations include increased communication efficiency, reduced fatigue, increased face-to-face communication, improved communication naturalness and social integration. 
Note only a case study - but it offers an alternative way to look at the issues
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� For stylistic brevity all third person references are masculine throughout this paper, but the reader should read them as gender neutral.


� The speech recognition system was a noncommercial system developed at U.C. Berkley, 1986). 


� The speech recognition system was a noncommercial system developed at U.C. Berkley, 1986). 


� DragonDictate is a product of Dragon Systems, Inc. , 90 Bridge Street, Newton, MA 02158. The version of DragonDictate used in this investigation is not specified.





� IntroVoice II, The Voice Connection, Irvine, CA 92714.





� IBM VoiceType (version 1.00). IBM U.S.A. Department 2VO, 133 Westchester Ave., White Plains, NY 10604. 


� IntroVoice IE, The Voice Connection, Irvine, CA 92714








� If the subject produced a vocalization and then spontaneously corrected himself, the self correction was accepted as the trial. Only one re-attempt was allowed. Spontaneous self-corrections were assumed to be accidental errors due to lack of concentration or anticipation of the next trial rather than control.  


� Visi-Pitch Model 6087 DS, Kay Elemetrics Corporation, 12 Maple Ave, PineBrook, NJ  07058.


 


� Computerized Speech Lab (Model 4300), Kay Elemetrics Corporation, 12 Maple Ave, PineBrook, NJ  07058.





� Statistical Application Software (SAS) (Version 6.11), SAS Institute, Inc. Cary, NC TS040.  


� A calibration tone was not used in this experiment. Decibel units reported here are dB HL rather than dB SPL.
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