
Adaptive Models for the

Recognition of Human Gesture
by

Andrew David Wilson
B.A., Computer Science, Cornell University (1993)

M.S., Massachusetts Institute of Technology (1995)
Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2000
c© Massachusetts Institute of Technology 2000. All rights reserved.

Author .
Program in Media Arts and Sciences,
School of Architecture and Planning

August 10, 2000

Certified by. .

Aaron F. Bobick
Associate Professor

College of Computing, Georgia Institute of Technology
Thesis Supervisor

Certified by. .

Bruce M. Blumberg
Assistant Professor of Media Arts and Sciences

Program in Media Arts and Sciences
Thesis Supervisor

Accepted by .

Stephen A. Benton
Chairman, Department Committee on Graduate Students

Program in Media Arts and Sciences

Adaptive Models for the
Recognition of Human Gesture

by
Andrew David Wilson

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on August 10, 2000, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

Tomorrow’s ubiquitous computing environments will go beyond the keyboard, mouse
and monitor paradigm of interaction and will require the automatic interpretation of
human motion using a variety of sensors including video cameras. I present several
techniques for human motion recognition that are inspired by observations on human
gesture, the class of communicative human movement.

Typically, gesture recognition systems are unable to handle systematic variation
in the input signal, and so are too brittle to be applied successfully in many real-world
situations. To address this problem, I present modeling and recognition techniques
to adapt gesture models to the situation at hand.

A number of systems and frameworks that use adaptive gesture models are pre-
sented. First, the parametric hidden Markov model (PHMM) addresses the repre-
sentation and recognition of gesture families, to extract how a gesture is executed.
Second, strong temporal models drawn from natural gesture theory are exploited to
segment two kinds of natural gestures from video sequences. Third, a realtime com-
puter vision system learns gesture models online from time-varying context. Fourth,
a realtime computer vision system employs hybrid Bayesian networks to unify and
extend the previous approaches, as well as point the way for future work.

Thesis Supervisor: Aaron F. Bobick
Title: Associate Professor
College of Computing, Georgia Institute of Technology

Thesis Supervisor: Bruce M. Blumberg
Title: Assistant Professor of Media Arts and Sciences
Program in Media Arts and Sciences

Adaptive Models for the
Recognition of Human Gesture

by
Andrew David Wilson

The following people served as readers for this thesis:

Read by .

Allan D. Jepson
Professor of Computer Science

Department of Computer Science, University of Toronto
Thesis Reader

Read by .

William T. Freeman
Senior Research Scientist

Mitsubishi Electric Research Labs, Cambridge, MA

Thesis Reader

Acknowledgments

I’ve had the privilege of working with a really swell group of folks at the Media
Lab, past and present. Chief among them of course are Aaron’s original long-haul
students: Lee Campbell, Stephen Intille, Claudio Pinhanez and Jim Davis. Yuri
Ivanov has been a great officemate, colleague and friend. Matt Krom, Dave Becker,
Josh Wachman, Chris Bentzel, and Teresa Marrin have all been terrific, entertaining
officemates. I’m proud to have served with the Old Guard of Vismod, all great friends
and colleagues: Baback Moghaddam, Ali Azarbayejani, Irfan Essa, Trevor Darrell,
Kris Popat, Alex Sherstinsky, and Thad Starner. They’ve influenced me in so many
ways. My generation: Chris Wren, Sumit Basu, Nuria Oliver, Tony Jebara, and
Martin Szummer. Bruce’s guys: Chris Kline, Michal Hlavac, Michael P. Johnson,
Ken Russell, Zoe Teegarden and Bill Tomlinson.

Thanks to Allan and Bill for serving as readers. Thanks to Bruce for taking me on
when Aaron headed off for greener pastures. I owe thanks to Whitman Richards for
some good advice, and to Joe Paradiso for letting me play with hardware. Tommy
Poggio, Michael Jordan and Ted Adelson have been instrumental in shaping my
thinking.

Thanks to Aaron for giving me the freedom to blaze my own trail through graduate
school, and for always asking the hard questions.

Thanks to my parents for bringing me into this world and making it an interesting
place by leaving cool things around the house to play with. Thanks to my dad for
teaching me to think, and to my mom for teaching me to create.

Finally, thanks to my love Ewa. Would never have made it without you.

Contents

1 Introduction 9
1.1 Ubiquitous Computing and Interfaces 9
1.2 Human Gesture as Communicative Movement 10
1.3 Why Adaptive? . 11
1.4 Adaptive Gesture Models . 12
1.5 Architectures and Applications . 14

1.5.1 Geometric regularity of gesture families: Parametric Hidden
Markov Models . 14

1.5.2 Temporal structure of known behavior: Natural Gesture Models 15
1.5.3 Strong contextual information: Watch and Learn 15
1.5.4 Multiple Symmetric Learned Representations: Online Learning

of Gesture with Bayesian Networks 15
1.6 Contributions . 16

2 Parametric Hidden Markov Models 17
2.1 Introduction . 17
2.2 Motivation and Prior Work . 19

2.2.1 Using HMMs in gesture recognition 19
2.2.2 Modeling parametric variations 20
2.2.3 Non-parametric extensions . 21

2.3 Parametric hidden Markov models . 22
2.3.1 Defining parameterized gesture 22
2.3.2 Linear model . 23
2.3.3 Training . 24
2.3.4 Testing . 26

2.4 Results of Linear Model . 27
2.4.1 Experiment 1: Size gesture . 27
2.4.2 Experiment 2: Recognition . 29
2.4.3 Experiment 3: Robustness to noise, bounds on θ 31

2.5 Nonlinear PHMMs . 37
2.5.1 Nonlinear dependencies . 37
2.5.2 Non-linear model . 38
2.5.3 Training . 38
2.5.4 Testing . 41
2.5.5 Easing the choice of parameterization 41

5

2.6 Results of non-linear model . 42
2.7 Discussion . 43
2.8 Unlabelled Training Examples . 45
2.9 Conclusion . 46

3 Learning Gestures from Temporal Structure 47
3.1 Introduction . 47
3.2 Natural Gesture from Video . 48

3.2.1 Introduction . 48
3.2.2 Gesture in Communication . 50
3.2.3 Detecting candidate rest states 51
3.2.4 Feature extraction . 51
3.2.5 Detecting gesture phases . 55
3.2.6 Semantically sensitive coding of gesture 60
3.2.7 Conclusion . 61

4 Watch and Learn 63
4.1 Introduction . 63
4.2 Motivation: Online Adaptive Learning of Gesture 63
4.3 Temporal Structure, Context and Control 64
4.4 Related Work . 65
4.5 Learning Algorithm . 66

4.5.1 Expectation-Maximization Algorithm for Hidden
Markov Models . 66

4.5.2 Controlling the Online Adaptation 66
4.6 Images as Input . 68

4.6.1 Tracking . 68
4.6.2 Output Probability Distribution 69

4.7 Application: Conducting . 69
4.8 Discussion and Future Work . 72

4.8.1 Learning a Saliency Map . 74

5 Hybrid Bayesian Networks 76
5.1 Introduction . 76
5.2 Bayesian Networks Basics . 76

5.2.1 Random Variables . 76
5.2.2 Inference . 77
5.2.3 Triangulation . 79
5.2.4 Learning . 81

5.3 Hybrid Bayesian Networks . 82
5.3.1 Conditional Gaussian Potentials 82
5.3.2 Operations on CG potentials 84
5.3.3 Strong Junction Tree Algorithm 85
5.3.4 Learning: Fitting a CG Distribution 86

5.4 A Bestiary of Bayesian Networks . 87

6

5.4.1 Mixture of Gaussians . 88
5.4.2 HMM . 88
5.4.3 Factor Analysis . 89
5.4.4 Kalman Filter . 89
5.4.5 Others . 90

5.5 PHMM as Hybrid Bayesian Network 91
5.6 Watch and Learn as Hybrid Bayesian Network 93
5.7 Dynamic Hybrid Bayesian Networks 95

5.7.1 Propagation Forward in Time 95
5.8 Real-Time Implementation . 97
5.9 Conclusion . 98

6 Bayesian Networks for Online Adaptive Gesture Recognition 99
6.1 Introduction . 99
6.2 Related Work . 100
6.3 Model . 102

6.3.1 Images versus Objects . 102
6.3.2 Categorical Motion . 103
6.3.3 Multiple Hypothesis Tracking 103
6.3.4 A Taxonomy of Movement . 103
6.3.5 Domain Context . 104
6.3.6 Gesture to Action Mapping 104
6.3.7 Multiple Symmetric Learned Representations 105
6.3.8 Online Learning of Gesture 106

6.4 Bayesian Network Implementation . 106
6.4.1 Network Topology . 106
6.4.2 Appearance Model . 108
6.4.3 Hidden Markov Model . 108
6.4.4 Position Model . 110
6.4.5 Action and Context . 112
6.4.6 Control . 113
6.4.7 Multiple Objects . 113
6.4.8 Propagation . 114
6.4.9 Splitting the Network . 114
6.4.10 Algorithm . 115
6.4.11 Scaling Issues . 116

6.5 Experiments . 116
6.5.1 Learning Appearance Model Driven By Categorical

Movement . 117
6.5.2 Learning Novel Gestures . 118
6.5.3 Learning Gesture Model to Action Mapping 120

6.6 Conclusion . 122

7

7 Conclusion 125
7.1 Summary . 125
7.2 Features and Behavior . 126
7.3 The Field of Machine Perception . 127
7.4 The Future of Adaptive Interfaces . 128
7.5 The Role of Movement in the Natural World 129
7.6 Adaptive Approach as a Computational Model of Perception 130

A Expectation-Maximization Algorithm for Hidden Markov Models 132

8

Chapter 1

Introduction

1.1 Ubiquitous Computing and Interfaces

The era of ubiquitous computing is nearly upon us. Pundits and academics agree that
soon the familiar keyboard, mouse and monitor interface will give way to a variety of
interfaces that are more specialized to the task at hand, and that nontrivial computing
power will be embedded in our homes, offices, cars, phones, television, and perhaps
even our refrigerator[53]. The reasons for such a transition are myriad: CPU’s and
memory chips are cheap enough that it is reasonable to have many computers where
once you could only afford one or two; the advent of the network raises the possibility
of connecting, distributing and deploying specialized devices in interesting ways; and
most importantly, computers have gone far beyond early traditional business and
desktop publishing applications to penetrate almost every aspect of our lives.

With respect to the problem of user interface design, there are a few straightfor-
ward consequences to the ubiquitous computing revolution:

• The applications of computing technology will be varied and widespread, mak-
ing it difficult to adopt a single interface paradigm that works in all situations.

• As the machines become more involved in daily live, our interactions with ma-
chines will become much richer, more subtle and less symbolic in nature.

• Users will be unwilling to adopt a multitude of entirely new ways of interact-
ing with their machines, preferring instead to adopt modes of interaction they
already know.

The question for the designers of the ubiquitous computing systems, is if not the
keyboard, mouse and monitor, what then? Speech comes to mind first, if only because
we all have grown up on Star Trek. Clearly, speech as an interface is suited to many
application domains (for example, the car and the phone), and there is a great deal
of research directed to this goal.

It is tempting to think that speech will be the one interface that will work in all
situations. Human movement and gesture will also be rich input signal. In the most
recent user interface revolution, the transition from command line prompts to the

9

graphical user interface (GUI), we have seen the mouse exploit human movement to
replace many of the functions of the keyboard. The use of human motion will go
beyond the mouse however, as the nature of our interaction with computers becomes
richer and more subtle.

For example, in some circumstances gesture complements the speech signal; for
example, when you are gesturing to emphasize or illustrate a co-occurring utterance,
the information conveyed by the gesture is typically not found in the spoken utterance.
For example, in the spoken utterance, “the fish was this big”, the word “this” may be
accompanied by a gesture that indicates how big the fish was. In other circumstances
gesture may stand alone. Other than sign language, systems that employ iconic
gestures often do not rely on speech, either because the speech signal is unavailable
or too unreliable. For example, crane operators have developed a gesture vocabulary
for communicating to the operator from the ground spotter.

Chances are that that while the interfaces around us proliferate, they will tend to
work as we do already and not require the years of training needed to use a keyboard
efficiently. Take the Palm Pilot, for example. Its novel interface is a product of
compromises centered around the need to do away with the traditional keyboard. Its
method of input, while stopping short of full handwriting recognition, takes only a few
days to learn because it is based on iconic gestures: gestures that resemble the desired
input. Note that in this case (and likely in many future interfaces) the transition from
keyboard to a more “natural” interface involves converting a continuous sequence (pen
strokes) to symbols (letters).

1.2 Human Gesture as Communicative Movement

This thesis explores a number of approaches to the automatic recognition of human
gesture, one possible component of a ubiquitous computing system interface.

What exactly is meant by the term “human gesture”? There is such a variety
of flavors of gesture that it is difficult to delve into a definition of gesture without
specifying an application domain. For example, bond traders on the Chicago Board
of Trade have a system of symbolic gestures used to communicate bids across the
trading floor. The gesture used in sign language is an entirely different scheme of
gesture, while the gestures people make naturally while speaking is yet another en-
tirely different kind of gesture. The gestures made by the conductor of orchestra are
different still, and there is the mouse, the Palm Pilot, and other devices that exploit
human movement.

It is therefore a mistake to think (as has been proposed at a conference on gesture
recognition) that researchers may develop a common database of gesture signals with
which to compare various recognition algorithms, as was previously done in the fields
of speech and face recognition. Similarly it is difficult to compare recognition rates,
confusion matrices and other standard metrics of algorithm performance reported in
gesture recognition research papers.

I therefore define human gesture in a somewhat pragmatic fashion as commu-
nicative human movement. Thus the broad goal of the thesis is to design computer

10

systems that are able to extract meaning from human motion. In this thesis I will
address a variety of forms of gesture, and the kind of gesture will be more narrowly
specified when it is appropriate to do so. It will be apparent that the question of ap-
plication domain is largely orthogonal to the concerns of the present work. While this
thesis presents specific applications rather than a single general approach, there are
several aspects that are common to the approaches used in each application, including
the overall emphasis on machine learning and the specific computational techniques
used.

One point that I hope will become apparent to the reader is that the deep problems
of gesture recognition are found no matter what particular input device is used. The
same issues apply whether one is concerned with extracting meaning from signals
derived from a mouse or from an image sequence of person gesturing to the camera.
For example, a particular issue common to all input devices is the realization that
different people will perform the same gesture in different ways. Another issue is how
to represent gestures that exhibit meaningful variation from instance to instance.
This thesis examines both of these issues.

1.3 Why Adaptive?

Many gesture recognition applications today involve hand-coded strategies to recog-
nize gestures. A more promising approach is that suggested by traditional pattern
recognition techniques, where a number of example signals (gestures) are collected
and subsequently summarized automatically by a process which fits a compact model
to the collection of training signals. Later, when the application is running, the
models are matched to the input signal. When a model matches the signal well,
the application may conclude that the gesture corresponding to the model occurred.
Hidden Markov models are one such framework for the automatic learning of gestures
for later recognition.

I used a standard hidden Markov model approach in designing the gesture recog-
nition framework for Swamped! an interactive installation in which the user controlled
a virtual character by a stuffed doll instrumented with various wireless sensors (see
Figure 1-1). Rather than adopt an instantaneous control paradigm whereby each
movement of the doll was mimicked by the virtual character, we experimented with
the idea of iconic control, in which the mimicry operated at the symbolic level: when
the user moves the doll in a walking motion (either by rocking the doll side to side
or twisting the doll as in shuffling the feet) the system would recognize the move-
ment as the walking gesture, which then directed the virtual character to walk. One
motivation for iconic control over direct control is the ability to constrain on-screen
animation to be “in character” while exploiting hand-crafted animation. The nature
of this interface is described in more detail in [35], and a QuickTime video of the
interface may be found at http://www.media.mit.edu/~drew/movies.

Examples of a variety of gestures were collected by me and a few other people
involved in the project. When Swamped! was shown to several hundred users at
SIGGRAPH ’98, it was clear that some of the gestures were not picked up by the

11

Figure 1-1: Swamped! is an interactive installation in which the user controls a virtual
character (a chicken) by manipulating a plush doll instrumented with a variety of sensors.

users, and some of the gestures that we directed the users to try were not recognized
by the system. The problem was that different users have different ways of executing
the same gesture, such that many times the gesture executed by the user was not
recognized by the system. In general it is very difficult to provide a set of examples
that spans the variation that one sees in a large number of users. What was needed
was an adaptive scheme whereby the system figured out on-the-fly what the user’s
“kick” gesture looked like.

Also in the Swamped! project, there was the lingering desire to know more about
how the gesture was executed so that animations could be varied continuously or
emotion levels in the behavior system could be tweaked.

This thesis addresses the shortcomings of the standard gesture recognition para-
digm as embodied by my gesture recognition implementation for Swamped!: param-
eterized models for extracting how a gesture is executed, and online adaptive tech-
niques for adapting to users in an online fashion. I group these ideas under the under
the term adaptive gesture models to distinguish them from the usual (non-adaptive)
gesture recognition paradigm, which in my experience is too brittle to be applied
successfully in many real-world situations.

1.4 Adaptive Gesture Models

Adaptive gesture models include parameters that are adapted or specialized on-the-
fly to match the particular circumstances at hand. This will be done by leaving some
parts of the model dependent on free parameters, and adapting them in response
to other constraints of the model, which themselves may be learned in an adaptive
manner at an earlier time. With adaptive parameters at its disposal, a model may
be specialized to address a wide variety of runtime circumstances.

12

There are two standard alternatives to the adaptive approach. First we may ad-
dress the many possible scenarios our gesture recognition may encounter by training
as many models as there are unique scenarios. This has the disadvantage that of-
ten it is not possible to enumerate the many circumstances that our algorithm will
encounter. Furthermore, unless this is done cleverly, we will require more training
data than we will likely be able to collect. The second and more common approach
is to look for diagnostic features that generalize in exactly the right manner. Feature
selection is in general a very difficult problem, however. The manual design of diag-
nostic features is an art that usually requires a very fine understanding of the domain,
while automatic approaches usually result in representations that are opaque to the
designer.

The advantages of the adaptive approach are:

• By adapting models to local circumstances, existing models are effectively re-
used automatically, potentially saving the time of training a new model for a
new situation.

• Generalization refers to the ability of the algorithm to perform on previously
unseen data. An adaptive model’s generalization performance will be related
to its adaptive features, and hence, should generalize well along those features
by design.

• Because some parameters are left to be fixed during runtime, one might expect
an adaptive model to require less offline training.

• The dichotomy of global invariants and local circumstances forces the designer
to think hard about what it is that is really being modeled, with the result that
it is more likely the case that the “right” things are modeled.

• Models that adapt to the individual users should in theory eventually perform
better than models that do not.

The disadvantages of the adaptive approach are:

• By adapting the model to the local circumstances, the model may require more
computational effort than a fixed, static model.

• Before adaptation has completed, the algorithm may perform poorly.

• The model may be more complex than a fixed, static model designed for the
same task.

• Once deployed, the designer has limited control over the resulting adapted mod-
els. The designer determines how the adaptation is to be performed..

13

System Adapted Drives adaptation Gesture type
Swamped! N/A N/A iconic doll manipu-

lation
PHMM “how” the gesture

was conducted
regularity of ges-
ture

gesture families
that vary geometri-
cally

Natural gesture
parser

rest state appear-
ance

temporal model of
natural gesture

natural sponta-
neous gesture

Watch and Learn appearance models
at each gesture
phase

application context designed; applica-
tion specific

Bayes Net Watch
and Learn

multiple; appear-
ance, motion model

multiple; context,
motion, appearance

designed; applica-
tion specific

Table 1.1: Comparison of the systems presented in this thesis.

1.5 Architectures and Applications

In this thesis I present a number of systems that explore the adaptive gesture mod-
els. They each differ along the dimensions of what is adapted, what information is
exploited to drive the adaptation process, the nature of the gestures involved, math-
ematical techniques used, and so on.

An important consideration in the development of adaptive models for gesture
recognition is how to encode constraints in the representation so that learning is pos-
sible. In the work presented in this thesis we show a number of ways of encoding a
variety of constraints related to gesture. For example, we present systems that incor-
porate prior knowledge regarding task-level expectations in time, prior knowledge of
the form of gestures according to natural gesture theory, and prior knowledge regard-
ing the typical kinds of systematic variation seen in training ensembles. Attributes
of the systems are summarized in Table 1.1.

1.5.1 Geometric regularity of gesture families: Parametric

Hidden Markov Models

A gesture family is a set of semantically similar gestures that vary smoothly in re-
sponse to smooth changes in some parameter. The Parametric Hidden Markov Model
(PHMM) is a variation of the hidden Markov model (HMM) that is able to model
gesture families. The gesture recognition process involves adapting the value of the
deformation parameter in response to the input data. The resulting algorithm may be
used to recover “how” a gesture is executed. The adaptation is driven by no external
sources, but rather relies on the geometric regularity of the variation within a gesture
family.

Chapter 2 presents the PHMM.

14

1.5.2 Temporal structure of known behavior: Natural Ges-
ture Models

Natural gesture refers to the spontaneous hand movements made by a person telling
a story, for example. An algorithm is constructed to recover the appearance of the
subject during rest. The algorithm relies on a simple temporal model of natural
gesture to drive the adaptation of rest state models without relying on hand tracking,
which in many circumstances is difficult and unnecessary.

The natural gesture parsing system is presented in Chapter 3.

1.5.3 Strong contextual information: Watch and Learn

In the Watch and Learn system the use of strong contextual priors to adapt appear-
ance based models of gesture is explored. The idea is that if the user follows the
context somewhat closely and the context is constrained, then more precise descrip-
tions of the gesture states may be induced. The Baum-Welch algorithm for training
HMM is used to train appearance models in an online fashion.

Watch and Learn builds on the natural gesture parsing system by employing a
more probabilistic framework and is implemented to work in real time.

Chapter 4 presents the Watch and Learn system.

1.5.4 Multiple Symmetric Learned Representations: Online
Learning of Gesture with Bayesian Networks

Shortcomings of the Watch and Learn system are addressed in the final system, which
is based on the mathematical foundation of Bayesian networks. The Bayesian network
formulation opens up the possibility for adaptation to be driven in multiple ways, and
for different directions of adaptation.

As an example, consider a system which incorporates models of hand movement
and separate models of hand appearance. Models of hand movement might be derived
from studies of how people gesture while telling a story, and hand appearance models
might be trained in an offline fashion. Alternatively, hand appearance models could be
inferred by observing the appearance of objects which move in a manner consistent
with hand movement models. Once the hand is acquired, new movement models
may be learned by observing the movement of the hand. The total gesture signal
is modeled as the interaction of two factors: an appearance model and a movement
model. Bayesian network models are suited for this style of transfer learning by
virtue of the fact that some parts (sets of random variables) of the model may be
held constant while some others may be learned.

After introducing some background on Bayesian networks in Chapter 5, in Chapter
6 we argue that the hybrid Bayesian network is an appropriate representation for
gesture systems where gesture models are learned incrementally. In particular, we
are interested in applying this model to the problem of learning models of gesture
on the fly, and adapting previous models to new users. On a higher level, we are
also interested in ultimately modeling modeling the act of perception as an active,

15

adaptive process, where the act of seeing involves understanding a novel input in
terms of familiar constructs..

1.6 Contributions

The research areas addressed by this thesis are centered around the automatic recog-
nition of gesture from video and other sensors. It is an investigation of the techniques
necessary to exploit gesture as a modality in tomorrow’s interfaces. In particular, it
is concerned with machine learning techniques for adaptive models of gesture: how
do we construct gesture recognition systems that are able to adapt to novel situations
and users?

The contributions of this thesis include:

• Parameterized hidden Markov models are a compact representation of gesture
families. Parameterized hidden Markov models (PHHMs) characterize system-
atic variation of gesture. For example, a form of a pointing gesture depends
on the direction of pointing. An expectation-maximization (EM) framework is
developed for learning the variation from a set of examples as well as recovering
the form of the gesture during runtime.

• Temporal structure may be used to classify broad classes of gesture without
relying on hand position or velocity information. By way of demonstration, a
strong temporal model borrowed from research on natural gesture is used to
characterize two broad classes of gesture. Appearance models may be inferred
by correlating temporal models with a video sequence.

• Online adaptive learning yields robust, flexible gesture recognition. A compu-
tational framework similar to the natural gesture parsing system is used in an
online fashion in the Watch and Learn system, which adaptively learns how to
recognize gesture given a strong temporal model.

• Hybrid Bayesian networks are a useful computational framework in which to
embed an extend the above frameworks. Furthermore, they allow flexibility
for multiple adaptation scenarios. A Bayesian Network topology is developed
that allows multiple adaptation scenarios, tracking of multiple hypotheses, and
a variety of motion models that vary in the nature of the constraints on the
problem.

These contributions are developed in each of the subsequent chapters.

16

Chapter 2

Parametric Hidden Markov Models

2.1 Introduction

Current approaches to the recognition of human movement work by matching an
incoming signal to a set of representations of prototype sequences. For example, a
typical gesture recognition system matches a sequence of hand positions over time
to a number of prototype gesture sequences, each of which are learned from a set of
examples. To handle variations in temporal behavior, the match is typically computed
using some form of dynamic time warping (DTW). If the prototype is described by
statistical tendencies, the time warping is often embedded within a hidden Markov
model (HMM) framework. When the match to a particular prototype is above some
threshold, the system concludes that the gesture corresponding to that prototype has
occurred.

Consider, however, the problem of recognizing the gesture pictured in Figure 2-1
that accompanies the speech “I caught a fish. It was this big.” The gesture co-occurs
with the word “this” and is intended to convey the size of the fish, a scalar quantity.
The difficulty in recognizing this gesture is that its spatial form varies greatly de-
pending on this quantity. A simple DTW or HMM approach would attempt to model
this important relationship as noise. We call movements that exhibit meaningful,
systematic variation parameterized movements.

In this chapter we will focus on gestures whose spatial execution is determined by
the parameter, as opposed to, say, the temporal properties. Many hand gestures that
accompany speech are so parameterized. As with the “fish” example, hand gestures
are often used in dialog to convey some quantity that otherwise cannot be determined
from speech alone; it is the spatial trajectory or configuration of the hands that reflect
the quantity. Examples include gestures indicating size, rotation, or direction.

Techniques that use fixed prototypes for matching are not well suited to model-
ing movements that exhibit such meaningful variation. In this chapter we present
a framework which models spatially parameterized movements in a such way that
the recovery of the parameter of interest and the computation of likelihood proceed
simultaneously. This ability allows the construction of more accurate recognition
systems.

17

Figure 2-1: The gesture that accompanies the speech “I caught a fish. It was this big.”
In its entirety, the gesture consists of a preparation phase in which the hands are brought
into the gesture space, a stroke phase (depicted by the illustration) which co-occurs with
the word “this” and finally a retraction back to the rest-state (hands down and relaxed).
The distance between the hands conveys the size of the fish.

We begin by extending the standard hidden Markov model method of gesture
recognition to include a global parametric variation in the output probabilities of the
states of the HMM. Using a linear model of the relationship between the parametric
gesture quantity (for example, size) and the means of probability density functions
of the parametric HMM (PHMM), we formulate an expectation-maximization (EM)
method for training the PHMM. During testing, a similar EM algorithm allows the si-
multaneous computation of the likelihood of the given PHMM generating the observed
sequence and estimation of the quantifying parameters. Using visually-derived and
directly measured 3-dimensional hand position measurements as input, we present
results on several movements that demonstrate the superiority of PHMMs over stan-
dard HMMs in recognizing parametric gestures and show improved robustness in
estimating the quantifying parameter with respect to noise in the input features.

Lastly, we present an extension of the framework to handle situations in which the
dependence of the state output distributions on the parameters is not linear. Non-
linear PHMMs model the dependence using a 3-layer logistic neural network at each
state. This model removes the constraint that the mapping from parameterization to
output densities be linear; rather only a smooth mapping is required. The nonlinear
PHMM is thus able to model a larger class of gesture and movement than the linear
PHMM, and by the same token, the parameterization may be chosen more freely in
relation to the observation feature space. The disadvantage of the non-linear map is
that closed-form maximization of each iteration of the EM algorithm is no longer pos-
sible. Instead, we derive a generalized EM (GEM) technique based upon the gradient
of the probability with respect to the parameter to be estimated1.

1Parts of this chapter were previously published in [76, 75, 72, 81]

18

2.2 Motivation and Prior Work

2.2.1 Using HMMs in gesture recognition

Hidden Markov models and related techniques have been applied to gesture recogni-
tion tasks with success. Typically, trained models of each gesture class are used to
compute each model’s similarity to some novel input sequence. The input sequence
could be the last few seconds of data from a variety of sensors, including hand position
data derived using computer vision techniques or other position tracking methods.
Typically, the classification of the input sequence proceeds by computing the se-
quence’s similarity to each of the gesture class models. If probabilistic techniques
are used, these similarity measures take the form of likelihoods. If the similarity to
any gesture is above some threshold, then the sequence is classified as the gesture for
which the similarity is greatest.

A typical problem with these techniques is determining when the gesture began
without classifying each subsequence up to the current time. One solution is to
use dynamic programming to match the sequence against a model from all possible
starting times of the gesture to the current time. The best starting time is then chosen
from all possible starting times to give the best match average over the length of the
gesture. Dynamic time warping (DTW) and Hidden Markov models (HMMs) are two
techniques based on dynamic programming. Darrell and Pentland [21] applied DTW
to match image template correlation scores against models to recognize hand gestures
from video. In previous work [9], we represented gesture as a deterministic sequence
of states through some configuration or feature space, and employed a DTW parsing
algorithm to recognize the gestures. The states were found by first determining a
prototype gesture from a set of examples, and then creating a set of states in feature
space that spanned the training set.

Rather than model a prototype sequence, HMMs model a stochastic sequence
of states to represent gesture. Yamato [84] first used HMMs in vision to recognize
tennis strokes. Schlenzig, Hunter and Jain [64] used HMMs and a rotation-invariant
image representation to recognize hand gestures from video. Starner and Pentland
[66] applied HMMs to recognize ASL sentences, and Campbell et al. [14] used HMMs
to recognize Tai Chi movements. The present work is based on the HMM framework,
which we summarize in the appendix.

None of the approaches mentioned above consider the effect of a systematic varia-
tion of the gesture on the underlying representation: the variation between instances
is treated as noise. When it is too difficult to approximate the noise, or the noise
is systematic, is often effective to look for diagnostic features. For example, in [80]
we employed HMMs that model the temporal properties of movement to recognize
two broad classes of natural, spontaneous gesture. These models were constructed in
accordance with natural gesture theory [47, 17]. Campbell and Bobick [15] search for
orthogonal projections of the feature space to find the most diagnostic projections
in order to classify ballet steps. In each of these cases the goal is to eliminate the
systematic variation rather than to model it. The work presented here introduces a
new method for modeling such variation within an HMM paradigm.

19

2.2.2 Modeling parametric variations

In many gesture recognition contexts, it is desirable to extract some auxiliary infor-
mation as well as recognize the gesture. An interactive system might need to know
in which direction a user points as well as recognize that the user pointed. In human
communication, sometimes how a gesture is performed carries significant meaning.
ASL, for example, is subject to complex grammatical processes that operate on mul-
tiple simultaneous levels [59].

One approach is to explicitly model the space of variation exhibited by a class of
signals. In [74], we apply HMMs to the task of hand gesture recognition from video by
training an eigenvector basis set of the images at each state. An image’s membership
to each state is a function of the residual of the reconstruction of the image using
the state’s eigenvectors. The state membership is thus invariant to variance along
the eigenvectors. Although not applied to images directly, the present work is an
extension of this earlier work in that the goal is to recover a parameterization of the
systematic variation of the gesture.

Yacoob and Black [83] as well as Bobick and Davis [7] model the variation within
a class of human movement using linear principle components analysis. The space of
variation is defined by a single linear transformation on the whole movement sequence.
They apply their technique to show more robust recognition in the face of varying
walking direction and style.

Murase and Nayar [49] parameterize meaningful variation in the appearance of
images by computing a representation of the nonlinear manifold of the images in
an eigenspace of the images. Their work is similar to ours in that training assumes
that each input feature vector is labeled with the value of the parameterization. In
testing, an unknown image is projected onto the manifold and the parameterization is
recovered. Their framework has been used, for example, to recover the camera angle
relative to a known object in the field of view.

Recently there has been interest in methods that discover parameterizations in
an unsupervised way (so-called latent parameterizations). In his “family discovery”
paradigm, Omohundro [55], for example, outlines a variety of approaches to learning
a nonlinear manifold in some feature space representing systematic variation. One of
these techniques has been applied to the task of lip reading by Bregler and Omohundro
[12]. Bishop, Svensen and Williams [4] have also introduced techniques to learn latent
parameterizations. Their system begins with an assumption of the dimensionality of
the parameterization and uses an expectation-maximization framework to compute
a manifold representation. The present work is similarly concerned with modeling
“families” of signals but assumes that the parameterization is given for the training
set.

Lastly, we mention that in the speech recognition community a number of models
for speaker adaptation in HMM-based speech recognition systems have been pro-
posed. Gales [24] for example, examines a number transformations on the means and
covariances of HMM output distributions. These transformations are trained against
a new speaker speaking a known utterance. Our model is similar in that we use
constrained transformations of the model to match the data, but differs in that we

20

are interested in recovering the value of a meaningful parameter as the input occurs,
rather than simply adapting to a known input during a training phase.

2.2.3 Non-parametric extensions

Before presenting our method for modeling parameterized movements, it is worthwhile
to consider a number of extensions of the standard gesture recognition paradigm that
attempt to address the problem of recognizing these parameterized classes.

The first approach relies on our ability to come up with ad hoc methods to ex-
tract the value of the parameter of interest. For the example of the fish-size gesture
presented in Figure 2-1, one could design a procedure to recover the parameter: wait
until the hands are in the middle of the gesture space and have low velocity, then
calculate the distance between the hands. Similar approaches are used the ALIVE
[20] and Perseus [40] systems. The typical approach of these systems is to first iden-
tify static configurations of the user’s body that are diagnostic of the gesture, and
then use an unrelated method to extract the parameter of interest (for example, di-
rection of pointing). Manually constructed ad hoc procedures are typically used to
identify the diagnostic configuration, a task complicated by the requirement that this
procedure work through the range of meaningful variation and also not be confused
by other gestures. Perseus, for example, understands pointing gestures by detecting
when the user’s arm is extended. The system then finds the pointing direction by
computing the line from the head to the user’s hand.

The chief objection to such an approach is not that each movement requires a
new ad hoc procedure, nor the difficulty in writing procedures that recover the pa-
rameter robustly, but the fact that they are only appropriate to use when the gesture
has already been labeled. As mentioned in the introduction, a recognition system that
abstracts over the variation induced by the parameterization must model such vari-
ation as noise or deviation from a prototype. The greater the parametric variation,
the less constrained the recognition prototype can be, and the worse the detection
results become.

The second approach employs multiple DTW or HMM models to cover the pa-
rameter space. Each DTW model or HMM is associated with a point in parameter
space. In learning, the problem of allocating training examples labeled by a continu-
ous variable to one of a discrete set of models is eliminated by uniting the models in a
mixture of experts framework [33]. In testing, the parameter is extracted by finding
the best match among the models and looking up its associated parameter value. The
dependency of the movement’s form on the parameter is thus removed.

The most serious objection to this approach is that as the dimensionality of the
parameter space increases, the large number of models necessary to cover the space
will place unreasonable demands on the amount of training data.2 For example,

2In such a situation it is not sufficient to simply interpolate the match scores of just a few models
in a high dimensional space since either (1) there will be significant portions of the space for which
there is no response from any model or (2) in a mixture of experts framework, each model is called
on to model too much of the space, and so is modeling the dependency on the parameter as noise.

21

to recover a 2-dimensional parameter with 4 bits of accuracy would theoretically
require 256 distinct HMMs (assuming no interpolation). Furthermore with such a
set of distinct HMMs, all of the models are required to learn the same or similar
dynamics (i.e. as modeled by the transition matrix in the case of HMMs) separately,
increasing the amount of training data required. This can be embellished somewhat
by computing the value of the parameter as the weighted average of all the models’
associated parameter values, where the weights are derived from the matching process.

Lastly, we consider the possibility of directly interpolating the parameters of mul-
tiple HMMs to arrive at a specialized HMM to match the input. In fact, in a broad
sense the current work adopts this approach. The direct interpolation of HMM pa-
rameters however does not address how the multiple HMM would be trained when
the examples are spread throughout the space of variation, nor does it result in a com-
pact representation in which parameters are trained using all examples. We present
a unified approach derived from the usual HMM techniques that incorporates train-
ing and testing using a compact representation (a single HMM) and an optimization
algorithm to match.

In the next section we introduce parametric HMMs, which overcome the problems
with the approaches presented above.

2.3 Parametric hidden Markov models

2.3.1 Defining parameterized gesture

Parametric HMMs explicitly model the dependence on the parameter of interest.
We begin with the usual HMM formulation [62] and change the form of the output
probability distribution (usually a normal distribution or a mixture model) to depend
on the gesture parameter to be estimated.

As in previous approaches to gesture recognition, we assume that a given gesture
sequence is modeled as being generated by a first-order Markov finite state machine.
The state that the machine is in at time t and its output are denoted qt and xt,
respectively. The Markov property is encoded by a set of transition probabilities,
with aij = P (qt = j | qt−1 = i) the probability of moving to state j at time t given
the system was in state i at time t − 1. In a continuous density HMM an output
probability density bj(xt) associated with each state j gives the probability of the
feature vector xt given the system is in state j at time t: P (xt | qt = j). Of course,
the actual state of the machine at any given time is unknown or hidden.

Given a set of training data — sequences known to be generated by a single
machine — the parameters of the machine need to be estimated. In a simple Gaussian
HMM, the parameters are the aij, µ̂j, and Σj .

3

We define a parameterized gesture to be one in which the output densities bj(xt)
are a function of the gesture parameter vector θ: bj(xt; θ). The dimension of θ

3The initial state distribution πj is usually also estimated; in this work we use causal topologies
with a unique starting state.

22

matches that of the degree of freedom of the gesture. For the fish size gesture it
would be a scalar; for indicating a direction in space, θ would have two dimensions.

Note that our definition of parameterized gesture only models the spatial (or more
general feature) variation, and not temporal variation. Our primary reason for this is
that the Viterbi parsing algorithm of the HMMs essentially performs a dynamic time
warp of the input signal. In fact, part of the appeal of HMMs for gesture recognition
is its insensitivity to temporal variation. Unfortunately, this property means that
it is difficult to restrict the nature of the temporal variation (for example a linear
scaling or uniform speed change). Recently, Yacoob and Black [83] derive a method
for recognizing global temporal deformations of an activity; their method does not
however represent the explicit spatial parameter variation.

Also, although θ is a global parameter — it affects all states — the actual effect
varies state to state. Therefore the effect of θ is local and will be set to maximize the
total probability of the training set. As we will show in the experiments, if some state
is best left unperturbed by θ the magnitude of the effect will automatically become
small.

2.3.2 Linear model

To realize the parameterization on θ we modify the output densities. The simplest
useful model is a linear dependence of the mean of the Gaussian on θ. For each state
j of the HMM we have:

µ̂j(θ) = Wjθ + µ̄j (2.1)

P (xt | qt = j, θ) = N (xt, µ̂j(θ),Σj) (2.2)

where the columns of the matrix Wj span a d dimensional hyper-plane in feature
space where d is the dimension of θ. For the fish size gesture, if xt is embedded in a
six-dimensional space (e.g. the three-dimensional position of each of the hands) then
the dimension of Wj would be 6x1, and would represent the one dimensional hyper-
plane (a line in six-space) along which the mean of the output distribution moves as
θ varies. For a pointing gesture (two degrees of freedom) of one hand (a feature space
of three dimensions), W would be 3x2. The magnitude of the columns of W reflect
how much the mean of the density translates as the value of different components of
θ vary.

For a Bayesian estimate of θ given an observed sequence we would need to specify
a prior distribution on θ. In the work presented here we assume the distribution
of θ is finite-uniform implying that the value of the prior P (θ) for any particular θ
is either a constant or zero. We therefore can ignore it in the following derivations
and simply use bounds checking during testing to make sure that the recovered θ is
plausible, as indicated by the training data.

Note that θ is constant for the entire observation sequence, but is free to vary
from sequence to sequence. When necessary, we write the value of θ associated with
a particular sequence k as θk.

For readers familiar with graphical model representations of HMMs (for example,
see [3]), Figure 2-2 shows the PHMM architecture as a Bayes network. The diagram

23

qtqt-1 qt+1

xtxt-1 xt+1

Figure 2-2: Bayes network showing the conditional dependencies of the PHMM.

makes explicit the fact that the output nodes (labeled xt) depend upon θ. Bengio and
Frasconi’s [2] Input Output HMM (IOHMM) is a similar architecture that maps input
sequences to output sequences using a recurrent neural net, which, by the Markov
assumption, needs only consider the current and previous time steps of the input and
output. The PHMM architecture differs in that it maps a single parameter value to
an entire sequence. Thus the parameter provides a global constraint on the sequences,
and so the PHMM testing phase must consider the entire sequence at once. Later,
we show how this feature provides robustness to noise.

2.3.3 Training

Within the HMM paradigm of recognition, training entails using known, segmented
examples of the gesture sequence to estimate the HMM parameters. The Baum-
Welch form of the expectation-maximization (EM) algorithm is used to update the
parameters such that the probability that the HMM would produce the training set
is maximized. For the PHMM training is similar except that there are the additional
parameters Wj to be estimated, and the value of θ must be given for each training
sequence. In this section we derive the EM update equations necessary to estimate the
additional parameters. An appendix provides a brief description of the Baum-Welch
algorithm; for a comprehensive discussion see [62].

The expectation step of the Baum-Welch algorithm (also known as the “for-
ward/backward” algorithm) computes the probability that the HMM was in state
j at time t given the entire sequence x; the probability is denoted as γtj . It is con-
venient to consider the HMM parse of the observation sequence as being represented
by the matrix of values γtj. The forward component of the algorithm also computes
the likelihood of the observed sequence given the particular HMM.

Let the set of parameters of the HMM be written as φ; these parameters are
updated in the maximization step of the EM algorithm. In particular, the parameters
φ are updated by choosing a φ′, a subset of φ, to maximize the auxiliary function
Q(φ′ | φ). As explained in the appendix, Q is the expected value of the log probability
given the parse γtj. φ

′ may contain all the parameters in φ, or only a subset if several
maximization steps are required to estimate all the parameters. In the appendix we

24

derive the derivative of Q for HMMs:

∂Q

∂φ′ =
∑
t

∑
j

γtj

∂
∂φ′P (xt | qt = j, φ′)

P (xt | qt = j, φ′)
(2.3)

The parameters φ of the parameterized Gaussian HMM include Wj , µ̄j , Σj and
the Markov model transition probabilities aij . Updating Wj and µ̄j separately has
the drawback that when estimating Wj only the old value of µ̄j is available, and
similarly if µ̄j is estimated first, Wj is unavailable. Instead, we define new variables:

Zj ≡
[
Wj µ̄j

]
Ωk ≡

[
θk

1

]
(2.4)

such that µ̂j = ZjΩk. We then need only update Zj in the maximization step for the
means.

To derive an update equation for Zj we maximize Q by setting equation 2.3 to
zero (selecting Zj as the parameters in φ′) and solving for Zj . Note that because each
observation sequence k in the training set is associated with a particular θk, we can
consider all observation sequences in the training set before updating Zj . Accord-
ingly we denote γtj associated with sequence k as γktj. Substituting the Gaussian
distribution and the definition of µ̂j = ZjΩk into equation 2.3:

∂Q

∂Zj

= −1

2

∑
k

∑
t

γktj
∂

∂Zj

(
xkt − µ̂j(θk)

)T
Σ−1
j

(
xkt − µ̂j(θk)

)
(2.5)

= −1

2

∑
k

∑
t

γktj
∂

∂Zj

[
xkt

TΣ−1
j xkt − 2µ̂T

j Σ−1
j xkt + µ̂T

j Σ−1
j µ̂j

]

= −1

2

∑
k

∑
t

γktj

[
−2

∂

∂Zj

(ZjΩk)
T Σ−1

j xkt +
∂

∂Zj

(ZjΩk)
T Σ−1

j ZjΩk

]

= −1

2

∑
k

∑
t

γktj

[
−2

∂

∂Zj
Ωk

TZj
TΣ−1

j xkt +
∂

∂Zj
Ωk

T
(
Zj

TΣ−1
j Zj

)
Ωk

]

= Σ−1
j

∑
k

∑
t

γktj
[
xktΩk

T − ZjΩkΩk
T
]

(2.6)

where we use the identity ∂
∂M
aTMb = abT . Setting this derivative to zero and solving

for Zj, we get the update equation for Zj :

Zj =

∑

k,t

γktjxktΩ
T
k

∑

k,t

γktjΩkΩ
T
k

−1

(2.7)

Once the means are estimated, the covariance matrices Σj are updated in the
usual way:

Σj =
∑
k,t

γktj∑
t γktj

(xkt − µ̂j(θk))(xkt − µ̂j(θk))
T (2.8)

25

as is the matrix of transition probabilities [62] (see also the appendix).

2.3.4 Testing

Recognition using HMMs requires evaluating the probability that a given HMM would
generate an observed input sequence. Recognizing a sequence consists of evaluating
this probability (known as the likelihood) of the sequence for each HMM, and, as-
suming equal priors, selecting the HMM with the greatest likelihood. With PHMMs
the probability is defined to be the maximum probability with respect to the possible
values of θ. Compared to the usual HMM formulation, the parameterized HMMs
testing procedure is complicated by the dependence of the parse on the unknown θ.

We desire the value of θ which maximizes the probability of the observation se-
quence. Again an EM algorithm is appropriate: the expectation step is the same
forward/backward algorithm used in training. The estimation component of the for-
ward/backward algorithm computes both the parse γtj and the probability of the
sequence, given a value of θ. In the corresponding maximization step we update θ to
maximize Q, the log probability of the sequence given the parse γtj . In the training
algorithm we knew θ and estimated all the parameters of the HMM; in testing we fix
the parameters of the machine and maximize the probability with respect to θ.

To derive an update equation for θ, we start with the derivative in equation 2.3
from the previous section and select θ as φ′. As with Zj, only the means µ̂j depend
upon θ yielding:

∂Q

∂θ
=
∑
t

∑
j

γtj(xi − µ̂j(θ))TΣ−1
j

∂µ̂j(θ)

∂θ
(2.9)

Setting this derivative to zero and solving for θ, we have:

θ =

∑

t,j

γtjW
T
j Σ−1

j Wj

−1
∑

t,j

γtjW
T
j Σ−1

j (xt − µ̄j)

 (2.10)

The values of γtj and θ are iteratively updated until the change in θ is small.
With the examples we have tried, less than ten iterations are sufficient. Note that for
efficiency, many of the inner terms of the above expression may be cached. As men-
tioned in the training derivation, the forward component of the expectation step also
computes the probability of the observed sequence given the PHMM. That probability
is the (local) maximum probability with respect to θ and is used by the recognition
system.

Recognition using PHMMs proceeds by computing for each PHMM the value of θ
that maximizes the likelihood of the sequence. The PHMM with the highest likelihood
is selected. As we demonstrate in section 2.4.2 in some cases it may be possible to
classify the sequence by the value of θ as determined by a single PHMM.

26

Figure 2-3: The Stereo Interactive Virtual Environment (STIVE) computer vision system
used to collect data in section 2.4.1. Using flesh tracking techniques, STIVE computes the
three-dimensional position of the head and hands at a frame rate of about 20Hz. We used
only the position of the hands for the first two experiments.

2.4 Results of Linear Model

This section presents three experiments. The first — the example discussed in the
introduction: “I caught a fish. It was this big.” — demonstrates the ability of
the testing EM algorithm to recover the gesture parameter of interest. The second
compares PHMMs to standard HMMs in a to gesture recognition task to demonstrate
a PHMM’s ability to better model this type gesture. The final experiment — a
pointing gesture — displays the robustness of the PHMM to noise in estimating the
gesture parameter θ.

2.4.1 Experiment 1: Size gesture

To test the ability of the parametric HMM to learn the parameterization, thirty
examples of the type depicted in Figure 2-1 were collected using the Stereo Interactive
Virtual Environment (STIVE)[1], a research computer vision system utilizing wide
baseline stereo cameras and flesh tracking (see Figure 2-3). STIVE is able to compute
the three-dimensional position of the head and hands at a frame rate of about 20Hz.
The input to the gesture recognition system is a sequence of six-dimensional vectors
representing the Cartesian location of each of the hands at each time step.

The 30 sequences averaged about 43 samples in length. The actual value of θ,
which in this case is interpreted the size in inches, was measured directly by finding the
point in each sequence during which the hands were stationary and then computing
the distance between the hands. The value of θ varied from 7.7 inches (a small

27

1 0 1 5 2 0 2 5 3 0 3 5

1 0

1 5

2 0

2 5

3 0

3 5

a c t u a l t h e t a

es
tim

at
ed

 th
et

a

Figure 2-4: Parameter estimation results for the size gesture. Fifty random choices of the
test and training sets were used to compute mean and standard deviation (error bars) on
all examples. The PHMM was retrained for each choice of test and training set.

fish) to 36.6 inches (a respectable catch). This method of assessing θ is used as
the known value for training examples, and for the “ground truth” in evaluating
testing performance. For this experiment, both the training and the testing data
were manually segmented; in experiment 3 we demonstrate the PHMMs performing
segmentation on an unsegmented stream of data containing multiple gestures.

A PHMM was trained with fifteen sequences randomly selected from the pool of
thirty; we used six states as determined by cross validation. The topology of the
PHMM was set to be causal (i.e., no transitions to previously visited states, with
no “skip transitions” [62]). In this example typically ten iterations were required for
convergence, when the relative change in the total log probability for the training
examples was less than one part in one thousand.

Testing was performed with the remaining fifteen sequences. As described above,
the size parameter θ was extracted from each of the testing sequences via the EM
algorithm that estimates the probability of the sequence. We calculated the difference
between the estimated value of θ and the value computed by direct measurement.

Figure 2-4 shows statistics on the parameter estimation for 50 random choices
of the test and training sets. The PHMM was retrained for each choice of test and
training set. The average absolute error over all test trials is about 0.16 inches,
demonstrating that the PHMM has learned the parameterization accurately. The
experiment demonstrates the validity of using the EM algorithm which maximizes
output likelihood as a mechanism for recovering θ.

It is interesting to consider the recovered Wj . Recall that for this example Wj

is a 6x1 vector whose direction indicates the linear path in six-space along which
the mean µ̂j moves as θ varies; the magnitude of Wj reflects the sensitivity of the
mean to variation in θ. Table 2.4.1 gives the magnitude of the six Wj vectors for
this experiment. The absolute scale of Wj is determined by the units of the feature

28

measurements and the units of the gesture quantity θ. But the relative scale of the
Wj demonstrates that the mean of the middle states (for example, 3 and 4) are more
sensitive to θ than either the initial or final states. Figure 2-5 show how the position
of the states depends on θ. This agrees with our intuition: the hands always start and
return to the body; the states that represent the maximal extent of the hands need
to accommodate the variation in θ. The system automatically learns which segment
of the gesture is most diagnostic of θ.

State j 1 2 3 4 5 6
‖Wj‖ 0.062 0.187 0.555 0.719 0.503 0.134

Table 2.1: The magnitude of Wj is greater for the states that correspond to where the
hands are maximally extended (3 and 4). The position of these states is most sensitive to
θ, in this case the size of the fish.

2.4.2 Experiment 2: Recognition

Our second experiment is designed to illustrate the utility of PHMMs in the recogni-
tion of gesture. We compare the performance of the PHMM to that of the standard
HMM approach, and demonstrate how the ability of the PHMM to model systematic
variation allows it to have smaller (and more correct) estimates of noise.

Consider two variations of a pointing gesture: one in which the hand moves
straight away from the body at some angle, and another in which the hand moves
from the body with some angle and then changes direction midway through the ges-
ture. The latter gesture might co-occur with the speech “you, go over there”. The
first gesture we will call point and the second direct. Point gestures are parameterized
by the angle of pointing direction (one parameter), while direct gestures are parame-
terized by the initial pointing angle to select an object and an angle to indicate the
object’s direction of movement (two parameters). In this experiment we show that
two HMM’s are inadequate to distinguish instances of the point family from instances
of the direct family, while a single PHMM is able to represent both families and
classify instances of each.

We collected 40 examples of each gesture class with a Polhemus motion capture
system, recording the horizontal and depth components of hand-position. The subject
was positioned at arm’s length away from a display. For each point example, the
subject started with hands at rest and then pointed to a target on the display. The
target would appear from between 25◦ to the left of center and 25◦ to the right of
center along a horizontal line on the display. The training set was collected to evenly
sample the interval θ = [−25, 25]. For each direct example, the subject similarly
pointed initially at a target “X” and then midway through the gesture switched to
pointing at a target “O”. Each “X” was again presented anywhere from θ1 = 25◦ to
the left to 25◦ to the right on the horizontal line. The “O” was presented at θ2

◦,
drawn from the same range of angles, but in which the absolute difference between
θ1 and θ2 was at least 10◦. This restriction prevented any direct gesture from looking
like a point gesture.

29

(a)

(b)

(c)

Figure 2-5: The state output density of the two-handed fish-size gesture. Each corresponds
to either left or right hand position at a state (for clarity, only the first four states are shown);
(a) PHMM, θ = 19.0, (b) PHMM, θ = 45.0, (c) HMM. The ellipsoid shapes for the left
hand is derived from the upper 3x3 diagonal block of the full covariance matrices, and the
lower 3x3 diagonal block for the right hand. An animation of the fish-size PHMM is located
at http://www.media.mit.edu/~drew/movies.

30

Thirty of each set of sequences were used to train an HMM for each gesture class.
With 4-state HMMs, a recognition performance of 60% was achieved on the set of 20
test sequences. With 20 states, this performance improved to only 70%.

Next a PHMM was trained using all training examples of both gesture classes.
The PHMM was parameterized by two variables θ1 and θ2. For each direct example,
θ1 and θ2 were set to equal the angles used in driving the display to collect the
examples. For each point example, both θ1 and θ2 were set to equal the value of the
single angle used in collection. By using the same values used in driving the display
during collection, the use of an ad hoc technique to label the training examples was
avoided.

To classify each of the 20 testing examples it suffices to compare the value of θ1

and θ2 recovered by the PHMM testing algorithm. We used the single PHMM trained
as above to recover parameter values. A training example was classified as a direct
gesture if the absolute difference in the recovered values θ1 and θ2 was more than 5◦.
With this classification scheme, perfect recognition performance was achieved with a
4-state PHMM, where 2 HMMs could only achieve a 70% recognition rate. The mean
error of the recovered values of θ1 and θ2 was about 4◦. The confusion matrices for
the HMM and PHMM models are shown in Figure 2-6.

4-state HMMs 20-state HMMs 4-state PHMM
point direct

actual point 8 2
actual direct 6 4

point direct
point 10 0
direct 6 4

point direct
point 10 0
direct 0 10

Figure 2-6: Confusion matrices for the point and direct gesture models. Row headings are
the ground truth classifications.

The difference in performance between the HMM and PHMM is due to the fact
that the HMM models the systematic variation of each class of gestures as noise. The
PHMM is able to distinguish the two classes by recovering the systematic variation
present in both classes. Figures 2-7a and 2-7b display the 1.0σ ellipsoids of the
Gaussian densities of the states of the PHMM; 2-7a is for θ = (15◦, 15◦), 2-7b is for
θ = (15◦,−15◦). Notice how the position of the means has shifted. Figure 2-7c and
d display the 1.0σ ellipsoids for the states of the conventional HMM.

Note that in Figures 2-7c and d the ellipsoids corresponding to each state show
how the HMM spans the examples for varying values of the parameter. The PHMM
explicitly models the effects of the parameter. It is this ability of the the PHMM to
more accurately model parameterized gesture that enhances its recognition perfor-
mance.

2.4.3 Experiment 3: Robustness to noise, bounds on θ

In our final experiment using the linear model we demonstrate the performance of
the PHMM technique under varying amounts of noise, and show robustness in the
extraction of the parameter θ. We also demonstrate using the bounds of the uniform
distribution of θ to enhance the recognition capability of the PHMM.

31

(a)
2 0 1 5 1 0 5 0 5

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

x

z

P H M M

(b)
2 0 1 5 1 0 5 0 5

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

x

z

P H M M

(c)

2 0 1 5 1 0 5 0 5

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

x

z

p o i n t H M M

(d)
2 0 1 5 1 0 5 0 5

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

x

z

d i r e c t H M M

Figure 2-7: The state output densities of the point and direct gesture models. (a) PHMM
θ = (15◦, 15◦), (b) PHMM θ = (15◦,−15◦), (c) point HMM with training set sequences
shown, (c) direct HMM with training set sequences.

32

Pointing gesture

Another gesture that requires multi-dimensional parameterization is three-dimension-
al pointing. Our feature space is the three-dimensional Cartesian position of the
wrist as measured by a Polhemus motion capture system. θ is a two-dimensional
vector reflecting the direction of pointing. If the pointing direction is restricted to
the hemisphere in front of the user, the movement can be parameterized by the
θ = (x, y) position in a plane in front of the user (see Figure 2-8). This choice of
parameterization is consistent with requirement that the parameter be linearly related
to the feature space.

The Polhemus system records wrist position at a rate of 30Hz. Fifty pointing
gesture examples were collected, each averaging 29 time samples (about 1 second)
in length. As ground truth, we again directly measured the value of θ for each
sequence: the point at which the depth of the wrist away from the user was found
to be greatest. The position of this point in the pointing plane was returned. The
horizontal coordinate of the pointing target varied from -22 to +27 inches, while the
vertical coordinate varied from -4 to +31 inches.

An eight state causal PHMM was trained using twenty sequences randomly se-
lected from the pool of fifty; again the choice of number of states was done via cross
validation. The remaining thirty sequences were used to test the ability of the model
to encode the parameterization. The average error was computed to be about 0.37
inches (combined in x and y, an angular error of approximately 0.5◦). The high level
of accuracy can be explained by the increase in the weights Wj in those states that are
most sensitive to variation in θ. When the number of training examples was cut to 5
randomly selected sequences, the error increased to 0.82 inches (about 1.1◦), demon-
strating how the PHMM can exploit interpolation to reduce the amount of training
data necessary. The approach discussed in section 2.2.3 of tiling the parameter space
with multiple unrelated HMMs would require many more training examples to match
the performance of the PHMM on the same task.

Robustness to noise

Because of the impact of θ on all the states of the PHMM, the entire sequence con-
tributes evidence as to the value of θ. For classes of movement in which there is
systematic variation throughout much the extent of the sequence, i.e. the magni-
tude of Wj is non-trivial for many j, PHMMs should estimate θ more robustly than
techniques that rely on querying a single point in time.

To show this ability, we added various amounts of Gaussian noise to both the
training and test sets, and then estimated θ using the direct measurement procedure
outlined above and again with the PHMM testing EM procedure. The PHMM was
retrained for each noise condition. For both cases the average error in parameter esti-
mation was computed by comparing the estimated value with the value as measured
directly with no noise present. The average error, shown in Figure 2-9, indicates that
the parametric HMM is more robust to noise than the ad hoc technique. We note
that while this particular ad hoc technique is obviously brittle and does not attempt

33

x

y

Figure 2-8: The point gesture used in section 2.4.3. The movement is parameterized by
the coordinates of the target θ = (x, y) within a plane in front of the user. The gesture
consists of a preparation phase, a stroke phase (shown here) and a retraction.

d i r e c t m e a s u r e m e n t

p a r a m e t e r i c H M M

0 5 1 0 1 5
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

s t d . d e v . o f z e r o − m e a n g a u s s i a n n o i s e

m
ea

n
l2

 n
or

m
 e

rr
or

Figure 2-9: Average error over the entire pointing test set as a function of noise. The
value of θ was estimated by a direct measurement and by a parametric HMM retrained for
each noise condition. The average error was computed by comparing the estimate of θ to
the value recovered by direct measurement in the noise-free case.

to filter potential noise, it is analogous to techniques used by previous researchers (for
example, [40]) for real-world applications.

Bounding θ

Using the pointing data we demonstrate how the bounds on the prior uniform density
on θ can enhance recognition capabilities. To test the model, a one minute sequence
was collected that contained a variety of movements including six pointing gestures
distributed throughout. Using the same trained PHMM described above, we applied
it to a 30 sample (one second) sliding window on the sequence; this is analogous
to performing backward-looking causal recognition (no pre-segmentation) for a fixed
gesture duration. Figure 2-10a shows the log likelihood as a function of time; the
circled points indicate the peaks associated with true pointing gestures. The value
of both the recovered and true θ are indicated for these peaks, and reflect the small

34

(a)
2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0

− 4 0 0

− 3 0 0

− 2 0 0

− 1 0 0

lo
g

pr
ob

ab
ili

ty

f r a m e n u m b e r

 3 . 9 , 1 . 7

 (2 . 6 , 3 . 4)

 1 6 . 3 , 1 2 . 5

 (1 5 . 9 , 1 2 . 7)

− 2 0 . 8 , 1 3 . 1

 (− 2 1 . 0 , 1 3 . 9)

 3 . 2 , 2 5 . 9

 (2 . 9 , 2 6 . 3) − 6 . 4 , 1 . 9

 (− 6 . 8 , 2 . 4)

 1 . 4 , 5 . 5

 (1 . 6 , 5 . 0)

(b)
2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0

− 4 0 0

− 3 0 0

− 2 0 0

− 1 0 0

f r a m e n u m b e r

lo
g

pr
ob

ab
ili

ty

 3 . 9 , 1 . 7

 (2 . 6 , 3 . 4)

 1 6 . 3 , 1 2 . 5

 (1 5 . 9 , 1 2 . 7)

− 2 0 . 8 , 1 3 . 1

 (− 2 1 . 0 , 1 3 . 9)

 3 . 2 , 2 5 . 9

 (2 . 9 , 2 6 . 3) − 6 . 4 , 1 . 9

 (− 6 . 8 , 2 . 4)

 1 . 4 , 5 . 5

 (1 . 6 , 5 . 0)

Figure 2-10: Recognition results are shown by the log probability of the windowed se-
quence beginning at each frame number. The true positive sequences are labeled by the
value of θ recovered by the EM testing algorithm and the ground truth value computed
by direct measurement in parentheses. (a) Maximum likelihood estimate. (b) Maximum a
posterior estimate, for which a uniform prior probability on θ was determined by the bounds
of the training set. The MAP estimate was computed by simply disallowing sequences for
which the EM estimate of θ is outside the uniform density bounds. This post-processing
step is equivalent to establishing a prior on θ in the framework presented in the appendix.

35

− 3 0
− 2 0

− 1 0
0

1 0
2 0

3 0

− 5

0

5

1 0

1 5

2 0

2 5

− 1 0 0 0

− 8 0 0

− 6 0 0

− 4 0 0

− 2 0 0

0

x

y

lo
g

pr
ob

ab
ili

ty

Figure 2-11: Log probability as a function of θ = (x, y) for a pointing test sequence. The
smoothness of the surface makes it possible to use iterative optimization techniques such as
EM to find the maximum.

errors discussed in the previous section. Note that although it would be possible to
set a log probability threshold to detect these gestures (e.g. -250), there are many
false peaks that would approach this value.

However, if we look at the values of θ estimated for each position of the sliding
window, we can eliminate many of the false peaks. Recall that we assume θ has
a uniform prior distribution over some allowed range. We can estimate that range
form the training data either by simply taking the extremes of the training set, or by
estimating the density using a ML or MAP estimate [13]. Given such bounds we can
post-process the results of applying the PHMM by eliminating those windows which
select an illegal value of θ. Figure 2-10b shows the result of such filtering using the
extremes of the training data as bounds. The improved output would increase the
robustness of any recognition system employing these likelihoods.

Local vs. global maxima

One concern in the use of EM for optimization is that while each EM iteration will
increase the probability of the observations, there is no guarantee that EM will find
the global maximum of the probability surface. To show that this is not a problem
in practice for the point gesture testing, we computed the log probability of a testing
sequence for all legal values of θ. This log probability surface, shown in Figure 2-11, is
unimodal, such that for any reasonable initial value of θ the testing EM will converge
on the maximum corresponding to the correct value of θ. The probability surfaces of
the other test sequences in our experiments are similarly unimodal.4

The probability surface shown in Figure 2-11 is in fact due to a mixture of NT
Gaussians, N the number of HMM states and T the length of the sequence. In order

4Given the graphical model equivalent in Figure 2-2 it is possible to exactly solve the for the best
value of θ using the junction tree algorithm [34] and conditional gaussian potentials [18], which
model distributions of the form of equations 2.1 and 2.2. The relationship of the PHMM with
Bayesian networks is explored in depth in Chapter 5.

36

to guarantee that EM does not fall in to a local minima, we must show that this
superposition of many Gaussians results in a surface with only one local maxima.
In fact, this will always be the case if the input sequence is smooth over time, the
transformation W at each state changes smoothly from state to state as we move along
the Markov model, and the mapping from input sequence to θ is not inherently
ambiguous. Intuitively, this is because any value of θ which fits at a particular
state j will also likely fit for state j + 1, since the transformation at state j + 1 is
similar to that of state j, and the input also changes smoothly over time. Thus the
NT modes in the total probability surface will lie near each other. Note that the
change of the transformation W from state to state along the Markov model may
be made arbitrarily small by using sufficiently many states. Also, this smoothness
assumption will not be violated by a mistaken alignment by the HMM due to an
incorrect initial value of θ since the left-to-right topology of the HMM prevents
pathological alignments. In practice, if too few states are used to represent the
gesture, EM may not find the global maximum.

Finally, it is the case that for certain gesture families with symmetries, the prob-
ability surface over θ will not be unimodal. For example, consider the family of sine
waves, with θ the phase of the sine wave. In this case the probability surface may
have more than one mode, corresponding to the fact that the sine function is not
invertible.

2.5 Nonlinear PHMMs

2.5.1 Nonlinear dependencies

The linear PHMM model is applicable only when the output distributions of each state
of the HMM are linearly dependent upon θ. When the gesture parameter of interest
is a measure of Euclidean distance and the feature space consists of coordinates in
Euclidean space, the linear model of 2.3.2 is appropriate.

When this relation does not hold, there are at least three courses of action: (1) find
an analytical function which when applied to the feature space makes the dependence
of the output distributions linear in θ, (2) find some intermediate parameterization
that is linear in the feature space and then use some other technique to map to
the final parameterization, and (3) use a more general modeling technique, such as
neural or radial basis function networks, to model the parametric variation of the
state output densities with respect to θ.

The first option can be illustrated using the pointing example. Suppose the pre-
ferred parameterization of direction is a spherical coordinate system. Clearly, one
could transform the Cartesian Polhemus data into spherical coordinates yielding a
linear, in fact trivial, mapping. The only difficulty with this approach is that such
an analytic transformation between feature space and parameter space must exist.
When the parameterization is derived, say, from a user’s subjective rating, it may
be difficult or impossible to represent the feature’s dependence on θ analytically,
especially without some insight as to how the user subjectively rates the motion.

37

The second option involves finding an intermediate parameterization that is linear
in the feature space. For example, a musical conductor might convey a dynamic by
sweeping out a distance with his or her arm. It may be adequate to model the motion
using a parametric HMM with the distance as the parameter, and then use some
additional technique to capture the nonlinearity in the mapping from this distance
to the intended dynamic. This technique requires a fine knowledge of how the actual
physical movement conveys the quantity of interest.

The last option, employing more general modeling techniques, is naturally suited
to situations in which the parameterization is nonlinear and no analytical form of
the parameterization is known. With a more complex model of the dependence on
θ (for example, a neural network), it may not be possible to solve for θ analytically
to obtain an update rule for the training or testing EM algorithms. In such a case
we may perform gradient descent to maximize Q in the maximization step of the
EM algorithm (which would then be called a “generalized expectation-maximization”
(GEM) algorithm). In the next section we extend the PHMM framework to use neural
networks and GEM algorithms to model non-linear dependencies.

2.5.2 Non-linear model

Nonlinear PHMMs replace the linear model of section 2.3.2 with a logistic neural
network with one hidden layer. There is one neural network for each state whose
function is to map the value of θ to the output density parameters of that state. As
with linear PHMMs, the output of each state is assumed to be Gaussian, with the
variation of the density encoded in the mean µ̂j:

P (xt | qt = j, θ) = N (xt, µ̂j(θ),Σj) (2.11)

The mean µ̂j(θ) is defined to be the output of the network associated with state j:

µ̂j(θ) = W (2,j)g(W (1,j))θ + b(1,j)) + b(2,j) (2.12)

where W (1,j) denotes the matrix of weights from the input layer to the layer of hidden
logistic units, b(1,j) the biases at each input unit, and g(·) the vector-valued function
that computes the logistic function of each component of its argument. Similarly,
W (2,j) and b(2,j) denote the weights and biases for the output layer (see [3]). Figure 2-
12 illustrates the network architecture and the associated parameters.

2.5.3 Training

As with linear PHMMs, the parameters of the nonlinear PHMM are updated in the
maximization step of the training EM algorithm by choosing φ′ to maximize the aux-
iliary function Q(φ′ | φ). In the nonlinear PHMM, the parameters φ include the
parameters of each neural network W (l,j), b(l,j) as well as Σj and transition probabil-
ities aij .

The expectation step of the nonlinear PHMM is the same as that of the linear

38

..

Figure 2-12: Neural net architecture of the non-linear PHMM used to map the values of
θ to µ̂. There is a separate network for each state j for which the weights W (i,j), i = 1, 2
and the biases b(i,j), i = 1, 2 must be learned in training.

39

PHMM. In the EM maximization step we maximize Q. From the appendix, we have

∂Q

∂φ′ =
∑
t

∑
j

γtj

∂
∂φ′P (xt | qt = j, φ′)

P (xt | qt = j, φ′)
(2.13)

where we select φ′ to include the weights and biases of the j neural network. For the
Gaussian noise model, we have

∂Q

∂φ′ =
∑
t

γtjΣ
−1
j (xkt − µ̂j)

∂µ̂j(θk)

∂φ′ (2.14)

There is no way to solve for multi-layer neural network parameters directly (see
[4] for a discussion of the credit assignment problem); thus we cannot set ∂Q

∂φ′ to
zero and solve for φ′ analytically. We instead apply gradient ascent to maximize
Q. When the maximization step of EM algorithm relies on a numerical optimization
the algorithm is referred to as the “generalized expectation-maximization” (GEM)
algorithm [22, 46, 52].

Gradient descent applied to a multi-layer neural network may be implemented by
the back-propagation algorithm [3]. In such a network we usually have a set of inputs
{xi} and outputs {yi}. We denote y∗ as the output of the network, wl

ij the weight

from the ith node at the l − 1 layer to the jth node at the lth layer, zli =
∑

j w
l
ijx

l−1
j

is the activation, xli = g(zli) is the output. The goal in the application of neural
networks for regression is to minimize the total squared error J =

∑
i(y

∗
i − yi)

2 by
tuning the network parameters w through gradient descent. The derivative of the
error with respect to wij is

∂J

∂wl
ij

=
∂J

∂zli

∂zli
∂wl

ij

= δlix
l−1
j (2.15)

where

δli =
∂J

∂zli
= g′(zli)

∑
j

δl+1
j wl+1

ij (2.16)

δLi = y∗i − yi (2.17)

Back-propagation seeks to minimize J by “back-propagating” the difference y∗i − yi
from the last layer L through the network. Network weights may be adjusted using,
for example, a fixed step-size ρ:

∆wl
ij = ρδlix

l−1
j (2.18)

In the case of the nonlinear PHMM we can similarly minimize the expected value of
the “error” term (xkt−µ̂j)

TΣ−1
j (xkt−µ̂j) using back-propagation, thereby maximizing

40

the likelihood P (xt | qt = j):

J =
∑
k,t,j

γktj(xkt − µ̂j)
TΣ−1

j (xkt − µ̂j) (2.19)

From equation 2.16 we may thus derive a new “δ rule”:

δli =
∂J

∂zli
= g′(zli)

∑
j

δl+1
j wl+1

ij (2.20)

δLi = γtjΣ
−1
j (xkt − µ̂j) (2.21)

In each maximization step of the GEM algorithm, it is not necessary to maximize
Q completely. As long as Q is increased for every maximization step, the GEM
algorithm is guaranteed to converge to a local maximum in the same manner as EM.
In our testing we run the back-propagation algorithm a fixed number of iterations for
each GEM iteration.

2.5.4 Testing

In testing we desire the value of θ which maximizes the probability of the observation
sequence. Again an EM algorithm to compute θ is appropriate.

As in the training phase, we can not maximize Q analytically, and so a GEM
algorithm is necessary. To optimize Q, we use a gradient ascent algorithm:

∂Q

∂θ
=

∑
t

∑
j

γtj(xt − µ̂j(θ))TΣ−1
j

∂µ̂j(θ)

∂θ
(2.22)

∂µ̂j(θ)

∂θ
= W (2,j)Λ(g′(W (1,j) + b(1,j)))W (1,j) (2.23)

where Λ(·) forms the diagonal matrix from the components of its argument, and
g′(·) denotes the derivative of the vector-valued function that computes the logistic
function of each component of its argument.

In the results presented here, we use a gradient ascent algorithm with adaptive
step size [60]. In addition it was found necessary to constrain the gradient ascent step
to prevent the algorithm from wandering outside the bounds of the training data,
where the output of the neural networks is essentially undefined. This constraint is
implemented by simply limiting any component of the step that takes the value of θ
outside the bounds of the training data, established by the minimum and maximum
θ training values.

As with the EM training algorithm of the linear parametric case, for all of our
experiments less than ten GEM iterations are required.

2.5.5 Easing the choice of parameterization

In section 2.4.3 we present an example of a pointing gesture parameterized by projec-
tion of hand position onto the plane parallel and in front of the user at the moment

41

that the arm is fully extended. The linear PHMM works well since the projection is
a linear operation over the range of angles used in the experiment.

The nonlinear variant of the PHMM just introduced is appropriate in situations
in which the dependence of the state output distributions on the parameter θ is not
linear, and cannot be made linear easily with a known coordinate transformation of
the feature space.

In practice, a useful consequence of nonlinear modeling for PHMMs is that the pa-
rameter space may be chosen more freely in relation to the observation feature space.
For example, in a hand gesture recognition system, the natural feature space may
be the spatial position of the hand, while a natural parameterization for a pointing
gesture is the spherical coordinates of the pointing direction (see Figure 2-13).

The mapping from parameter to observations must be smooth enough to be
learned by neural networks with a reasonable number of hidden units. While in
theory a 3-layer logistic neural network with sufficiently many hidden units and suffi-
cient data is capable of computing any smooth mapping, we would like to use as few
hidden units as possible and so choose our parameterization and observation feature
space to give simple, learnable maps. Cross validation is probably the only practi-
cal automatic procedure to evaluate parameter/observation feature space pairings,
as well as the number of hidden units in each neural network. The computational
complexity of such approaches is a drawback of the nonlinear PHMM approach.

In summary, with nonlinear PHMMs we are free to choose intuitive parameteriza-
tions but we must be careful that it is possible to learn the mapping from parameters
to observation features given a particular observation feature space.

2.6 Results of non-linear model

To test the performance of the nonlinear PHMM, we conducted an experiment similar
to the pointing experiment of section 2.4.3 but with a spherical coordinate parame-
terization rather than the projection onto a plane in front of the user.

We used a Polhemus motion capture system to record the position of the user’s
wrist at a frame rate of 30Hz. Fifty such examples were collected, each averaging
29 time samples (about 1 second) in length. Thirty of the sequences were randomly
selected as the training set; the remaining 20 comprised the test set.

Before training, the value of the parameter θ must be set for each training example,
as well as for each testing example to evaluate the ability of the PHMM to recover the
parameterization. We directly measured the value of θ by finding the point at which
the depth of the wrist away from the user was greatest. This point was transformed to
spherical coordinates (azimuth and elevation) via the arctangent function. Figure 2-
13 diagrams the coordinate system.

Note that for pointing gestures that are confined to a small area in front of the user
(as in the experiment presented in section 2.4.3) the linear parametric HMM approach
will work well enough, since for small values the tangent function is approximately
linear. The pointing gestures used in the present experiment were more broad, ranging
from -36◦ to +81◦ elevation and -77◦ to +80◦ azimuth.

42

e l e v a t i o n

a z i m u t h

Figure 2-13: The spherical coordinate system is a natural parameterization of pointing
direction.

An 8 state causal nonlinear PHMM was trained on the 30 training examples. To
simplify training we constrained the number of hidden units of each state to be equal;
note that this is not required by the model but makes choosing the number of hidden
units via cross validation easier. We evaluated performance on the testing set for
various numbers of hidden units and found that 10 hidden units gave the best testing
performance.

The average error over the testing set was computed to be about 6.0◦ elevation
and 7.5◦ azimuth. Inspection of the surfaces learned by the logistic networks of the
nonlinear PHMM reveals that as in the linear case, the input’s dependence on θ is
most dramatic in the middle of the sequence, the apex of the pointing gestures. The
surface learned by the logistic network at the state corresponding to the apex captures
the nonlinearity of the dependency (see Figure 2-14). For comparison, an eight state
linear PHMM was trained on the same data and yielded an average error over the
same test set of about 14.9◦ elevation and 18.3◦ azimuth.

Lastly, we demonstrate detection performance of the nonlinear PHMM on our
pointing data. A one minute sequence was collected that contained a variety of
movements including six pointing movements distributed throughout. To simulta-
neously detect the gesture and recover θ, we used a 30 sample (one second) sliding
window on the sequence. Figure 2-10 shows the log probability as a function of time
and the value of θ recovered for a number of recovered pointing gestures. All of the
pointing gestures were correctly detected and the value of θ accurately recovered.

2.7 Discussion

A new method for the representation and recognition of parameterized gesture is pre-
sented. The idea is to parameterize the underlying output probabilities of the states
of an HMM. Because the parameterization is explicit and analytic, the dependence
on the parameter θ can be learned within the standard EM formulation.

The method is interesting from two perspectives. First, as a gesture or activity

43

0

0 . 5

1 0
0 . 2

0 . 4
0 . 6

0 . 8
1

− 5

0

5

1 0

1 5

2 0

2 5

3 0

a z i m u t h
e l e v a t i o n

y

Figure 2-14: The output of the logistic network corresponding to state j = 5 displayed
as a surface. State 5 is near the apex of the gesture and shows the greatest sensitivity to
pointing angle. Only the y coordinate of the output is shown; the x coordinate is similarly
nonlinear.

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0

− 4 0 0

− 3 0 0

− 2 0 0

− 1 0 0

lo
g

pr
ob

ab
ili

ty

f r a m e n u m b e r

 3 9 . 3 , 9 . 8

 (2 7 . 1 , 3 4 . 3)

 7 2 . 3 , 6 4 . 7

 (7 2 . 6 , 6 8 . 6)

− 7 7 . 0 , 5 9 . 4

 (− 7 6 . 6 , 7 0 . 3)

 2 8 . 2 , 8 0 . 8

 (3 0 . 5 , 7 9 . 2) − 4 4 . 8 , 1 3 . 9

 (− 5 3 . 7 , 2 5 . 7)

 1 5 . 4 , 3 2 . 8

 (1 7 . 2 , 4 5 . 1)

Figure 2-15: Recognition results are shown by the log probability of the windowed se-
quence beginning at each frame number. The true positive sequences are labeled by the
value of θ recovered by the EM testing algorithm and the value computed by direct mea-
surement (in parentheses).

44

recognition technique, it is immediately applicable to scenarios where inputs to be
recognized vary smoothly with some meaningful parameter(s). One possible applica-
tion is advanced human-computer interfaces where the gestures indicating quantity
must be recognized and the quantities measured. Also, the technique may be applied
to other types of movement, such as human gait, where one would like to ignore or
extract some component of the style of the movement.

Second, the parameterized technique presented is domain-independent and is ap-
plicable to any sequence parsing problem where some context or style ([68]) spans an
entire sequence.

The PHMM framework has been generalized to handle nonlinear dependencies of
the state output distributions on the parameterization θ. We have shown that where
the linear PHMM employs the EM algorithm in training and testing, the nonlinear
variant similarly uses the GEM algorithm.

The drawbacks of the of the generalized approach are two-fold: the number of
hidden units for the networks must be chosen appropriately during training, and
secondly, during testing the GEM algorithm is more computationally intensive than
the EM algorithm of the linear approach.

The nonlinear PHMM is able to model a much larger class of parameterized ges-
tures and movements than the linear parametric HMM. A benefit of the increased
modeling ability is that with some care the parameter space may be chosen inde-
pendently of the observation feature space. It follows that the parameterization may
be tailored to a specific gesture. Furthermore, more intuitive parameterizations may
be used. For example, a family of movements may be parameterized by a subjective
quantity (for example, the style of a gait). We believe these are significant advantages
in modeling parameterized gesture and movement.

2.8 Unlabelled Training Examples

The PHMM training formulation relies on training examples which are each labelled
by a value of θ. Can the PHMM also use unlabelled training examples? If the
examples are segmented in time, it is likely that the PHMM testing procedure, in
which both θ and W are estimated simultaneously, could be used in place of the
usual PHMM training procedure to use unlabelled training examples. The idea is to
use EM to arrive at the value of θ that each example would have been labelled by
while simultaneously estimating W .

Brand [10] has developed a framework similar to the PHMM which exploits a
multi-term objective function, including constraints on similarity throughout the ges-
ture family, and parsimony with respect to parameters afforded the system in a fully
unsupervised approach.

The success of the unsupervised approach of the PHMM relies on the segmentation
of the examples and the constrained nature of the left to right topology that is used in
the preceding development of the PHMM. Combined, these two constraints will insure
that the examples will be approximately aligned in time throughout the training
process.

45

Furthermore, the constraint that the transformation be linear in the case of linear
PHMMs will also ensure a correct solution if the transformation is indeed linear.
In the case of the nonlinear PHMM, the situation is complicated by the fact that
the neural network may approximate a highly complicated (and possibly unlikely)
manifold if many hidden units are explored. The unsupervised nonlinear PHMM will
likely be very sensitive to the number of hidden units afforded each neural network.

Note that if all the training examples are unlabelled the actual values of W and
θ will not be unique. If we allow a small fraction of the examples to be labelled, the
solution will be unique, and the values of θ recovered will be interpretable in relation
to the labelled examples.

2.9 Conclusion

The PHMM represents the manifold of a gesture family. In the distinction introduced
in the previous chapter, the PHMM represents this manifold implicitly. That is, rather
than consider a sequence as a vector of concatenated input observations, the PHMM
models the manifold piece-wise, with a manifold modeling the variation of each part
of the sequence. These models are embedded in a hidden Markov model framework.

In the next two chapters we introduce another framework for handling systematic
variation in gesture: temporal models. These techniques are related to PHMMs
in that they also encode variation in the output probability distributions of hidden
Markov models.

46

Chapter 3

Learning Gestures from Temporal
Structure

3.1 Introduction

As discussed in Chapter 1, in the typical gesture recognition paradigm a gesture
model is fit to a set of example sequences in an offline fashion. During runtime, these
models are then matched against an input sequence to check which, if any, model
best describes the data. In this paradigm learning is conducted entirely offline. The
drawback of the offline learning approach is that the testing scenario must closely
resemble that of training environment, many training examples must be provided,
many gesture models must be computed, or a combination of all three.

In this chapter we begin to explore the idea of online learning of gesture. The
idea is to leave some parts of the gesture model unspecified until runtime, at which
point the gesture model is adapted to the situation at hand. By leaving some things
unspecified until runtime, we have a gesture model that is applicable to particular
scenarios that were not manifest in the training set, and so the gesture recognition
proceeds more robustly.

The key to constructing gesture models that are adapted in an online fashion
to handle novel situations is to encode sufficient constraints in the adaptation pro-
cess and gesture model such that the adaptation process preserves the semantics of
the gesture, such that for example, the “hello” gesture is not adapted to look like
“goodbye”.

In this chapter we explore the online learning of gesture with constraints related
to the temporal structure of the gesture. There is reason to believe that, in many
applications, the temporal pattern or signature of a gesture is invariant across many
runtime scenarios. For example, even though lighting conditions, clothing, and so on,
may change from session to session for a computer vision system, the temporal pattern
of moving from some configuration A to B to C and then back again to C remains the
same. “Learning” then consists of determining appearance models associated with
A, B and C, such that the input sequence makes sense under the given temporal
relations.

47

Consider the following performance animation system, which was shown by the
author as part of an exhibit at the SIGGRAPH ’96 Digital Bayou exhibit area. The
idea was to let the user “fly” a seagull over a virtual landscape. The user controlled the
bird’s wing motion (and thus the rate of forward flight) by some motion determined in
a pre-training phase. This training phase consisted of showing the seagull the user’s
own “wings down” and “wings up” configuration. This was enough data for the
system to build a simple radial basis function (RBF) approximation of the mapping
from 3-dimensional hand position as derived from the STIVE vision system, to a
flapping phase variable passed to the flight graphics system. Figure 3-1 shows the
system in use. A video of the system is located at http://www.media.mit.edu/

~drew/movies.
While this simple performance animation system is interesting from the standpoint

that it was fully customized to each user, the question remained: how to avoid the
training phase? Given that “flapping” is such a simple motion it seems reasonable
that the system, after a short time watching the user, should be able pick up “wings
down” and “wings up”. Note that here it would be insufficient to look for just any
periodic motion, since there is a distinct semantic difference between “down” and
“up” that must be preserved.

At least two sources of information might be used to drive the learning in an up-
dated version of the seagull that learns automatically: first, the temporal structure
of the motion, and second, the current state of the virtual character, on the presump-
tion that the user will probably follow the seagull for a bit at first. This last bit of
contextual information is enough to remove the ambiguity between “up” and “down”.

In section 3.2 we describe a system designed to classify two broad classes of natural
gesture that differ primarily in their temporal patterns. While the system runs in an
offline fashion, it demonstrates that an online approach is valid given strong temporal
models. The next chapter describes a similar framework that learns appearance
models for a truly online, realtime computer vision application.

3.2 Natural Gesture from Video

3.2.1 Introduction

One difference between listening to someone relating a story over the phone and
listening to the same story in person is the presence of gesture. To a listener some
gestures seem inconsequential while others clearly have an expository and clarifying
purpose. Consider the problem of designing a video coding system that codes the
semantically meaningful gestures clearly, perhaps at the expense of other segments
of the conversation. Such a system requires the ability to detect when meaningful
gestures occur. In the rest of the chapter, we present the development of a theory
and algorithm for the visual detection of semantically important natural gestures.

The traditional paradigm for hand gesture recognition involves the construction
of a model for each gesture to be recognized. This usually proceeds by collecting a
number of examples of the gesture, computing the “mean gesture” and quantifying

48

(a)

(b)

Figure 3-1: The seagull performance animation system, in which the user controls the
virtual seagull. (a) a view of the user interacting with the system. (b) the graphics display.
Related work appears in [23].

49

the variance seen in the examples. The hope is that this description will generalize
to the actual test data. Examples of this approach include [64, 8, 74, 19, 66].

This typical pattern recognition approach may be well suited to the recognition
of stylized or literal gesture, such as the gestures made by a user navigating aeronau-
tical data in a virtual reality system by contorting their hands. These actions are
less gestures than particular literal movements. Others examples are the emblem-
atic gestures substituting for simple linguistic constructs: the ubiquitous OK sign or
“giving someone the finger.” These situations lend themselves to the construction
of sophisticated models capable of representing the variations between people; in the
case of the VR-controller, one might even alter the gesture vocabulary to make the
recognition more robust.

However, as an approach to natural gesture understanding, this methodology
seems inappropriate. By “natural gesture” we mean the types of gestures sponta-
neously generated by a person telling a story, speaking in public, or holding a conver-
sation. The reasons for this skepticism are clear. First, the particular configurations
and motions observed in natural gesture are inherently speaker dependent, influenced
by cultural, educational, and situational factors [41]. An approach employing fixed,
physical descriptions of gesture might find no cross-speaker invariances.

Second, and more important, is that the literal representation of the gesture as-
sumes that the spatial configuration is the most significant aspect of the signal to be
extracted. Given that we are observing a sequence, it is plausible that more abstract
temporal properties are the important elements of a gesture.

In this chapter we develop a method for the detection of the important temporal
structure — the gestural phases — in natural gesture. We begin by briefly relat-
ing some recent developments in the theory of natural gesture which have identified
several key temporal aspects of gesture important to communication. In particular,
gesticulation during conversation can be coarsely characterized as periods of bi-phasic
or tri-phasic gesture separated by a rest state. We next present an automatic proce-
dure for hypothesizing plausible rest state configurations of a speaker; the method uses
the repetition of subsequences to indicate potential rest states. Following, we develop
a state-based parsing algorithm used to both select among candidate rest states and
to parse an incoming video stream into bi-phasic and tri-phasic gestures. Finally we
demonstrate how such characterizations can be used to increase the comprehensibility
of a low frame rate coding of video of story-telling speakers1.

3.2.2 Gesture in Communication

Recent research in the field of natural gesture generation and parsing has identified
four basic types of gesture generated during discourse [47, 17]. Three of these are
considered to have meaning in a dialog: iconic, where the motion or configuration of
the hands physically match the object or situation of narration; deictic, a pointing
gesture; metaphoric, where the motion or shape of the hands is somehow suggestive

1Portions of this chapter appear in [79, 80]

50

of the situation. The fourth gesture type, beats, is generated to show emphasis or to
repair mis-spoken segments.

Characteristic of these gesture types are particular temporal signatures. For ex-
ample, each is typically bracketed by the hands being in a “rest state.” Beat gestures
— the simplest — consist only of a small baton-like movement away from the rest
state and then back again; these gestures may be termed “bi-phasic.” The iconic,
metaphoric, and deictic gestures are executed by first “transitioning” from the rest
phase into gesture space (the space in front of the speaker), then executing a smaller
movement (the “stroke”), remaining at that configuration for a short duration, and
then transitioning back to the rest state. Thus, these gestures may be termed “tri-
phasic.” What it means for a movement of the hands to be a natural gesture is defined,
at least in part, by these temporal characteristics. The bi-phasic and tri-phasic dis-
tinction is introduced in [16]. The distinction between beats and representational
gestures (iconic and metaphoric) is also discussed in [70].

We employ the above descriptions to derive a parsing mechanism sensitive to the
temporal structure of natural gesture. Our initial goal is to find possible instances
of bi- and tri-phasic gestures in a video sequence of someone telling a story. The
motivation is that the tri-phasic gestures encode meaning and need to be segmented
from the input gesture stream if they are to be incorporated into any additional
interpretation or coding processes.

3.2.3 Detecting candidate rest states

Gesture data

The data presented here are extracted from video of naive subjects relating a story.
The subject was led into a closed room and asked to think of a time in which they
believed they were in grave danger. The subject was then asked to tell a story of this
event. The subject was instructed to look at the experimenter and not the camera,
and was also warned that the experimenter would only provide minimal (nonverbal)
feedback. Recording proceeded for as long as it took the subject to recount the story.

To reduce the size of recorded imagery, the video was digitized at low spatial
(120 × 160 pixels), temporal (10Hz), and photometric (8-bit gray scale) resolutions.
The two sequences used to illustrate the results are 3min38sec and 4min10sec long,
for a total of 4700 frames or 90MB of data. A few frames of the first sequence are
shown in Figure 3-2.

3.2.4 Feature extraction

To analyze and compare subsequences we require a compact representation for the
imagery. Because the focus of our analysis is on the temporal characteristics of the
sequences and not the spatial appearance, we select the rather aggressive approach of
representing each frame by a small number of coefficients derived from an eigenvector
decomposition of the images [71].

51

a)

b)

c)

d)

Figure 3-2: Three consecutive frames of the sequence used to illustrate the technique
are shown in (a). (c) is the result of computing at each pixel the absolute value of the
difference between the images in (a) and the mean image (b) computed from all frames of
the sequence. (d) The first 3 eigenvectors of the image sequence.

52

We apply the technique to image sequences by randomly selecting a few hundred
frames, computing the eigenvector decomposition of these frames, and then projecting
all frames of the image sequence onto the resulting basis set. Next, the basis set
vectors are ordered by how much variance each accounts for in the training frames.
Because there is not tremendous variation in imagery of a person telling a story, and
since it can be shown that two points that are nearby in the original image space are
also nearby in the resulting low-dimensional space [49], we only need retain a small
number of coefficients for this work. In the experiments reported here, we use only
n = 10 coefficients to represent each frame; on average the 10 coefficients account
for 55% of the variance. These coefficients are the entire representation used for all
further processing.

Note that many of the usual objections to appearance-based principal components
— e.g. sensitivity to translation or illumination change — are less relevant in this
situation than in others such as face recognition[71]. In section 4 we use absolute
distance in coefficient space only to compute a frame’s similarity to possible rest state
frames. By definition, rest states occupy large numbers of frames and so the set of
rest states is well covered by the basis set. For parsing the gestural states, short term
movement in coefficient space is measured; this signal is unlikely to be dramatically
affected by a slightly improper basis that might occur with a change in illumination
or translational shift of the speaker. Furthermore, the algorithms presented here are
applicable to any feature-based representations of hand configuration.

Subsequence distance matrix

Let xi be the n-vector of the eigenvector projection coefficients representing the ith
frame of the image sequence. We define di,j to be the difference between the coeffi-
cients of two frames xi and xj using a distance metric such as the Euclidean norm.
Denoting the length L subsequence beginning at frame i and ending with frame
(i + L− 1) as xLi , we can define the difference between two subsequences xLi and xLj
as the total Euclidean distance:

dLi,j =

[
L−1∑
k=0

d2
i+k,j+k

] 1
2

By computing dLi,j for all pairs of i, j we can construct a matrix for all the subse-
quences.

Figure 3-3 presents the subsequence distance matrix for a central part of one of the
test sequences. The diagonal is black, indicating perfect correlation. Black regions
off the diagonal indicate points in time where a particular length L subsequence is
repeated. For example, beat gestures, which appear in the video as short repeated
motions, show up as dark, short parallel lines. Subsequences that are fairly generic
(e.g., hands are near the rest position) are likely to have several regions of high
similarity. Conversely, motions or configurations that are highly unusual in the sense
that they are unlike any other subsequences manifest themselves in the matrix as a
bright row (and corresponding column) in which the mean distance is much greater

53

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

Figure 3-3: Distance matrix of subsequences of length 5, for a 300 frame section of the
original video sequence. Dark parallel diagonal lines indicate repeated motions, possibly by
“beat” gestures. An interesting sequence in which the subject repeatedly waves her arm at
her side in a circular fashion begins at i = 130. The white bar around i = 415 indicates
atypical movement; the subject is waving both arms high above her head.

than the overall mean.
The nature of the distance matrix is sensitive to the subsequence length L. If L is

small, we may see spurious similarities. If L is too big, then the matching of “atomic”
or primitive subsequences may be prevented. For the results reported here we have
set L = 5 (one half second at 10Hz); we have not systematically experimented with
varying L.

Selecting candidate rest states

Because rest states start and end each bi-phasic and tri-phasic gesture, and because
rest states involve little or no motion for a reasonable duration of time, one expects
a subsequence corresponding to a rest state to be repeated often. Furthermore, if
one were to reconstruct a sequence without regard to the semantic importance of any
particular subsequences and using only a small collection of primitive subsequences,
then one would want to use the rest state subsequence(s) as (one of) the primitives
since it would well describe the imagery.

Our approach to finding candidate rest states is to use the syntactic (as opposed
to semantic) reconstruction idea and to select a small set of subsequences which when
repeated and assembled in the right order would reconstruct the original sequence as
best possible. Of course, finding the optimal set of k subsequences for reconstruction
is an exponential problem since the best k does not necessarily contain the best k−1
set. However, we expect the reconstruction to be dominated by a few rest states plus

54

many unrelated motions. Therefore we use a “greedy” algorithm to select a set of
reconstructing subsequences.

Let M be the set of all subsequences (call these models). Let M ⊆ M be a set
of subsequences, where each m ∈ M specifies the length L subsequence beginning at
xm (frame m in the original sequence). For each xi define

yi = arg min
m∈M

dLm,i

That is, the sequence yi is the best reconstruction of the sequence xi given the models
M . The approximation error at frame i is ei = minm∈M dLm,i.

The “greedy” procedure is as follows: given the previously selected models M , pick
the new subsequence model to add to M such that the decrease in

∑
i ei is maximized.

The algorithm is initialized by choosing the best single subsequence, M = {i} where
i = arg minj

∑
k d

L
j,k.

The algorithm can be iterated as many times as there are frames; at that point∑
i ei = 0. However, each additional decrease in approximation error becomes quite

small after a small number of models are included. For the 2200 frame sequence of
Figure 3-2 we select only the first 40 subsequences; an additional 60 subsequence
would be required to reduce the error only by one half.

Figure 3-4 illustrates the top six ranked (length 5) subsequences. Notice the
variety of candidate rest states. The last example (6) is one which will later be rejected
by our parsing mechanism: although the subsequence can be used to reconstruct a
significant part of the original video, it does not have the right temporal properties
to be considered a rest state. Figure 3-5 illustrates the top four candidates from a
second example sequence. In this example, notice the radically different rest states
recovered.

3.2.5 Detecting gesture phases

Given candidate rest states, we can now simultaneously evaluate them and parse
the gesture stream into bi-phasic and tri-phasic gestures. The approach is to use
a Markov state description, but with the traditional use of transition probabilities
replaced with an explicit model of duration.

Markov states with duration modeling

Although Hidden Markov Models have been a popular technique for the recognition
of gesture (see [84, 64, 66, 74]) we note that in our system the states are not hid-
den. In particular, our analysis of natural gesture types in section 2 identifies rest
(R), transition (T), and stroke (S) states. The properties of these states are known
and can be characterized by similarity in appearance to a rest state, amount of mo-
tion exhibited, and the duration during which the state is maintained. Probabilistic
densities for these descriptions can be derived directly from training data.

Furthermore, the temporal structure of gesture can be described a priori using
these states. Beat gestures correspond to moving from R to T and back to R: <R-T-

55

1

2

3

4

5

6

Figure 3-4: The top six ranked (length 5) subsequences for reconstruction. This selection
illustrates the variety of candidate rest states. The last candidate (6) will be rejected by
the temporal parsing.

1

2

3

4

Figure 3-5: The top four ranked subsequences for reconstruction for a second subject.

56

R e s t T r a n s i t i o n S t r o k e

p(d u r a t i o n)

p(m o t i o n m a g n i t u d e)

p(d i s t a n c e t o r e s t i m a g e)

L o w H i g h

" s h o r t " " s h o r t "" l o n g "

" l o w " " h i g h " " l o w "

" n e a r "

L o w H i g h L o w H i g h

" f a r " " f a r "

Figure 3-6: The three state machine describing the possible gestures. Below each state is a
description of the gamma-density pdf for the given variables. The transitions are unlabeled
because we do not use transition probabilities in generating a parse; rather, the duration
models drive the temporal relationships.

R>; tri-phasic gestures traverse from R to T to S to T and back to R: <R-T-S-T-R>.2

The a priori knowledge of the structure and properties of the states distinguishes our
work from the typical HMM techniques.

Figure 3-6 graphically depicts a gesture phase finite state machine (FSM) and the
associated properties of each state. While the exact form and values of the probability
densities are not critical (each are modeled by gamma densities) it is important to
understand their qualitative nature. The rest state R is modeled as tending to be
“near” the rest state’s position in eigen-space (using, say, the Euclidean norm), to have
“low” motion as measured by the average traversal in eigen-space of the coefficients
used to describe each frame, and of “long” duration. Likewise the T state is “far”,
“high”, and “short” while the S state is “far”, “low”, and “short.”

Given these descriptions, one might be tempted to just cluster and classify the
image frames using appearance and velocity as features, and ignore any notion of
transition. The difficulty with this is the idea of duration, which is well modeled
using a Markov system ([61]) where a modified Viterbi algorithm exists for parsing
input streams with respect to duration models. Duration is fundamental to the idea
of being a rest, transition, or stroke phase. The property of duration is much more
critical to the gesture-parsing than is the probability of a transition occurring between
any two states.

In traditional Markov systems, loopback transitions and their associated proba-
bilities are manipulated in an attempt to alter the duration that a traversal remains

2We can also define multi-phasic gestures to be tri-phasic gesture which cycles through the T-S-T
sequence more than once: <R-T-[S-T]+-R>; this is sometimes seen when tri-phasic gestures are
tightly repeated or overlap.

57

in a given state. Formally, a fixed loopback transition probability is equivalent to
an exponential density on duration, favoring shorter stays within a state. With such
systems it is difficult if not impossible to disallow short durations.

To incorporate duration models and to use the Viterbi algorithm[61] to generate
the best possible parse, we adopt the framework of a Markov system, but with no
cost for a transition. The result is a FSM where only the state-output probabilities
and the duration the system remains in each state affect the parse. The effect is
that instead of using transition probabilities to drive the temporal structure, we use
the duration model. Proposing a traversal from state i to state j at time t requires
accepting the cost of ending the duration in the first state and starting that of the
next.

Identifying rest states

The verification of rest states is accomplished by selecting a candidate subsequence,
defining a gesture-phase-FSM using that candidate to define the rest state location
in eigenspace, and then parsing the input data. If the tested subsequence is indeed
a rest state, then the parsed input should spend a significant amount of time in the
rest state R. If it is not, then most of the parse will oscillate between states T and S.

This verification process was applied to each of 40 candidate subsequences, ordered
by the reconstruction method of section 3.2.3. Two points are of interest. First, many
of the initial candidates (e.g. those ranked 6, 7, and 9) do not satisfy the rest state
criteria when considered in a temporal context; their elimination validates the need
for the temporal analysis beyond clustering.

Second, many candidate subsequences exhibit good rest state behavior, confirming
the idea that there may be several rest states for a given speaker in a given situation.
To select a set of rest states adequate to parse the gesture, we again construct a greedy
algorithm; here we accumulate rest states according to how many new time-steps are
now parsed as rest states if a new candidate is included. For the example of Figure 3-4
we use 20 rest states. Manual thresholding selected this number. However, for the
method of detecting the gesture states detailed in the next section, overestimating
the number of rest states is much less of a problem than underestimating.

Results: detecting bi-phasic and multi-phasic gestures

To detect gesture phases, we need to construct a gesture phase FSM with the necessary
rest states, and then parse the input sequence. To incorporate multiple rest states, we
redefine distance to the rest state feature as the minimum distance to all of the chosen
subsequences. To then detect the relevant gestures we simply parse the incoming video
stream with respect to the gesture-phase-FSM; the parsing algorithm is a duration-
modified Viterbi optimization [61].

Figure 3.2.5 shows keyframes taken from four different triphasic gestures correctly
labeled automatically by the system. Figure 3-8 illustrates the results for a 100
second long subsequence of one of the two video sequences tested; the other sections
have similar results. The top two traces indicate the manually annotated labeling

58

Figure 3-7: Keyframes from four different triphasic gestures correctly labeled automati-
cally by the system. Compare these images with those of Figure 3-4.

(a) M a n u a l a n n o t a t i o n o f t r i − p h a s i c g e s t u r e s

(b) M a n u a l a n n o t a t i o n o f b e a t g e s t u r e s

(c) A u t o m a t i c s t a t e p a r s e u s i n g F S M

(d) A u t o m a t i c a n n o t a t i o n o f b i − p h a s i c a n d t r i − p h a s i c g e s t u r e s

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

Figure 3-8: Example results of parsing the gesture video. (a) and (b) Visual encoding of
a manual annotation of the presence of gesture. The annotation was produced by an expert
in gesture communication who had not seen any of the results before viewing the video. (c)
The state parse of our gesture-state-FSM and (d) the automatically derived labeling from
the state parse (dark grey indicates bi-phasic beats, light grey tri-phasic gestures).

59

of tri-phasic and beat gestures. These labels were generated by the third author
before seeing any of the results. The bottom trace depicts the state-based parse of
the incoming video. Notice the overall similarity in the detection. The extent of
agreement is difficult to measure quantitatively, and perhaps a bit premature as the
gesture community still has difficulties agreeing as to what movements are gestures.
Our contribution is the demonstration that the temporal structure coupled with an
a priori state-based description is adequate to recover most of the gestures present.

We also note that we have tested this procedure on the 4min10sec sequence of a
different speaker illustrated in Figure 3-5. Only one parameter of the model needed
to be adjusted to generate similar results (to change the gamma pdf for motion
magnitude on the rest state), and the parsing agrees with the authors’ observations
of the gesture. As mentioned, this sequence is interesting because of the radically
different rest states recovered; a system must be sensitive to multiple rest states if it
is to segment the gestures properly.

3.2.6 Semantically sensitive coding of gesture

Finally we can address the problem introduced at the outset: the development of
a coding system that ensures meaningful gestures are clearly coded. We define the
problem as follows: Given an original video sequence of someone telling a story, and
given a required average frame rate, select the best possible set of frames to accompany
the audio signal. The coding problem serves as both a test and an application of our
method for detecting semantically meaningful gestures (i.e., tri-phasic gestures) in
story-telling.

In evaluating the performance of our technique, there are two difficulties. The first
is that by definition there is no signal-oriented method to show that one set of frames
is more semantically informative than the next. The question is an empirical one that
may be answered by psychology experiments. For now we need to rely on readers’
and viewers’ own reactions. The second problem is that hardcopy is a poor medium
for displaying the results; we hope that interested readers will view the discussed
sequences on the Web.

The original data that we use to demonstrate the coding technique has been
temporally down-sampled to 10 Hz, running approximately three and one half minutes
for a total of 2200 frames. A clip of the original video (and audio) that is particularly
rich with gestures is seen at “natural gesture sequence 1”3. For this example we chose
an average coding frame rate of 1 Hz, requiring we select only one tenth of the frames.
The “straw man” coding scheme where we simply include every tenth frame is shown
at “natural gesture sequence 2”. Notice how the video appears disconnected from the
narration, as if the frames were selected by someone not listening to the story.

To generate a semantically sensitive coding of the sequence, we use the distinction
between bi-phasic and tri-phasic gestures to make a more informed frame selection.
In this experiment, we varied the frame rate according to the presence of a tri-phasic

3See the index at http://www.media.mit.edu/~drew/movies.

60

gesture, using a higher frame rate to code tri-phasic gestures and a lower frame rate
elsewhere.

Our results are shown in two sequences. In both instances the tri-phasic frame
rate is set to be ten times the frame rate of the rest of the sequence (rest states or
bi-phasic gestures). For purposes of comparison, the average frame rate was held to
that used to construct the straw man sequence (1 Hz). The first sequence (“natural
gesture sequence 3”) is generated using the manually annotated labels described in
the previous section. Notice how much more fluid the viewing experience is. Even
though there are long stretches with few new frames, the coordination with the story
is much tighter.

Finally, we show the computer generated sequence (“natural gesture sequence 4”).
Because of the similarity in labeling of the gestures, the video has a similar feel to the
sequence generated from the manual annotation. Importantly, the selection of video
frames seems to be sensitive to the context of the gesture, even though no content
from the speech stream was extracted. The detection of semantically meaningful
gestures is purely visual.

Before concluding we mention that the scenario described here is not immediately
relevant to the standard one-on-one video conference systems currently available.
First, a variable-rate coding scheme such as the one presented works on the premise
that bandwidth can be used when it is needed and given back later (or even earlier).
Second, the selection of rest states would need to be causal, not batch processed.
However, the proposed scheme is immediately applicable to archival coding, where
causal encoding is not required. With dynamically estimated rest states, this method
is applicable also to multi-user exchanges where bandwidth can be shifted to those
who need it the most.

3.2.7 Conclusion

The natural gesture research community has identified fundamental types of natural
gesture. In particular the triphasic gestures assist in conveying meaning in dialog.
We have shown how the temporal structure of a video sequence of someone relating
a story can be parsed into states that segment many of the triphasic gestures. We
view this work as an initial step toward incorporating gesture sensitivity into dialog
understanding. We have also shown how this distinction can be made relevant to
video coding.

The present system shows that online learning of gesture models from strong tem-
poral models alone may be possible in situations where the domain is known (for
example, using natural gestures in story-telling). Currently, rest state appearance
models are derived from the process of fitting the temporal model; the learned rest
states bootstrap the segmentation of biphasic and triphasic gestures. A similar tech-
nique may be used to learn particular gesture models (for example, a particular kind
of iconic gesture that is semantically rich) so that they may be recognized at a later
time.

The resulting system is robust to the usual set of transformations that trip up ges-
ture recognition systems that train offline models encoding spatial features: changes

61

in viewing angle, illumination, etc. In the case of natural gestures this robustness is
doubly important in light of the fact that it would be difficult to learn a compact
model of, for example, biphasic gestures over a set of spatial features, since classes of
natural gesture are often defined in terms of temporal structure rather than spatial
characteristics. These gestures often exhibit a bewildering variety of spatial forms,
and thus would be difficult to model using a standard set of spatial features (for
example, the position of the hands).

However, it is important to note that while there is indeed great variety in a gesture
class from session to session, informal observations indicate that the form of the
gesture usually doesn’t change from instance to instance. In the present work, it was
noted, for example, that just a few rest-state appearance models are necessary to cover
the full range of rest state frames in a long video sequence; subjects typically change
their rest state infrequently or slowly. From these observations it seems reasonable to
try to learn gesture models in an online fashion using temporal models to bootstrap
the learning process.

In the next chapter we present a closely related realtime system in which the
estimation of appearance models and the fitting of the temporal model proceed si-
multaneously, in much the same way that the PHMM determines the value of its
parameters during runtime. The learned gesture models are then exploited later in
recognition.

62

Chapter 4

Watch and Learn

4.1 Introduction

One of the challenges in implementing gesture recognition systems is to design gesture
models that work across a wide variety of users and environments. The problem of
generalization is particularly acute when computer vision techniques are used to derive
features. Lighting conditions, camera placement, assumptions about skin color, even
the clothing worn by the user can disrupt gesture recognition processes when they
are changed in ways not seen during training.

We argue that rather than attempt to construct training ensembles that cover all
possible scenarios, it is preferable to adapt existing models to the situation at hand.
This chapter presents preliminary work in developing a system that learns gestures
in an online manner. The only knowledge explicitly encoded into the model a priori
is a Markov model representing the temporal structure of the gesture.

We demonstrate the technique in a simple gesture recognition system based on
computer vision as input. We show that with the online adaptive approach, it is
possible to use simple features that are not necessarily invariant to the usual set of
transformations that disrupt recognition processes1.

4.2 Motivation: Online Adaptive Learning of Ges-

ture

Typically gesture recognition systems are trained by gathering a number of sequences
that serve as examples of a class of gestures, and a model of the class of gestures is
constructed automatically from these examples. Hidden Markov models are a popular
choice to model gestures because they are easily trained and are efficient in the testing
phase [63].

One of the drawbacks of this traditional approach is that the trained models only
work well in testing if the situation under which the testing data are collected is

1This chapter appears in [77, 78].

63

typical of the situations in which the training sequences were collected. A common
problem that has arisen in our own experiments is if there is a systematic bias in the
training data with respect to the testing conditions, such as might easily be the case if
the features used were not translation-invariant and the user has moved a bit. HMMs
are particularly sensitive to this problem because if there is a (typically artificial) bias
that well separates the gestures during training, then the HMM is likely to latch on
to that distinction in allocating states that reflect the likelihood that a given machine
will produce a given output.

There are two common approaches to this problem: collecting data over many
different sessions, and choosing a feature space that generalizes well. By collecting
data over many sessions and incorporating them all into the example set, the hope
is that the resulting model will encapsulate all the kinds of variation in the gesture
that the system is likely to see during runtime. The drawbacks of this approach are
two-fold: first, the number of examples that are required may in fact be too great
to be practical, and second, as the number of distinguishable situations increase, the
model will require more and more degrees of freedom to adequately represent the set
of gestures.

The second approach, that of choosing the right feature space, has the chief draw-
back that it is in general difficult to craft a feature set that at once collapses the
variation of the signal so that a manageable number of examples are sufficient, and
still allows sufficient detail that the gesture may be recognized among a set of gestures.

We argue that these difficulties may be somewhat eased if we let part of the feature
selection process happen during runtime. In the next section we show how an a priori
model of the temporal structure of the gesture when combined with constraints from
context, makes runtime feature selection possible. We call this the online adaptive
learning of gesture to differentiate it from the usual gesture recognition methodology
in which the gesture models are trained off-line.

4.3 Temporal Structure, Context and Control

The idea of the online adaptive gesture learning algorithm presented here is that if
the system has a representation of the temporal structure of the gesture in question
and this can be combined with real-time information derived from the application
context, then the situation is sufficiently constrained that a system may conduct
feature selection on the fly. Then later, when context information is unavailable, the
system will be able to recognize the gesture via the learned representation.

The need for context arises because typically there is insufficient structure in
the temporal model to unambiguously align a given input sequence with a potential
traversal of a priori defined states. For example, consider a gesture composed of “up”
and “down” phases. The temporal structure of such a gesture would be represented
by the periodic Markov model in Figure 4-1. If we try to align an observation sequence
to the Markov model in the figure, we find there are two ways to do this. One possible
outcome assigns state A a mean feature vector that we call “down” and B a mean
vector of “up”. The other outcome swaps the assignment of “down” and “up”.

64

A B

Figure 4-1: The simplest Markov model appropriate for a periodic signal. Given equal
transition probabilities from state A to B, the Markov model is symmetric in A and B.
Without contextual information, alignment of a signal to this Markov model would yield
one of two possible equivalent assignments of semantics to A and B.

If our only concern is recognition then such a transposition is unimportant; the
likelihood of the learned HMM producing the observed sequence is the same in either
case. However, our goal is to use gesture for control of dynamic human-computer
interactions. As described in section 4.7 we exploit the temporal-context sensitivity of
HMMs by allowing a high likelihood of being in particular states to trigger application
events. In this approach, an inversion of, say, “up” and “down” states is unacceptable.
Note that the ambiguity may happen not at just the level of single states, but at the
level of groups of states, such as whole gesture models.

A way to resolve this ambiguity is to resort to some external information, such
as that provided by application context. If we can get a hint from the application to
differentiate “down” from “up”, the ambiguity is removed. Now that the features that
correspond to the states has been unambiguously determined, the context information
is longer required to perform an alignment which avoids the original ambiguity.

The learning algorithm presented incorporates the real-time learning of a hidden
Markov model given application context information.

4.4 Related Work

In [80] we use a approach similar to that presented here to extract two broad classes
of the natural, spontaneous gestures that people make when they are telling a story:
biphasic gestures, which involve moving the hands out of a rest position, into the
gesture space, and back to the rest position, and triphasic gestures, which consist of
an additional stroke phase while the hands are in the gesture space. This classification
scheme highlights the temporal differences of an ontology of gestures developed in
[47]. A Markov model was hand-designed for each of the two classes of gesture, which
differed in their temporal structure. These Markov models were then combined with
image-based features derived from a long (5-minute) video sequence to derive the
appearance of various rest-states used by the speaker. The present work similarly fits
a hand-coded Markov model with a block of video input.

In [76] we introduce the parametric hidden Markov model (PHMM) formalism
for representing a family gestures with a hidden Markov model. A PHMM encodes
the manner in which the spatial form of the gesture changes as a known parameter
changes. For example, the form of the gesture indicating the size of object depends on
the size of the object. The PHMM testing phase involves computing the value of the

65

parameter that maximizes the likelihood of the gesture. PHMM output probability
distributions depend on a global vector-valued parameter. The present work uses a
similar style of online EM optimization to determine the value of the parameters used
in HMM output state distributions.

Oliver, Pentland and Berard [54] use online EM methods to adapt color-class
models in real-time for their face and lips tracking system.

4.5 Learning Algorithm

4.5.1 Expectation-Maximization Algorithm for Hidden

Markov Models

A hidden Markov model uses the topology of the Markov model and its associated
transition probabilities to express the temporal structure of the gesture. For example,
a periodic motion may be represented by a simple Markov model with two states and
transitions back and forth between them, as in figure 4-1. During testing, the Viterbi
or forward/backward algorithms are used to compute the likelihood that an input
sequence has the same temporal structure of the HMM, as well as match the state
output probability distributions. In the process of calculating this likelihood, the
forward/backward algorithm computes the posterior probability γtj = P (qt = j |
O, λ), the probability that the HMM was in state j at time t, given the observation
sequence O and HMM λ. The quantities γtj represent the parse of the HMM.

If all the values γtj are known, it is easy to see how to update the output probability
distributions. For example, if the output probability distributions are Gaussian with
mean µj and covariance Σj , the update equations are:

µj =

∑
t

γtjxt∑
t

γtj
(4.1)

Σj =

∑
t

γtj(xt − µj)(xt − µj)
T

∑
t

γtj
(4.2)

This is the Baum-Welch update used in training an HMM. The Baum-Welch
algorithm is an expectation-maximization (EM) algorithm, where the expectation
step involves calculating the γtj and the maximization step involves updating the
parameters of the output probability distributions and transition probabilities.

4.5.2 Controlling the Online Adaptation

In the online adaptive learning of gesture, we use HMMs to represent the gesture
we wish to recognize, but instead of running the Baum-Welch algorithm off-line, we
run it during runtime to update the output probability distributions. In the present

66

work, we start with a known Markov model and transition probability matrix that
represents the temporal structure of the gesture of interest, while the parameters of
the output probability distributions are randomized at the start. As discussed in
section 4.3, without some hints from application context, the states of the learned
hidden Markov model may not obey the proper semantics required by the application
(for example, “down” and “up” may be swapped, or the “up” gesture may be swapped
with the “down” gesture).

The modification required to the Baum-Welch algorithm for it to exploit context
is basically to bias the γtj after the initial computation of the expectation. Since the
γtj are used as weights to define the next description of the states, the biased γ’s may
be thought of as an attention focusing mechanism, permitting exterior knowledge to
inform the computational state that is should more aggressively learn its parameters
than it would if only using the normal γ membership. In the exposition that follows
we give one method to create a lattice of biased γtj, by defining a new quantity that is
a linear combination of γtj and prior probabilities derived from application context.2

The information from application context are assumed to take the form of prior
probabilities for each state:

ωtj = P (qt = j | Ω) (4.3)

where Ω represents application context. These posterior probabilities are then com-
bined with the usual HMM posterior probabilities γtj = P (qt = j | λ) to obtain a new
posterior probability which incorporates the HMM and the application state context:

Γtj = ρjγtj + (1 − ρj)ωtj (4.4)

which is subsequently normalized so that
∑

j Γtj = 1. ρj is a scalar quantity that is
proportional to how much the HMM state j has been tuned during online adaptation.

In the current system, we set ρj to be proportional the number of frames for which
γtj is greater than some fixed value (say, 0.7). When beginning the adaptation, ρj
is at its minimum value, then increases to some maximum value during adaptation.
The intuition is that this quantity controls the degree to which the system follows the
application context versus the HMM. It also overcomes the fact that when the HMM
output distribution function is Gaussian, starting with large covariances to represent
uncertainty brings the distributions to zero and so the state is never exploited by
the HMM. The effect of ρj during runtime is to artificially bias the algorithm to use
neglected states.

We also incorporate a global learning rate α to control the adaptation process.
The idea is that at the start of the algorithm, when the state output distributions
parameters have random values the algorithm should learn aggressively, and that
later when the parameters have approached good “final” values the algorithm should
change the values less aggressively. This prevents the algorithm from changing the
gesture model to match some spurious input.

In the present system α is derived from the confidence value ρj described above.

2In the present system, we implement this bias by altering the form of the output probability
distribution rather than by directly manipulating γtj .

67

We currently set the relationship between ρj and α in an ad hoc manner. For a
state which has seen no probability mass γtj, we would like quantity to be 1.0. It is
important that the learning rate always have some value greater than zero, so that
the algorithm can continually adapt to slow changes in the gesture signal. Optionally,
we normalize α by the frame rate of the online EM process.

The learning rate α is incorporated in the EM update by simply mixing the old
value of the parameter with the new value:

µ′
j = (1 − α)µj + α

∑
t

Γtjxt (4.5)

The quantities P (xt | qt = j, λ) are computed over the sequence 〈xt−T . . .xt〉, and
the EM algorithm is run once over the sequence. At some time t + ∆t, this process
is repeated (caching values where possible) over the next window 〈xt+∆t−T . . .xt+∆t〉,
and so on, throughout the lifetime of the application – there are no distinct training
and testing phases.

4.6 Images as Input

4.6.1 Tracking

The Watch and Learn system uses the online adaptive algorithm described above with
whole images as input. Color images are acquired at a rate of 30Hz from a camera
pointed at the user. A body-centric image of the user is derived from the input
image by subtracting the pixel values of the image of the scene without the user (the
background image) from the current image. This difference image is then binarized to
obtain a silhouette image. A simple EM-based tracking algorithm updates the center
of the image to follow the center of the silhouette. The body-centric silhouette image
is then multiplied by the original image to obtain a color image that is body-centric
and does not include the background.

The EM-base tracking algorithm models the spatial distribution of the silhouette
pixels over the image as a Gaussian with fixed covariance.

hx,y =
1√

2π | Σ |
e
− 1

2

(
[x y]

T −c

)T

Σ−1

(
[x y]

T−c

)
(4.6)

c′ =
∑

Dx,y>b

hx,y[x y]T (4.7)

where Dx,y is the absolute difference of the current image pixel at (x, y) and the back-
ground image pixel at the same location, c is the mean from the previous time step,
b is the threshold for binarizing the image and Σ is the constant diagonal covariance
matrix that is chosen to approximate the size of the user in the image.

hx,y is calculated over a window centered about c. If the likelihood of this model
falls below a threshold, the algorithm enters a seek mode in which the mean c is
repeatedly assigned a random value until the likelihood hx,y is above the threshold.

68

Otherwise, the mean of the Gaussian is updated to reflect the translation of the
silhouette.

4.6.2 Output Probability Distribution

The pixel values of the cropped color foreground image centered about c at time t
are concatenated to form the feature vector xt. The last two seconds of the color
foreground images are saved in memory. These form the buffer over which the online
adaptive EM algorithm updates the output probability distribution parameters. The
output probability distributions bjt = P (xt | qt = j) take the form:

bjt =
1√

2πσj
e
− 1

2σ2
j

XY
(xt−µj)T (xt−µj)

(4.8)

where σj is a scalar, and X and Y are the dimensions of the image xt.
The output probabilities bjt(x) are computed over all states j for the current time

step only; the values are saved in a buffer of the last T time steps. Updating the
output probability distribution parameter µj proceeds as equation 4.1, here involving
the weighted sum of the images in the image buffer. The update of σj is similarly a
weighted sum:

σ =

∑
t

Γtj(xt − µj)
T (xt − µj)∑

t

Γtj

(4.9)

After each maximization step, it would be correct to recompute the value of the
output probability distributions for each state and each image in the image buffer,
since the parameters of the distribution have changed by the update equations. In the
present system, however, we do not recompute these likelihoods for the reason that
much computation may be avoided by computing the likelihoods for only the newest
image. If the buffer is small and the changes in the parameters are continuous, then
the outdated values of the likelihood associated with the oldest frames in the buffer
will not upset the learning algorithm. Empirically we have found this to be the case.

In the Watch and Learn system, computing the weighted sum of images for the
maximization step is the most computationally intensive step of the algorithm and
need not be executed at every new time step. Thus with the current system, the input
image buffer is updated at 30Hz, while the learning algorithm executes at no more
than 4Hz. Both the expectation and maximization steps of Watch and Learn have
been implemented to use MMX single instruction/multiple data (SIMD) instructions
available on the Intel Pentium II processor.

4.7 Application: Conducting

One activity in which there is strong contextual information is musical conducting,
where both the musicians and the conductor follow a score. The Watch and Learn
system has been applied to a simplified conducting scenario to demonstrate that a

69

R e s t D o w n U p

Figure 4-2: The Markov model used to represent the temporal pattern of a beat in the
Watch and Learn system applied to the simple conducting scenario.

simple beat gesture may be learned by adaptive online learning. A video of the system
is located at http://www.media.mit.edu/~drew/movies.

The interaction between the user who plays the role of the conductor and the
system is as follows. The user steps in front of the camera and waits for the system to
play a series of beats (wood block sounds) that establish a tempo. After a few beats,
the user begins to follow the beat with his hand. After a few bars of following the
system’s beat, the system begins to play a piece of music. Having taught the system
his own beat gesture, the user is now free to change the tempo of the piece currently
playing.

For the simple beat pattern described, a simple three state Markov model is used
to model the temporal structure of the gesture (see figure 4-2). The Markov model
begins in a rest state, which is learned at first when the user is standing in front of the
camera waiting for the system to establish a beat. During the fourth beat generated by
the system, the user is supposed to have begun following the beat with his gesture. At
this point, contextual priors are changed to match the expectation that at the instant
of the system-generated beat, the user should be in the “downbeat” state. Given that
at this stage in the learning the rest state has already been learned by the system,
the “upbeat” state will be learned correctly because temporal structure provided will
lead the system to ascribe the moments before the downbeat to the “upbeat” state,
and furthermore, presumably the images during the actual upbeat motion will look
different than the “rest” state.

As the user counts out the beats, the appearance models (the means of the output
probability distribution) associated with each state gradually appear as reasonable
approximations to what an observer might call the “upbeat”, “downbeat” and “rest”
phases of the gesture. Figure 4-3 shows a typical set of appearance models for the
beat Markov model. Figure 4-4 shows γtj over the last 64 frames (about 2 seconds) of
video. The system is continually adjusting these states to reflect the subtle changes
in the way the user executes the gesture from instance to instance.

We wish to remind the reader that Watch and Learn in no way attempts to track
the user’s hands; it is purely through the combination of the temporal structure model
and the contextual information that gives rise to the semantically correct appearance
models. Ultimately, the most important requirement is that the user be cooperative,
especially during the periods of high learning rate, and consistent. It is quite possible
to train Watch and Learn to recognize foot tapping instead of hand beats, as long as
the user consistently does so.

Changes in tempo are made in a very simplistic manner according to the rise and

70

Rest Up Down

Figure 4-3: The appearance models (images) associated with each state of the beat HMM,
after online adaptation. When the algorithm is started, the pixels values of the images are
randomized.

Rest

Up

Down

Figure 4-4: Plots of γtj for the beat gesture, after online adaptation.

71

fall of γt,up: when γt,up falls below a certain threshold, a “beat” event is generated.
The time between the current beat and the last beat is calculated, converted to MIDI
clock units and passed on to the MIDI time-keeper running on the host computer.
Presently, no attempt is made to synchronize where the particular downbeat falls
with the downbeat in the score. If at some point the user returns to the rest state,
tempo changes are not made and the piece continues playing at the last tempo.

4.8 Discussion and Future Work

An online adaptive learning algorithm for learning gestures has been presented. The
approach differs from the usual train/test paradigm in that much of the training
process may occur online. The algorithm requires a Markov model that represents
the temporal structure of the gesture to be learned. This is combined with contextual
information to train the output probability distributions during runtime. Watch and
Learn succeeds in learning a simple beat pattern, and in another configuration has
been applied to learning a mapping to various drum sound patches with a slightly
more complex temporal model (see figure 4-5).

We argue that the problem of generalization by feature selection is eased with
the online adaptive learning algorithm presented above. By delaying the estimation
of the output probability density parameters to runtime, the online algorithm is free
to choose only those values which fit the current set of data. Thus any particular
bias in the features present in runtime that would have upset an off-line approach is
absorbed in the online learning process.

The net result is that with the online algorithm, feature selection is not as crucially
important as with the off-line algorithm in obtaining generalization performance. As
long as the features are consistent over the set of learned states, the online algorithm
will set the output probability distribution parameters appropriately. For example,
image space itself may make an extremely poor feature space for many gesture appli-
cations because many of the usual desired invariants are absent.

Although in general computer vision has been dismissed as a technique useful to
computer music on the grounds that the techniques are too computationally complex
to run quickly on today’s hardware, we note without hard justification that Watch
and Learn is quite responsive. One reason for this is the fact if events are triggered
from γtj, the temporal model enables the system to anticipate events: for example, a
MIDI note-on event may be generated at the moment that γt,up begins to fall below
a threshold, which is in a moment in advance of the peak of γt,down (see figure 4-4).
Also recall that γtj is being updated at 30Hz.

There are two drawbacks to the Watch and Learn system as it is currently im-
plemented. First, the system assumes that the user is being cooperative at all times.
This drives the learning initially, but can be a problem once gesture models have
been learned. For example, once the beat gesture is learned reliably, if the user does
a completely different gesture, this new movement should not be incorporated into
the model. However, if the gesture appears to have the same temporal structure as
the original beat, and occurs at the moment in time during which the system expects

72

R e s t

S n a r e
h i t

B a s s
h i t

S n a r e
s t a r t

B a s s
s t a r t

S n a r e
u p

B a s s
u p

Figure 4-5: The Markov model used for a drum-set configuration of Watch and Learn.
MIDI events are generated when the Markov model enters the “Snare hit” and “Bass hit”
states. “Snare start” and “Bass start” states capture the preparation of the gesture and
do not generate MIDI events. The appearance models of the start states may adapt to
resemble those of the hit states, thus they are necessary to prevent spurious MIDI events
during the gesture’s preparation phase.

73

a beat, the system should incorporate the new information.
The second drawback to the Watch and Learn system is the ad hoc manner in

which the confidence values ρj and the learning rate α is determined. We expect to
incorporate more principled ways of controlling the adaptation.

The next chapter outlines a framework that in part is designed to address these
drawbacks.

4.8.1 Learning a Saliency Map

Watch and Learn employs a very coarse notion of a focus of attention by tracking
the user and deriving body-centered images from video input. This broad focus of
attention does not address the situation in which the user, for example, trains the
system on a hand gesture, and then shifts his leg to a new position. As discussed
earlier, if this change is slight in the image, the online adaptation process may allow
the incorporation of this new pose into the appearance model without disrupting the
gesture recognition process. If the change is large in the image, however, the input
image may not be similar to any stored appearance models, and gesture recognition
and adaptation processes may be lost. A narrower focus of attention that picks out
parts of signal to attend to is desirable.

Watch and Learn may be extended to incorporate learned saliency maps which
indicate which parts of the image to attend to in its computation. A variety of
approaches may be investigated, but the most computationally feasible and motivated
approaches will involve using image motion as a cue for saliency over the image,
rather than the computationally more expensive discriminant-analysis techniques.
The following outlines an approach based on image motion.

During the parsing of gesture, the underlying cause of moving from one gesture
state to another is change in the image. Intuitively, in order to see transitions from
state to state, the system need only then pay attention to regions of the image that
tend to change over the course of the gesture. During the adaptation process, a
saliency map over image may be computed which indicates which pixels were changing
while the gesture model was in a particular state j. This may be accomplished in
a variety of ways; one approach is to learn the variance of the pixel color at each
location throughout the image, using the usual M-step equations:

σ2
j (x, y) =

∑
t

γtj(I(x, y) − µj(x, y))T (I(x, y) − µj(x, y))

∑
t

γtj

where I(x, y) is the vector-valued pixel color at (x, y), and µj(x, y) is the value of µj

corresponding to image coordinates (x, y).
This variance may then be incorporated into a probabilistic saliency map, where

s = ON and s = OFF indicates whether the pixel is salient (ON) or not (OFF).

P ((x, y) | sj(x, y) = OFF) = N (0, σ2
j (x, y))

P ((x, y) | sj(x, y) = ON) = 1 − P ((x, y) | sj(x, y) = OFF)

74

The usual output probability distribution function may incorporate the likelihood of
the pixel belonging to the map:

b′jt(x, y) = bjt(x, y)P ((x, y) | sj(x, y) = ON)

Note there are many possible ways to incorporate P ((x, y) | sj(x, y)) but that incor-
porating it directly into the original bjt form is complicated by the fact that sj is
not a measure of uncertainty in the usual interpretation of Gaussian distributions;
this behavior is opposite of what is desired. Furthermore, by keeping the saliency
distribution separate from the usual output distribution, we reserve the ability to
differentially weight the two quantities.

A simple variant on this approach is to build a saliency map based on image motion
independent of the HMM state j. That is, image motion is treated as a saliency cue
independent of the gesture state. Note that in an implementation, this could amount
to modifying the tracking algorithm of Section 4.6.1 to follow regions of the image
which exhibit movement rather than regions which are sufficiently different from the
background. Additionally, the window size of Section 4.6.1 could be made to change
according to the size of the region. If the window size and location is constrained
to change slowly, the system will effectively ignore extraneous movement outside the
gesture space.

75

Chapter 5

Hybrid Bayesian Networks

5.1 Introduction

Bayesian networks, or graphical models or probabilistic independence networks as they
are also known, have become increasingly popular probabilistic modeling techniques.
In the past, discrete-valued Bayesian networks had been popularized for their appli-
cation in expert systems [57], but more recently their relationship with other familiar
techniques such as hidden Markov models, Kalman filters and factor analyzers has
been established. Consequently, much recent work in machine learning and computer
vision has applied Bayesian networks to extend and combine the previous approaches
(see [56] for example).

In this chapter I briefly outline the methodology of a particular flavor of Bayesian
networks that will be useful in uniting the mathematical structures of the previous
chapters. The hybrid Bayesian network will prove its worth in subsuming hidden
Markov models and allowing various extensions and combinations with other types of
structures. In particular I will consider the interpretation of the Parametric Hidden
Markov Model (PHMM) as a hybrid Bayesian network. Finally, the presentation of
an implementation of dynamic Bayesian networks will serve to lay the groundwork
for the final work presented in the next chapter.

5.2 Bayesian Networks Basics

5.2.1 Random Variables

Suppose we would like to model the probability distribution over a set of random vari-
ables A,B,C,D,E, F 1. We may chose any number of techniques to model this joint
probability P (A,B,C,D,E, F) directly, such as kernel estimation, but for anything
but a toy problem the modeling of the full joint probability will be computation-
ally intractable. By our knowledge of the phenomenon we are trying to model we
may know something about the conditional independence of the random variables.

1This section borrows examples and outline from [39].

76

A

C

D

F

E
B

Figure 5-1: Graph corresponding to equation 5.1.

With this knowledge we may factor this distribution into a product of conditional
probabilities. For example, we may have

P (A,B,C,D,E, F) = P (A)P (B)P (C | A,B)P (D | C)P (E | C)P (F | D,E) (5.1)

Graphically, we may depict this factorization as a graph with a node for each
random variable and where the lack of an arc from A to B expresses the conditional
independence of B on A. The graph corresponding to the above distribution is shown
in Figure 5-1.

Furthermore we may without loss of generality rewrite the distribution as a prod-
uct of potentials over subsets of variables:

P (A,B,C,D,E, F) = φ(A,B,C)φ(C,D,E)φ(D,E, F)

where
φ(A,B,C) = P (A)P (B)P (C | A,B)

and
φ(C,D,E) = P (D | C)P (E | C)

and
φ(D,E, F) = P (F | D,E)

The link between the potentials and the corresponding graphical diagram may be
established by drawing an undirected arc between each pair of parents of every node
(this process has been coined moralizing the graph). If we then change all directed
arcs into undirected arcs, notice that each clique in this new graph shown in Figure
5-2 corresponds to a potential above. The potentials are often called clique potentials.

5.2.2 Inference

Starting from the graph in Figure 5-2 we may construct a new graph which has a
node for each clique in the moralized undirected graph and an arc between each pair
of nodes V and W for which the intersection of the variables in cliques V and W ,

77

A

C

D

F

E
B

Figure 5-2: The moralized, undirected graph.

SV W

Figure 5-3: Cliques V and W, with separator S

S = V ∩W is non-empty. We may construct a further graph which places a node
for this intersection S between the connected nodes V and W , as in Figure 5-3. The
resulting graphs are shown in Figure 5-4. Each node S is termed a separator.

Recall that with each clique there is a clique potential which assigns a value to
each configuration of variables in the clique. Put another way, the potentials make
assertions on the values of configuration of the variables. Intuitively, the separators
are added to the graph to indicate graphically that since cliques V and W share the
variables in S, their potentials must be made to “agree” on the value of the variables
in S.

C, D, E D, E, FA, B, C

(a)

A, B, C C, D, E D, E, FC D, E

(b)

Figure 5-4: (a) A clique graph for the graph in Figure 5-2, and (b) clique graph with
separators.

78

The clique potentials V and W are made to agree on the distribution on the
variables in S by marginalizing and rescaling:

φ∗
S =

∑
V \S

φV

φ∗
W = φW

φ∗
S

φS

where V \S denotes the elements of V not in S, and φS denotes a potential on S. This
process is sometimes called absorption. W is said to absorb from V , giving updated
potentials φW ∗ and φS∗.

When the potentials agree on the distribution of variables in each separator S, the
network is said to be globally consistent. The inference process on Bayesian networks
amounts to ensuring global consistency. This may be achieved by having each node
absorb from its neighbors in a parallel, distributed fashion throughout the net. In
practice, this may be achieved in a serial fashion in a two stage process: pick a root
R in the clique tree; successively absorb from the leaves of the tree up to the root and
then successively absorb from the root to the leaves. After this process has completed,
the network will be globally consistent[34]. Note that in the process of insuring global
consistency only the successive application of local algorithms is employed.

This two-stage process is termed probability propagation, belief propagation or
the message passing algorithm for Bayesian networks. Typically the propagation
algorithm is run after evidence on the value of some set of nodes is collected. Evidence
on some variable A is incorporated in the network by picking any clique which contains
A, changing its associated potential to reflect our revised knowledge about the value
of A, and running the propagation algorithm to restore global consistency. The
posterior distribution on some other node B may then be computed by picking any
clique that contains B and marginalizing over all variables in the clique other than
B. Likewise, the likelihood of the total network may be computed after propagation
by picking any clique and marginalizing the corresponding potential over all variables
in the clique. In the marginalization process, the potentials must be normalized so
that the resulting marginal is a probability distribution.

5.2.3 Triangulation

There is one unfortunate complication to this simple local message-passing algorithm
that must be addressed. Figure 5-5 illustrates a directed graph and its moralized,
undirected graph. Two possible clique trees may be constructed from the undirected
graph.

Note that in the clique tree of Figure 5-5(c) the random variable C appears in two
non-neighboring cliques. Unfortunately, there is no guarantee that after the propa-
gation algorithm the distribution over C in each of the cliques will agree. Similarly,
the clique tree of Figure 5-5(d) has E in two non-neighboring cliques.

The solution is to triangulate the moralized, undirected graph. A triangulated
graph has no cycles with four or more nodes without a chord. A graph may be

79

A C

D E

B

(a)

A C

D E

B

(b)

A, D, E A, B B, C

C, E

A, D, E A, B B, C

C, E

(c) (d)

Figure 5-5: The following illustrates the construction of a clique tree on a simple graph:
Starting from a directed graph (a) on A,B,C,D,E, the moralized undirected graph (b) is
constructed. Two clique trees (c) and (d) may be constructed from the moralized undirected
graph.

80

A C

D E

B

A, D, E A, B, E B, C, E

(a) (b)

Figure 5-6: (a) The triangulated, moralized version of the graph of Figure 5-5 and (b) its
clique tree.

triangulated by adding undirected edges until the graph is triangulated.
Propagation on the clique-tree made from the triangulated graph is guaranteed to

insure global consistency [34, 18]. To understand why, consider that the clique tree
computed from the triangulated graph will obey the running intersection property,
which insures that if a node appears in two cliques it will appear on every node on
the path between the cliques. Figure 5-6 shows the triangulated graph of Figure 5-5
and its associated clique tree.

In the triangulation process we would like to add as few edges to the graph as pos-
sible, since each edge added increases the size of some clique and thus increases com-
putational complexity of any absorb operations involving the clique. Unfortunately,
determining an optimal triangulation is NP-hard. However, there are a number of
good heuristic-based polynomial-time triangulation algorithms available which I will
not cover here.

From here on I will assume that the clique tree on a Bayes network was computed
from the triangulated graph. The process of moralizing, triangulating and propa-
gation is often referred to as the junction tree algorithm, in which the clique-tree is
likely to be called the junction tree.

5.2.4 Learning

Beyond the inference process, we also require a method to estimate the parameters of
the conditional probability distributions on the random variables of the network. Here
I briefly describe the Expectation-Maximization (EM) algorithm applied to parameter
estimation in Bayesian networks.

In the EM algorithm for Bayesian networks, we call each variable for which we
have collected evidence visible or observed, and the rest are termed hidden variables.
In general, the EM algorithm involves computing the distribution over the hidden
variables given the observed variables (the “expectation” step). Note that in the case
of Bayesian networks, this is exactly the inference process described above, followed
by a marginalization for each node to be estimated. In the “maximization” step of
EM, the expectations are combined to arrive at updated parameter values.

For an ensemble of training examples, the EM algorithm successively enters each
set of data on the network, runs the probability propagation algorithm, computes

81

marginals on the nodes to be estimated and updates the sufficient statistics for each
parameter to be estimated. After statistics have been collected for each example, the
parameters for each node may be estimated appropriately.

5.3 Hybrid Bayesian Networks

In the presentation of Bayesian networks above, the form of the conditional probability
distributions and the clique potentials has not been specified. In the most common
case where all the random variables in the network are discrete-valued, the conditional
probabilities and clique potentials are stored as conditional probability tables (CPTs)
in which each configuration of the set of variables over which the distribution or
clique is defined is assigned a probability. In the discrete case, the marginalization
and rescaling operations in the absorb operation involve straightforward arithmetic
on CPTs.

In the case where some of the random variables are continuous-valued, we may
discretize them and treat them thereafter as discrete variables. The drawback of
course is that the computational complexity of the absorb operation is sensitive to
the level of discretization. Or if the continuous variables are always observed leaf
nodes in the network, then we may safely remove them from the network if we change
the distribution over the removed nodes (discrete) parents for each observation.

There are interesting cases for which we have continuous hidden nodes in a network
that otherwise includes discrete nodes as well; these we will call hybrid networks. In
particular, the PHMM may be cast as a hybrid Bayesian network, as may switching
Kalman filters and many other combinations of HMMs, mixture models and Kalman
filter-like structures that have no names. If we have hidden continuous nodes that we
would not like to discretize as well as discrete nodes in the network, we may employ
the conditional gaussian (CG) form of potentials as developed by Lauritzen[45, 44, 18].

In the following, we outline the form of the CG potential, and how hybrid Bayesian
networks may be applied.

5.3.1 Conditional Gaussian Potentials

We will assume that each continuous variable in the network is modeled by a Gaussian
distribution, and a discrete variable may not have a continuous variable as a parent.
We must specify a form for the distribution of a continuous variable which may depend
on the values of discrete as well as continuous parents. If we take the continuous
variables to be modeled as Gaussian distributions, we arrive at forms that lead to
mixtures of Gaussians. The following cases arise for a continuous variable y:

• y has no parents. We have y ∼ N (µ,Σ).

• y has a discrete parent q. We have y | q = i ∼ N (µi,Σi), a mixture of Gaussians.

• y has a continuous parent x. We have y | x ∼ N (µ + Wx,Σ). Essentially, the
means are moved in response to changes in x.

82

• y has a discrete parent q and a continuous parent x. We have y | x, q = i ∼
N (µi + Wix,Σi), the most general scenario.

• y has multiple discrete parents. The forms for the case of a single discrete parent
are applied on the Cartesian product of the set of discrete variables.

• y has multiple continuous parents. The forms for the case of a single continuous
parent are applied on the joint space of the set of continuous variables; i.e. the
parents xi are concatenated.

With these simple forms it is possible to implement many of the probabilistic struc-
tures of interest. The restriction that no discrete variable may have a continuous
variable as a parent arises from the fact that any combination of the above forms
will result in a mixture of Gaussians, which is amenable to exact analysis, whereas
a discrete variable which depends on a Gaussian variable is something other than a
mixture of Gaussians. In practice, this restriction turns out not to matter so much, as
we can may usually reverse the direction of the dependency by invoking Bayes rule.

With these forms a potential in a hybrid Bayesian network is essentially a mixture
of gaussians. A CG potential is defined over a set of discrete and continuous vari-
ables. As formulated in [18] the moment characteristics of a Gaussian distribution
N (µi,Σi) with p(i) = P (q = i) > 0 are converted into their canonical characteristics
(g(i), h(i), K(i)) with

K(i) = Σ(i)−1

h(i) = K(i)µ(i)

g(i) = log p(i) + {log detK(i) − d log(2π) − µ(i)TK(i)µ(i)}/2

where d is the dimension of the joint space of the continuous variables on which the
potential is defined.

Concatenating the continuous variables over which a potential is defined as y, a
CG potential over a set of discrete and continuous variables may be written as

φ(i, y) = eg(i)+h(i)y−yK(i)y/2 (5.2)

In the case where where a CG potential is constructed from a continuous variable
with a continuous parent, h and K incorporate the regression matrix W

h =
(
−W TΣ−1 Σ−1µ

)T
(5.3)

K =

(
W TΣ−1W −W TΣ−1

−Σ−1W Σ−1

)
(5.4)

where the indices i have been omitted for clarity. This follows from rearranging the
terms of the expression for the conditional probability distribution for a Gaussian
random variable with continuous parents.

83

5.3.2 Operations on CG potentials

Recall that the absorb operation requires the multiplication, division and marginaliza-
tion of potentials. When multiplying or dividing potentials φU defined over variables
U and φV defined over V we assume that the domains of both potentials are first
extended to U ∪ V by padding h and K with zeros appropriately.

With the domains appropriately extended, multiplication is a matter of adding
the canonical characteristics

φUφV = (g1, h1, K1) × (g2, h2, K2) = (g1 + g2, h1 + h2, K1 + K2)

Division is similarly defined by subtracting characteristics:

φU/φV = (g1, h1, K1)/(g2, h2, K2) = (g1 − g2, h1 − h2, K1 −K2)

with appropriate guards against division by zero. These equations follow directly
from expression 5.2.

For the marginalization operation, we must consider marginalizing out both con-
tinuous variables and discrete variables. We first address the easier case of marginaliz-
ing over a set of continuous variables. Again, denoting a value from the joint space of
all continuous variables over which a potential is defined as y, we consider marginal-
izing over y1 where

y =

(
y1

y2

)
, h =

(
h1 h2

)
, K =

(
K11 K12

K21 K22

)

we have

g̃(i) = g(i) + {p(i) log(2π) − log detK11(i) + h1(i)
TK11(i)

−1h1(i)}/2
h̃(i) = h2(i) −K21(i)K11(i)

−1K12(i)

K̃(i) = K22(i) −K21(i)K11(i)
−1K12(i)

to obtain the updated potential characteristics φ̃ = (g̃(i), h̃(i), K̃(i)).
Next we consider marginalizing over discrete variables. With the full set of discrete

variables now defined on I ×J , we first consider the case when marginalizing over j
where h(i) and K(i) do not depend on j. That is h(i, j) = h(i) and K(i, j) = K(i).
This may be the case when all the components of a mixture are equal, or when the
potential is defined only on discrete variables. Then the marginal involves the sum
of the scalar components:

g̃(i) = log
∑
j

eg(i,j)

and h̃(i) = h(i) and K̃(i) = K(i).
In the most general case when h and K do depend on j, we unfortunately are

confronted with the fact that when adding two CG potentials the result is not neces-
sarily a CG potential but is a mixture of CG potentials. One approach is to convert

84

the CG potential back to its moment characteristics and compute the marginal as

p̃(i) =
∑
j

p(i, j) (5.5)

µ̃(i) =
∑
j

µ(i, j)p(i, j)/p̃(i) (5.6)

Σ̃(i) =
∑
j

Σ(i, j)p(i, j)/p̃(i) +
∑
j

(µ(i, j) − µ̃(i))T (µ(i, j) − µ̃(i))p(i, j)/p̃(i)(5.7)

Note that this is an approximation to the true marginal, and that the resulting ap-
proximate marginal will have the same moments of the true marginal. This approx-
imation is termed a weak marginal, and will have consequences for the construction
of junction trees, as will be described later.

Lastly, we require the ability to enter evidence on a clique potential. If the ob-
servation is on a discrete variable, we simply set to zero all pi but the value of i that
corresponds to the observed configuration, in a procedure exactly analogous to the
discrete network case.

If the observation is on a continuous variable, we must modify the domain of
canonical characteristics. If observation y is on domain γ in a potential that contains
γ defined as

h =

(
h1

hγ

)
K =

(
K11 K1γ

Kγ1 Kγγ

)

the revised characteristics are then

K̃(i) = K11(i)

h̃(i) = h1(i) − yKγ1(i)

g̃(i) = g(i) + hγ(i)y −Kγγ(i)y
2/2

Because this process changes the dimensionality of h and K we must enter the evi-
dence on all potentials that contain γ.

5.3.3 Strong Junction Tree Algorithm

There is one last complication we must attend to before considering parameter esti-
mation in hybrid Bayesian networks, and that involves the consequences of the weak
marginalization operation discussed in the previous section. As an approximation to
the true marginal, a weak marginalization during the two-phase probability propaga-
tion algorithm will render further absorb operations approximate as well.

In fact, if a weak marginalization occurs during the first pass of the propagation, in
which absorb operations happen from the leaves to the root of the tree, the guarantee
of global consistency of local probabilities throughout the network after propagation
no longer holds. Intuitively, this is because during the first phase the root absorbs
all information available in the network. Global consistency is achieved when this
complete information is then propagated outward to the rest of the network during
the second phase. If an approximation occurs in the first phase, the root will not have

85

seen all the information available, and the subsequent second propagation will thus
not be able to communicate all the information required to achieve global consistency.

One way to restore the guarantee of consistency is to arrange the junction tree
such that no weak marginalizations are performed on the first pass of the propagation
algorithm. Weak marginalizations in the second (outward) phase of propagation
are allowed, since during the outward pass the information that is lost via weak
marginalization during an outward pass is not needed subsequently in the propagation
anyway. Such a junction tree is called a strong junction tree, with a strong root.

Computing a strong junction tree proceeds similarly as described earlier. To
insure that there are no weak marginalizations during the first phase of propagation,
it suffices to change the elimination order in the triangulation algorithm such that all
discrete nodes are eliminated first. Also, the strong root of the tree may be determined
during triangulation. This is enough to insure that when a separator between two
neighboring cliques is not purely discrete, the clique further away from the root will
have only continuous variables outside the separator. Thus weak marginalization will
occur only in the second phase.

Now, since after propagation over a strong junction tree we have consistency, even
though the second phase may involve approximate weak marginals, the marginals
are the correct weak marginals of the full joint distribution. Thus we may compute
the (possibly weak) marginal of any variable from any clique in which the variable
appears and get the same correct distribution.

The drawback of using the strong junction tree is that because more constraints
have been placed on the triangulation algorithm, it is possible that more edges will
need to be added to the network during triangulation. With more edges added, the
size of the cliques may increase, and so goes the computational complexity of the
inference algorithm.

5.3.4 Learning: Fitting a CG Distribution

Lastly, we briefly address parameter estimation in hybrid Bayesian networks by the
EM algorithm, as developed in [50, 51].

In the expectation step, the lth training observation el is entered on the network as
evidence, the propagation algorithm is executed and for each variable y the posterior
marginal on y’s family is computed using the marginalization operation described
above.

We are interested in computing the second conditional moments of the continuous
variables in y’s family. As usual i refers to a configuration over the Cartesian product
of the discrete variables in y’s family, which themselves are denoted as Q. Second
conditional moments over any variable x is defined as

E[qilxlx
T
l | el] = E[qil | el]E[xlx

T
l | Ql = i, el] ≡ wi

l〈xlxTl 〉i
where l denotes the lth observation, qil denotes Ql = i, and posteriors on each discrete

86

configuration are denoted as

wi
l = P (Q = i | el).

In the following, x denotes a value over the joint space of the set of y’s continuous
parents. Note that it may be the case that y is observed or hidden, and parts or
all of x may be observed or hidden. If any variables are hidden the “value” of the
variable is known by its mean µx and covariance Σx as computed in marginalization.
If a variable is hidden the conditional second moment for el is updated by

〈xlxTl 〉′ = 〈xlxTl 〉 + µxµ
T
x + Σx

while if it is observed to be x∗ we use

〈xlxTl 〉′ = 〈xlxTl 〉 + x∗(x∗)T

with analogous equations for 〈ylyTl 〉 and 〈xlyTl 〉. If only parts of x are observed, we
treat the observed parts as having covariance zero.

For the parameter update equations we consider the most general case, where the
variable y has both continuous and discrete parents, and has a full covariance matrix
Σ. For simpler situations the update equations simplify.

The new regression matrix Wi and µi are solved for simultaneously with

Bi =
(
Wi µi

)

by adding a 1 as the last component of x. For the updated value of Bi we have

Bi =

(∑
l

wi
l〈ylxTl 〉i

)(∑
l

wi
l〈xlxTl 〉i

)−1

(5.8)

and

Σi =

∑
l w

i
l〈ylyTl 〉i∑
l w

i
l

−Bi

∑
l w

i
l〈xlyTl 〉i∑
l w

i
l

. (5.9)

where we use the updated Bi. These update equations are derived in the usual
manner by setting the derivative of the likelihood function to zero and solving for the
parameters of interest. The probability tables of discrete nodes may be updated in
the usual way by averaging over the wi

l .

5.4 A Bestiary of Bayesian Networks

By way of example we show that hybrid Bayes networks subsume some common
interesting probabilistic structures. In the figures presented in this section, we will
use the graphical convention of depicting discrete nodes with squares and continuous
(Gaussian) nodes with circles.

87

q

x q, x

(a) (b)

Figure 5-7: A mixture of Gaussians as a hybrid Bayesian network and its (trivial) clique
tree.

5.4.1 Mixture of Gaussians

The mixture of gaussians is the fundamental representation underlying hybrid Bayes
nets. Figure 5-7 shows a mixture of Gaussians in its graphical form, and its associated
(trivial) clique tree.

The associated joint probability is

P (x, q) = P (x | q)P (q)

where q indexes over the components of the mixture. The likelihood function is

P (x | λ) =
∑
j

P (x | q = j)P (q = j)

The posterior probability P (q = j | x) may be computed by marginalizing.
It is important to note that in the usual application of mixture of Gaussians, the

continuous variable is observed. Thus the machinery of the hybrid Bayesian network
is unnecessary. However, this structure will appear in other larger structures, possibly
with hidden continuous variables.

5.4.2 HMM

An HMM may be thought of as a mixture model with dynamics. An HMM as a Bayes
network and its clique tree is shown in Figure 5-8.

The usual output probability distribution function bj(xt) = P (xt | qt = j) has
its exact analogue in the network, as does the transition matrix Ai,j = P (qt | qt−1)
and initial state distribution πj = P (q0 = j). Note that in the standard formulation
of HMMs, the distributions themselves do not depend on time. To reflect this in a
Bayes net, we may simply constrain the conditional probability distributions for each
times step to be the same. This practice is called parameter tying.

Two-phase propagation algorithm for Bayes networks is exactly equivalent to the
forward-backward algorithm used for parsing[65]. The forward-backward algorithm
gives the posterior probabilities γtj = P (qt = j | λ, x0, ...xT). These same posteriors
may be obtained in the Bayesian network formulation by entering evidence at each
observation node, running the inference algorithm, and marginalizing to obtain the
distribution for each qt.

88

. . .

q0 q1 qT

x0 x1 xT

(a)

q0, q1

q0, x0

q1, q2 qT-1, qT

q1, x1 qT-1, xT-1

...

qT, xT

(b)

Figure 5-8: A hidden Markov model as a hybrid Bayesian network and its clique tree.

x

y

x, y

(a) (b)

Figure 5-9: A factor analyzer as a hybrid Bayesian network and its (trivial) clique tree.

As in the case of mixture models, most often all of the continuous nodes in the
case of HMMs are observed.

5.4.3 Factor Analysis

In a factor analysis setting, we have the network shown in Figure 5-9. The matrix
W is called the loading matrix. The loading matrix may be set to simply pick out
components of the parent variable, but more commonly in factor analysis problems
the loading matrix is used to perform dimensionality reduction, in which case the
values of W are learned from data. For example, W may be trained to accomplish a
dimensionality reduction similar to that of principal components analysis (PCA).

5.4.4 Kalman Filter

In the Bayes network representation of the Kalman filter, shown in Figure 5-10, the
matrix W takes the role of the transition matrix A. The covariance of the state
variables are exactly the matrix Q, the linear transform that maps x into y is exactly

89

xt xt+1

yt yt+1

xt, xt+1

xt, yt xt+1, yt+1

(a) (b)

Figure 5-10:

xt

yt

qt qt+1

xt+1

yt+1

qt, qt+1, xt

xt, yt xt+1, yt+1

qt+1, xt, xt+1

(a) (b)

Figure 5-11: Switching Kalman filter as a hybrid Bayesian network, and its associated
clique tree.

the observation matrix H , and the covariance of y is the observation noise covariance
R.

Kalman smoothing may be achieved by entering evidence yt and yt+1, propagating,
and computing the posterior of xt+1 by marginalizing. In a later section we will show
how the notion of dynamic Bayesian networks addresses the application of this model
to a sequence of observations over time and the necessary propagation of the state
distribution over time.

The switching Kalman filter (Figure 5-11) may be thought of as a hybrid of the
Kalman filter and the HMM.

5.4.5 Others

In addition to the networks presented here, it has also been shown that hybrid Bayes
networks may be be used to implement mixture of experts, factorial HMMs, coupled
HMMs, autoregressive HMMs and more.

However, the attraction of the hybrid Bayesian network framework is not its power
to subsume existing probabilistic models but instead that it allows the construction
of various hybrid structures without deriving inference and learning algorithms for
each case. For example, the switching Kalman filter is an interesting cross between
an HMM and a Kalman filter that is relatively easy to put together as a hybrid

90

Bayes net. In fact, one view of the compilation of the Bayes network into a junction
tree is that of the automatic construction of inference and learning algorithms for a
given network topology. If matched by an appropriate software implementation this
flexibility is a boon to the ability to experiment with novel probabilistic models.

5.5 PHMM as Hybrid Bayesian Network

Figure 2-2 of Chapter 2, which is repeated here in Figure 5-12, hinted that the PHMM
may be cast as a Bayesian network. With the above exposition of hybrid Bayesian
networks, we are now prepared to investigate this possibility in full.

The isomorphism between the parameters of the PHMM and that afforded by the
hybrid Bayesian network is complete. The implementation of the HMM as a Bayes
net has already been highlighted. The added twist of the PHMM, the dependence
of the means of the output probability distributions on a linear transformation Wj

matches that of the hybrid Bayes net model for continuous parents. Note that the
nonlinear PHMM is not addressed by the hybrid Bayesian network framework, as
nonlinear regression functions can not be incorporated by equations 5.3 and 5.4.

The nonlinear PHMM aside, there are a number of advantages to casting the
PHMM as a Bayesian network. First of all, as a Bayesian network, we may obtain
a posterior distribution over the PHMM’s variable θ rather than a point estimate
of θ derived previously. Secondly, the testing phase of the PHMM no longer would
require an iterative (EM) process to recover the value of θ. The junction tree inference
algorithm will allow the calculation the posterior distribution of θ without an iterative
algorithm. Lastly, as a Bayesian network, the PHMM may be incorporated into other
Bayesian networks. Similarly, it is an easy matter to consider variants and hybrids of
the PHMM. For example, Figure 5-13 shows a variant of the PHMM which models
the evolution of θ as a process of its own.

The computational complexity of the inference on the junction tree is proportional
to the number of variables in the largest clique in the junction tree. In the case of
PHMMs, HMMs and other models that span T time steps, we would like to have the
size of the largest clique be constant with respect to T . The usual junction tree for a
PHMM is shown in Figure 5-14. As with the usual HMM formulation, there are no
cliques that scale with T in size.

Figure 5-14 shows the tree produced by the weak junction tree algorithm, which
as described in Section 5.3.3 has the undesirable property that global consistency
over the variable distributions is no longer guaranteed after propagation. The strong
junction tree for the same PHMM is shown in Figure 5-15. Unfortunately, there is a
clique in the strong junction tree with size proportional to T . Note that even if the
state output distributions are a modeled as a single Gaussian, the distribution over
θ is represented in the junction tree as a (large) mixture of Gaussians. At the root
clique, the size of this mixture is exponential in the length of the sequence T . Thus
the PHMM is intractable if we use the strong junction tree algorithm.

So what are the PHMM training and testing algorithms presented in Chapter
2 actually doing, in terms of Bayesian networks? In fact, from the Bayes network

91

point of view the PHMM has exactly the same network topology as the usual HMM.
The PHMM can be thought of as an HMM which employs the usual HMM training
algorithms (EM) during runtime to recover the parameter θ; the computation of θ is
no different than, say, the training of the Σj during the training phase, except θ is
tied across all time steps. The PHMM thus trades the intractability of the exact
junction tree of Figure 5-14 for the iterative runtime testing procedure. Given that in
the experiments presented in Chapter 2 only a few iterations are required to recover
θ, this may be a advantageous tradeoff.

The iterative testing procedure of the PHMM suggests a way to exploit the Bayes
network propagation algorithm to obtain a distribution over θ rather than a point
estimate. The first phase of PHMM testing involves running the forward backward
algorithm on an HMM with a fixed value of θ. This may be recast as propagation
on the network in Figure 5-16, where the same value of θ is entered everywhere.
Note that this network, like the usual HMM, is tractable under the strong junction
tree. The second phase of PHMM testing involves updating the value of θ given
the current parse of the input. With the network in Figure 5-16, the distribution
over θ may be updated by running the M-step of the EM algorithm, where the E
step is computed as before by propagation on the network, and the parameters of the
distribution on θ are tied across all states. The Bayesian network analogue of the
PHMM is complete.

This suggests a general mechanism for coping with intractability in Bayesian net-
works: make (possibly multiple) tractable versions of the original network by removing
arcs, replicating nodes and tying parameters, and combine the results in an iterative
EM process.

In summary, there are a number of options in treating a PHMM as a Bayes net:

• Run the usual inference algorithm using the weak junction tree, and hope that
the missing guarantee of consistency won’t affect performance in the real world.

• Run the inference algorithm on the strong junction tree, and hope that the high
computational complexity of the resulting inference process won’t be a problem.

• Use the PHMM formulation of Chapter 2, running multiple iterations of the
usual inference algorithm during testing.

• Exploit a variational approximation to the full Bayesian network, as in [38].

The first and third options are likely to be the most practical. How do these
two approximations compare? We note that with the PHMM-based formulation,
it is possible to obtain an estimate of θ that is arbitrarily close to the true value
of θ by running sufficiently many EM iterations, assuming that EM does not run
afoul of local minima. The Bayesian network PHMM formulation based on the weak
junction tree does not guarantee a good global estimate of θ since as the propagation
procedure proceeds down the clique tree, the value of θ is updated via (strong)
marginals which are approximations to the true marginal. For a sufficiently long
chain, this approximation will affect the ability of the propagation algorithm to arrive
at a globally best estimate of θ.

92

. . .

q0 q1 qT

x0 x1 xT

Figure 5-12: PHMM as hybrid Bayesian network.

. . .

q0 q1 qT

x0 x1 xT

0 1 T

Figure 5-13: PHMM as hybrid Bayesian network, with recursive estimation of θ.

However, in many applications the weak junction tree-based formulation will per-
form adequately. In situations where only a portion of the signal needs be examined
to arrive at a good global estimate of θ, the weak junction tree formulation may find
it in a more computationally efficient manner than the PHMM-based formulation.

5.6 Watch and Learn as Hybrid Bayesian Network

Recall that in the Watch and Learn system presented in Chapter 4, the informa-
tion relating to external application context was incorporated into the HMM by ma-
nipulating the output probability distributions directly before running the inference

q0, q1,

q0, x0,

q1, q2, qT-1, qT,

q1, x1, qT-1, xT-1,

. . .

qT, xT,

Figure 5-14: PHMM junction tree.

93

q0, x0, q1, x1, qT-1, xT-1, qT, xT,

q0, q1, .. qT-1, qT,

. . .

Figure 5-15: PHMM strong junction tree.

. . .

q0 q1 qT

x0 x1 xT

Figure 5-16: Tractable network used in PHMM testing, with parameters on θ tied across
all time steps.

algorithm.
With the hybrid Bayesian network framework, we are prepared to provide a more

probabilistic approach to driving the parsing algorithm by application context. Figure
5-17 shows two possible Bayesian networks that permit combining application context
and Markov models of behavior. In Figure 5-17a, the distribution qt is made to depend
directly on the context signal, as well as qt−1, while in Figure 5-17b the context impacts
the observation output distributions directly. In either case, if we always have context
information at each time step, the network may be able to do without the arcs from
each ct to ct+1. The network in Figure 5-17b is also known as a factorial HMM[26].

In the next Chapter we will further explore the idea of combining context with
Markov models of behavior via Bayesian networks.

. . .

q0 q1 qT

x0 x1 xT

. . .

c0 c1 cT

. . .

qt qt+1 qT

xt xt+1 xT

. . .

ct ct+1 cT

(a) (b)

Figure 5-17: Watch and Learn as two different hybrid Bayes networks.

94

qt+1

xt+1

qt

Figure 5-18: A single time slice of an HMM.

5.7 Dynamic Hybrid Bayesian Networks

Thus far in the presentation various Bayesian networks that are applied to sequences
over time, the reality of the application of these temporal models on very long se-
quences has been ignored. In fact, the models assume that the start and end of the
sequence is known, an unreasonable assumption for applications without a prepro-
cessing phase that includes segmentation.

Dynamic Bayesian networks, as they relate to the work to be presented in the next
chapter, address this issue by considering one time slice of the Bayes network and how
to propagate probabilities from one time slice to the next. For example, Figure 5-18
shows a single time slice of an HMM. This model specifies the dependencies between
variables at time t− 1 and the variables at time t (inter-time slice dependencies), as
well as the dependencies among the variables at time t (intra-time slice dependencies).
This network is minimal in terms of its ability to describe the evolution of a process
over time, and serves as a compact representation of the network in Figure 5-8. Note
that a network of one time slice may be replicated or “unrolled” so that it spans
multiple time steps.

5.7.1 Propagation Forward in Time

The difficulty in using a single time slice model is in how to propagate the posterior
probability distributions in the current time slice to be prior distributions for the
next time slice. In general, referring to the diagram in Figure 5-19, the solution
is to compute the posterior distribution on qt by marginalization and then set the
distribution on qt−1 for the next time slice to match. The next time slice is then
ready to accept evidence at the observation node and have the inference algorithm
run. This process repeats at each time step.

If there are multiple variables that propagate across time slices, the correct ap-
proach is to calculate the posterior of the joint distribution of all propagated vari-
ables, and then set each variable in the next time slice accordingly. Unfortunately, the
marginal over the joint space may be intractable for more than only a few variables.
One active line of research thus involves finding approximations to this propagation.
In Chapter 6, however, we will ignore this problem for the time being, by computing

95

qt

xt

qt-1

qt+1

xt+1

qt

Time t

Time t+1

Figure 5-19: Propagation across time slices.

the marginal over the joint space only when it is convenient to do so; that is, when
the multiple variables are in the same clique, and otherwise propagating distributions
singly.

Note that the single time slice may be unrolled a number of times and the same
propagation scheme may be applied. We may wish to unroll a single time slice model
if the network requires a longer time scale view in order to arrive at correct posterior
distributions on the Markov state. A large time window will allow the HMM to be
less sensitive to spurious input, as well as find a more globally optimal parse.

In preparation for the framework developed in Chapter 6, we would like to ex-
tend this notion of propagation over time to address the situation in which there are
multiple samples of each observation variable for a single time step. This could be
useful in the situation where the network is compactly defined with a single instance
of a random variable but during runtime we would like to incorporate the combined
information of multiple samples as evidence. In this case, the marginal that is com-
puted and entered into the next times slice should be an average marginal or aggregate
marginal that is computed from the ensemble of examples.

The same machinery developed for parameter estimation (section 5.3.4) may be
used to compute the aggregate marginal. The idea is to “train” the variable in the
next time slice by the computing statistics on the distributions of the variable or
group of variables in the current time slice. After all evidence has been examined,
the statistics collected on the variable in the current time slice are used to determine
the parameters of the variable or group of variables in the next time slice. Equations
5.8 and 5.9 apply.

96

5.8 Real-Time Implementation

There are two common approaches to the implementation of hybrid Bayesian net-
works. One approach is to decide on a network topology and work out the inference
and learning equations on paper. These tailor-made equations may be implemented
in computer software, and since they are tailored to situation they may be optimized
for the task at hand.

Though this approach exploits the theoretical machinery of Bayesian networks, it
has the practical difficulty that if one wishes to change the topology, the equations
must be changed as well. If the topology is known from the start however, this is the
easier of the two approaches.

The second option is to code the junction tree algorithm directly into software
in the most general way possible, so that designer need only specify the network
topology and the type and dimension of each node; the software compiles this graph
into a junction tree ready for inference and learning.

The difficulty here is twofold. First, building a software library to support con-
structing hybrid Bayes networks and their accompanying inference and learning al-
gorithms to handle general networks is quite involved. Secondly, it may difficult to
achieve the levels of performance necessary for experiments that run in real-time us-
ing such a generalized framework. In particular, it may be difficult to exploit the
optimizations that were readily available in the first approach.

My view has been that Bayesian networks free the designer of probabilistic models
from the burdensome and error-prone process of manipulating likelihood equations,
and thus encourage experimentation with novel topologies. And after studying a few
probabilistic models, its not long before one realizes the regularity of these systems
anyway. Why not capitalize on this regularity?

With this in mind I implemented the framework described in this chapter in Java,
with an eye towards realtime implementation. With today’s adaptive compilers for
Java this has proved to be an attainable goal. The performance of implementation, as
measured by how many inference operations may be performed in time, has benefitted
from a number of key optimizations, two of which I describe here.

First, the implementation caches computations aggressively, allocating a reusable
object for each marginalization, multiplication and division operation performed dur-
ing the inference and learning processes. The assumption is made that upon successive
calls of the inference algorithm the set of observed variables is not likely to change.
This caching tends to regain some of the performance increase that would be oth-
erwise be obtained by the hand-coded approach, and has also been applied in the
learning process.

Secondly, the following further approximation to the weak marginalization process
was implemented. Consider the fact that the canonical characteristic K usually does
not depend on any evidence entered on the network. In fact, the only time in which K
gains a dependence on the evidence is in the weak marginalization process, through
µ in equation 5.6. Any successive propagations that in turn depend on this marginal-
ization will similarly depend on the same piece of evidence. If this dependence on
the evidence were removed, it would be possible to precompute or cache K−1. In the

97

present implementation, this optimization is made possible by instead of using equa-
tions 5.5, 5.6, 5.7, the most probable mode i is optionally chosen. It follows then that
at any point in the inference process, the value of K at any potential is drawn from a
finite set of such K, the particular K chosen depends on which modes are selected in
any previous weak marginalization operations that current marginalization depends
on. Thus subsequent calculations involving K−1 will be able to exploit its cached
value, and it may be the case that during the inference process no matrix inversions
are necessary.

5.9 Conclusion

This chapter introduces the basics of Bayesian networks and presents the particular
Bayesian network framework of hybrid Bayes networks. The mathematical frame-
works of work presented in previous chapters were considered in the context of hybrid
Bayes networks. Furthermore this chapter lays the foundation for the work presented
in the next chapter, which continues development of context-adaptive models for ges-
ture recognition and exploits the realtime implementation of Bayes nets described
here.

98

Chapter 6

Bayesian Networks for Online
Adaptive Gesture Recognition

6.1 Introduction

In the preceding chapters, frameworks have been presented that demonstrate the
adaptation of some part of a recognition model in response to the context of the
situation. The PHMM adapts a parameter of global deformation to match a gesture
family model to an instance of the family. In this case, the adaptive parameter
indicates how the gesture is conducted, or where in the gesture family the gesture
belongs. The PHMM exploits invariants in how the deformation parameter impacts
the state output distributions over the entire span of the gesture.

The natural gesture video parsing system of Chapter 3 exploits a temporal model
informed by theories of natural gesture. The adaptive parameters that are recovered
by the system includes the appearance models of the various rest states that the
speaker uses throughout the video. These are then exploited to subsequently parse
the entire video into separate gestures.

The Watch and Learn system of Chapter 4 builds on the natural gesture parsing
system by incorporating a time-varying application context signal that guides the
HMM parse while appearance models are learned. These recovered appearance models
allow open-loop interpretation of the user’s appearance, and are analogous to the rest-
state appearance models recovered by the natural gesture parsing system.

An interesting property of these systems is that in each case, the adaptive part
of the model is unknown upon start and is recovered after the examination of data
collected from the particular situation at hand. Furthermore, if the adaptive part
is at some point known, the resulting recognition problem is fairly easy, or at least
amenable to traditional recognition techniques. Given this observation, it is fair to
think of the adaptive parameters as “hidden” variables, as they are known in the
application of the expectation-maximization (EM) algorithm.

Lastly, in each of these systems, constraints must be exploited to guide the adap-
tation process. These constraints may be taken from the domain, as with the Watch
and Learn system and the natural gesture parsing system, or learned from previously

99

seen data, as with the PHMM.
In this chapter we continue the development of the adaptive model approach

applied to the problem of online learning of gesture, with the following variations:

• We exploit the hybrid Bayesian network framework presented in the previous
chapter. Hence we are concerned more with network topologies than with par-
ticular parsing and recognition algorithms, or how these particular algorithms
must be extended and modified.

• More than one component of the system is adapted. This makes for interesting
learning scenarios, including a form of learning transfer.

• The whole-image appearance-based approach of Watch and Learn is exchanged
for a object-based approach that allows the system to ignore irrelevant changes
in the image, permits tracking of multiple objects, and allows gesture models
that are based on movement rather than similarity to learned images. Based on
movement, these gesture models are thus more likely to be reusable in situations
where the appearance has changed.

• A simple reinforcement learning approach is used to learn the mapping from
user actions to system actions.

6.2 Related Work

Increasingly, sophisticated probabilistic techniques are being applied to the problem
of human motion analysis (see [25] for a survey). Probabilistic techniques are popular
in the domain of human motion because they tend to be more robust and so are more
suited to difficult tracking scenarios. Also, they provide a firm mathematical foun-
dation upon which to integrate multiple disparate sources of information, including
movement models and appearance models, while simultaneously being amenable to a
analysis.

[1] embeds the three-dimensional, model based tracking of human head and hands
within a recursive framework based on Kalman filters, and later on dynamics[82].
The latter work can incorporate top-down information about categorical movement
in the form of innovations in a control process. Their system begins with a a priori
mixture of Gaussians model of flesh color and requires initialization based on an
assumed pose of the user, but otherwise is similar in the present work in the broad
sense that it exploits movement models in a top down fashion, as well as employs
Kalman filter-based tracking frame to frame.

The “condensation” algorithm [6, 29] exploits particle filtering. It has been demon-
strated on a variety of tracking tasks. The condensation algorithm is attractive for
its simplicity: it requires only a likelihood function which evaluates a point in model
parameter space, and a propagation method which updates each point to the next
iteration. The present work also exploits sampling, but differs from condensation in
that at each frame, the parameters of a probabilistic model are changed to reflect the

100

data, where in the condensation algorithm, no model is reconciled with the samples:
the collection of samples implicitly represent the updated distribution. The advan-
tage of the condensation approach is thus that any form of the likelihood function
can be used, since ultimately its parameters will not have to be tuned.

The drawback of the condensation algorithm is that many samples must be col-
lected to achieve good tracking results. Furthermore, when higher-level models are
added to the likelihood function, even more samples are required. For example, [30]
augments the algorithm with switching movement models, and in [5], the condensa-
tion algorithm was applied with an HMM incorporated into the likelihood function.
To propagate a particle to the next time step, the transition matrix of the HMM is
sampled, along with object contour parameters. In the present work, we update para-
metric models of distributions from multiple samples. Furthermore, the present work
splits the model in high-level and low level pieces so that sampling may be handled
differently in each.

[11] uses the composition of various representations to recognize human movement
using learned representations. The hierarchy consists of blob tracking, Kalman-filter
smoothing, and hidden Markov models driven by EM, Kalman filter equations and
dynamic programming. In one view of the present work, a similar approach is taken
with a variety of representations, but here they are united in the mathematical frame-
work of Bayesian networks. We also explore the notion of online learning.

The application of dynamic hybrid Bayesian networks directly to the analysis of
motion is explored in [56], which adopts a switching (mixture) Kalman filter approach.
The graphical model is the same as that of Figure 5-11. [58] explores the application
of linear dynamical systems and HMMs for the recognition of driving behavior. Here
we also employ a combination of HMMs and linear dynamical models.

A dynamic Bayesian network is applied to various image processing tasks in
[37, 36]. Their framework is similar to the present framework in that a latent trans-
formation variable is searched to find the best fit to the input.

There has also been work on using multiple high-level sources of information to
drive object discovery processes. For example [48] exploits known action models,
object classes and context in a hand gesture recognition task, while in [32] multiple
moving objects output from a noisy tracking process are rejected based on their
movement history and several categorical movement scenarios.

The present work is concerned with the real time implementation of Bayesian
networks. Of the work mentioned above, only [6] and [1, 82] demonstrate real time
implementations.

Lastly, the present work will utilize a simple reinforcement learning technique to
train the mapping from gestures to actions. Reinforcement learning techniques are
presented in [67], while a related probabilistic approach to reinforcement learning
based on EM is explored in [31].

101

6.3 Model

6.3.1 Images versus Objects

Watch and Learn infers appearance models given a strong model of the temporal
structure of the behavior combined with time-varying application context informa-
tion. The system is interesting because it works exactly backwards according to
most gesture recognition paradigms. Most gesture recognition systems proceed by
acquiring an object of known or assumed appearance by a tracking algorithm, and
its position over time is examined to determine the class of categorical motion that
object underwent, if any. Watch and Learn proceeds in the opposite direction: it
begins with movement model and infers an appearance model that is consistent with
the movement model and current input. The advantage of this backwards approach
is that no appearance model need be assumed at the outset, and so the system will
work in a great variety of situations. Furthermore, since the input is the whole image,
tracking is not an issue. Watch and Learn relies on an invariant that is much more
powerful than our appearance: our behavior in context.

The main advantage of the image-based approach of the Watch and Learn system
is that it is able to correlate any changes in the image stream with application context.
Thus it is possible to have the system pick up on almost any movement that fits the
behavior model.

The biggest drawback of the approach is that because the learned images are
so tuned to exact circumstances (context) these learned representations will not be
useful in any other session. For example, if the pose of the user is somewhat different
in the next learning session, Watch and Learn will fail. Similarly, if the user, say,
trains a hand gesture and then changes the stance of his feet, there is a chance that
these will make the incoming images sufficiently different from the learned images
that its online adaptation will incorrectly adapt to the new stance. Watch and Learn
lacks a focus of attention.

A representation based on tracked objects rather than whole images gives the
system a focus of attention by virtue of the segmentation implied by a tracked object.
Tracking objects also has the consequence that, since a tracked object has a necessarily
local view of the image, the tracked object may be lost by the system. A multiple
hypothesis scheme is one way to have object representations be able to commit to
local regions while obtaining robustness in tracking.

Tracking objects will allow us to build representations of the movement of the
object. In Watch and Learn, a representation of the user’s movement was stored im-
plicitly and by the collections of learned images, so was lost when the session ended.
The present work models the velocity of the object over time. Since a representation
based on simple movement statistics will be approximately independent of the par-
ticular appearance of that object, these movement models have a higher chance of
being reusable.

102

6.3.2 Categorical Motion

In the work presented in this chapter we use a blob-based model of objects. We
begin with the assumption that there are distinct objects of interest that we would
like to track, but, in the spirit of Watch and Learn, without necessarily assuming a
particular appearance model of the objects.

If an appearance model of the object is unavailable, we rely on the assumption
that an object of interest is likely to exhibit an interesting, appropriate motion. Thus
if we see the object undergo such a motion, we are more likely to believe that it is an
object of interest. By “appropriate” we mean that it moves in a familiar way or that
it moves in a way that is consistent with domain-specific context.

Furthermore, we would like to have the system learn an appearance model of
the object, so that the object may subsequently be tracked without relying on the
movement pattern of the object.

The ability to “spot” an object of interest based on its pattern of movement
is loosely inspired by the informal observation that mammals are able to pick out
interesting objects from a complex visual scene in a process seemingly based in a large
part by movement alone. For example, we are usually able to spot someone waving
to us from across the street, even when there is plenty of extraneous movement such
as the passing of cars and pedestrians.

6.3.3 Multiple Hypothesis Tracking

Modeling the scene as a series of blobs, it impossible to refer to a blob without also
referring to a location, and implicitly, its appearance in the image. The appearance
of objects throughout the image does not change smoothly as you consider different
locations: the space of appearance and locations is lumpy. This means that we will not
be able to use the simple EM-based approach of Watch and Learn to smoothly adapt
to object appearance models, since, fundamentally, there are multiple independent
objects in the scene.

If we are unsure which object (blob) in the scene is the true object of interest, one
solution is to track each of them until one or more of them exhibits an interesting
categorical motion. Unfortunately, any given scene is likely to have many, many
objects. In fact, any scene will have an arbitrarily large number of blob objects in it
if the complexity of the appearance model is uncontrolled.

Here we assume a very simple appearance model based on mixture model of color,
with very few number of mixture components. Furthermore, we will avoid tracking
every object in the scene and instead prefer initially to follow only objects that exhibit
image-based motion based on image differencing.

6.3.4 A Taxonomy of Movement

In the object discovery process described above, three different notions of movement
are exploited, each exerting constraints of varying strength. At the lowest level, coarse
image motion found by image differencing indicates likely areas of the image that

103

include the target object. Image motion is a fairly weak, frame-to-frame constraint,
as there are likely to be many regions of the image that exhibit such motion.

The next kind of movement is the ballistic, frame-to-frame tracking of an object,
and is considered a mid-level representation. This category of motion is stronger
than image-based motion, since it adds the constraint that the new position of the
tracked object must match an appearance model, as well as the constraint the object’s
velocity will tend to be constant.

The highest and strongest representation of movement is that of long time scale
categorical movements, including whole gestures. Very few movements under consid-
eration will be good examples of categorical motion; hence they are the strongest cue
for the target object when no appearance model is available.

These three models of movement will be encoded directly into our representation
and algorithm for interpreting object movement. The low level motion representation
will be used to seed new object hypotheses, the mid-level representation will be used
to follow existing object hypotheses, and the highest level will be used to prefer one
object hypothesis over another.

6.3.5 Domain Context

In the Watch and Learn system, domain knowledge is exploited in two ways: first, the
Markov model for gesture is known a priori. In the case of the musical conducting
example, the three state REST, UP and DOWN beat model is hand-coded. This is
an acceptable part to hand code, since part of the motivation of Watch and Learn
is the assumption that this coarse Markov model is invariant to a variety of other
circumstances. Second, the Watch and Learn system correlated this Markov model
with a time-varying context signal which ensured the semantic consistency of the
learned states: namely, that the UP state corresponds to an “upbeat” pose, and the
DOWN state corresponds to a “downbeat” pose. Note that if there weren’t the need
to drive the output actions based on state membership, the context signal would be
unnecessary.

The present system expands on the notion of domain context in two ways. First,
as discussed above, domain specific categorical movements are exploited in the object
discovery process, and ultimately in the learning of appearance models.

Secondly, instead of only considering how the time-varying context impacts which
phase or HMM state of the gesture the system is in, this information will also impact
which gesture the system is in.

6.3.6 Gesture to Action Mapping

In Watch and Learn, the context events used to drive the learning were then also
generated by the system once the learning had proceeded sufficiently. In the present
system, we consider a more general representation that encodes context and output
actions separately. The distinct representation of the gesture to action mapping
permits more flexibility in how domain context impacts the interpretation, and also
permits the separate learning of the gesture to action mapping.

104

In the present system the gesture to action mapping may be trained in an on-
line fashion by a simple reinforcement learning mechanism that is used to learn the
mapping from a known gesture to an action primitive. This process incorporates the
history of the actions and gestures performed, and positive and negative feedback
given regarding each action taken by the system. Note that the feedback on actions
may also impact our belief about which gesture just occurred.

6.3.7 Multiple Symmetric Learned Representations

Suppose a tracked object undergoes a familiar movement, thus increasing our belief
that the object is of interest. Abstractly, the learning of the appearance model is
driven by the movement model. Since we can now be confident that we have the
right object, it is reasonable to follow it regardless of the motion it undergoes. We
can continue in this traditional feed-forward style of computation indefinitely, or we
may take the opportunity to learn new movement models of the now familiar object,
so that the next time an object must be acquired, a larger variety of movements
may be picked up, improving the odds that the object may be acquired. Thus the
appearance model, used for tracking, drives the learning of movement models.

Note that in the first object acquisition phase, learning appearance models is
driven by movement models, while later, the appearance models are used to infer
movement models. This back and forth style of learning goes beyond that of the
other systems presented in this thesis, each of which learn in primarily one direction
during runtime.

The appearance model and movement model are therefore symmetric in terms
of how the learning proceeds. The algorithm may start with appearance and infer
movement, or it may start with movement and infer appearance. The very first
movement models must be hand-coded, and will serve to bootstrap the learning of
new models once an object is acquired. As more gestures are learned the less necessary
the hand-coded gesture will become. Eventually, it may be possible to discard the
hand-coded models in favor of more accurate learned models.

This notion of symmetric learned representations also includes domain context
and action. For example, at a given moment, domain context may be sufficiently
constrained, driving the system to expect a particular gesture. This expectation
ripples throughout the system, driving the tracking and ultimately the acquisition of
an appearance model.

At any given point in the life of the system, some representations must be known
by the system. Object tracking will fail, for example, if both the appearance model
and the movement model is unknown. Similarly, if the domain context is uncertain,
learning the semantic labelling of the gesture will have to wait on the user’s feedback.
Likewise, the present system does not support the simultaneous learning of the size
of the object and object appearance model.

The ability to start the adaptation with either one known representation or an-
other and adapt the remaining unknown representations is the chief mechanism by
which the system is able to adapt to novel situations.

105

6.3.8 Online Learning of Gesture

Novel gesture models may be acquired in two ways: first, by simply training new ges-
ture models for movements that are unfamiliar, and second, by training new gestures
in response to changes in context.

The system is able acquire new gesture models online in an unsupervised way
by simply initiating a new gesture model when an unfamiliar movement is seen.
This gesture may then be given appropriate semantics by the reinforcement learning
procedure. This, of course, requires feedback on the part of the user, and may require
the user to provide several examples paired with appropriate feedback.

The second style of acquiring new gestures involves adapting a new gesture model
in the same way as in the unsupervised case, except that the context guides which
gesture model is learned. This may be conducted in such a way that the gesture to
action mapping is determined appropriately in advance, such that the reinforcement
learning-based procedure is unnecessary. For example, the system may have a ges-
ture model that is labelled THROW, but is otherwise untrained. The system may
also know a priori that certain application events are likely to be accompanied by
a THROW gesture. Thus if a unknown movement is seen during these events, the
THROW gesture model will be trained, and not some other untrained gesture model.
Furthermore, the action associated with the THROW gesture may be known a pri-
ori, in which case feedback to train the action mapping is unnecessary; the context
information has done all the work necessary.

6.4 Bayesian Network Implementation

6.4.1 Network Topology

A hybrid Bayesian network designed to support the various inference and learning
processes described above is shown in Figure 6-1. Here, we consider the tracking of
a single moving object in the image. The various components of the network model
include

• a mixture of Gaussians which models the object’s appearance as a distribution
of pixel color values

• a mixture of hidden Markov models which models the velocity of the object
over time

• a Kalman filter-like integration of instantaneous object velocity to track the
absolute position of the object from frame to frame.

• random variables for output actions and domain context, each of which depend
on the current gesture

• a Markov model that models the evolution of this object as a hypothesis, from
seeding to removal

The following details each of the components of this Bayesian network in turn.

106

. . .

qt-T qt-T+1 qt

xt-T xt-T+1

qt-1

ltlt-1

xt-1

gt

dt at

rt(-1, -1) rt(1, -1)

ct(-1, 1) ct(1, 1)

ct(-1, -1) ct(1, -1)

rt(-1, 1) rt(1, 1)xt

ytyt-T yt-T+1 yt-1

Figure 6-1: The full Bayesian network which incorporates movement, appearance, context,
action and control models. The variables are described in the text and in table 6.1. Shaded
nodes indicate variables that are typically observed.

lt control state variable
gt current gesture
qt HMM state
xt absolute position of tracked object or pixel
yt absolute position with additive noise
ct YUV color of pixel
rt color mixture component variable
dt domain context
at action
T total number of timesteps modeled by HMM

Table 6.1: The meaning of each variable in the network of Figure 6-1.

107

rt

ct

ct(-1, -1) ct(1, -1)

ct(-1, 1) ct(1, 1)

rt(-1, -1) rt(1, -1)

ct(-1, 1) ct(1, 1)

ct(-1, -1) ct(1, -1)

rt(-1, 1) rt(1, 1)

(a) (b) (c)

Figure 6-2: Appearance models. (a) The simplest appearance model, a mixture model
on pixel color. In (b) and (c) pixel colors ct(dx, dy) = I(x + dx, y + dy) are drawn about
an origin (x, y). (b) an image-based approach, one node for each pixel in a 3 × 3 image.
(c) color at each pixel is modeled by a mixture of Gaussians, each with mixing coefficients
r(dx, dy). If color mixture parameters are tied across all nodes, the net result is a color
histogram matching over all pixels.

6.4.2 Appearance Model

Pixels are drawn from an image It, each with position xt = (xt, yt) and color ct =
It(xt, yt) = (Y, U, V). The appearance model models the distribution of colors ct
drawn from the pixels belonging to the tracked object. Presently, a mixture of Gaus-
sians on the value ct is employed, with the multinomial rt indicating from which of
|rt| mixture components ct is drawn.

Note that while this distribution only models the color of single pixel, in general
more than one pixel from the image will need to be examined to track an object. Later
we will consider how to handle multiple samples from the image, which collectively
will incorporate color information from multiple samples from the image of the tracked
object.

This model assumes that the distribution of color is constant over the whole of
the object, thus tending to favor a uniformly colored object. This simplistic model
of appearance can easily be extended to incorporate a more image-based model. For
example, Figure 6-2b shows a network that incorporates pixel values from the neigh-
borhood around a given pixel location. If separate parameters are learned for each
pixel node in this network, an image is learned. If a single mixture of Gaussians is tied
across all the nodes (Figure 6-2c), the effect is similar to color histogram matching:
all pixels must be drawn from the same distribution.

6.4.3 Hidden Markov Model

Variables qt−T through qt and vt−T through vt−1 encode an HMM on the velocity of
the tracked object over the last T time steps. Each HMM state qt = j encodes a

108

distribution over the two-dimensional velocity of the object at time t:

vt = xt − xt−1

where xt is the absolute position of the object at time t. The output distribution on
vt for state qt = j is Gaussian:

P (vt | qt = j) = N (µj,Σj).

Note that in the Bayesian network formulation of an HMM, the output probability
distributions and transition matrix P (qt | qt−1) are tied across all time steps.

While in our previous work HMMs are used to model position, here we elect to use
velocity features instead, as an HMM on velocity often results in a compact model
for many motions that consist of straight-line ballistic movements. For example,
many kinds of waving gestures may be specified with only two states. Furthermore,
velocity as a feature has the advantage that HMMs built using velocity are invariant
to translation.

The multinomial random variable g is a used to obtain a mixture of HMMs in
the following manner. HMM states are grouped into |g| disjoint sets, one set for
each gesture g. Considering the Markov model view of the HMM, no transitions
are allowed from one set of states corresponding to a gesture g = i to a another
set corresponding to g = j. Thus a single HMM is used to effectively implement
|g| separate HMMs. This arrangement is graphically illustrated in Figure 6-3. In
this example, three HMMs are encoded by a mixture of HMMs, which has the single
block-diagonal transition matrix

1 − a12 a12 0 0 0 0 0 0 0
0 1 − a23 a23 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 − a45 a45 0 0 0 0
0 0 0 0 1 − a56 a56 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 − a78 a78 0
0 0 0 0 0 0 0 1 − a89 a89

0 0 0 0 0 0 0 0 1

where a = P (qt | qt−1). The dependence of qt−T on g is then configured such that g
picks out one of the disjoint set of states that corresponds to a single gesture:

P (qt−T | g = 1) =
(
π(1) π(2) π(3) 0 0 0 0 0 0

)
P (qt−T | g = 2) =

(
0 0 0 π(4) π(5) π(6) 0 0 0

)
P (qt−T | g = 3) =

(
0 0 0 0 0 0 π(7) π(8) π(9)

)

where π(j) is configured as an initial state distribution to model a start state for each
gesture. If no start state is specified for the gesture, π(j) = 1

3
.

109

1 2 3

4 5 6

7 8 9

g = 1

g = 2

g = 3

Figure 6-3: Three gestures may be encoded by a mixture of HMMs, which uses a single
transition matrix to encode all three separate Markov models.

Note that even though g only impacts qt−T , this is enough to obtain a mixture of
HMMs, since by block diagonal construction of the transition matrix if qt−T is in a
one of the states belonging to gesture g = i then so will the rest of the nodes q. The
alternative of parenting, say qt, with g introduces redundant parameters associated
with modeling qt as dependent on both qt−1 and g, a dependence already captured
by the transition matrix.

After entering evidence at each vt node, we may determine which of |g| movements
occurred by calculating the posterior probability of g.

6.4.4 Position Model

The absolute position xt of the object is modeled as a distribution that depends on
the HMM state at time t and the past position xt−1:

P (xt | xt−1, qt = j) = N (xt−1 + µj,Σj)

where µj and Σj are the same mean velocity and covariance of HMM state j as in
the previous section. This part of the network is illustrated separately in Figure 6-4.

While the traditional HMM output probability distributions are distributions on
velocity vt, the arc from xt−1 to xt encodes a Kalman filter-like integration of these
velocity distributions to obtain a distribution over absolute position. In terms of
the probabilistic forms introduced in Chapter 5, the linear regression matrix W = I
encodes the addition xt−1 + vj at xt.

Intuitively, this part of the network incorporates the impact of the HMM with the
known past position of the object to arrive at a distribution on the current position
of the object.

110

xt-1

qt-1 qt

xt

yt

Figure 6-4: The tracking part of the network combines the past position of the object
with current position observations and an HMM on object velocity.

The covariance at xt reflects the model’s uncertainty about the position of the
object, where position is specified as a point in image coordinates. This uncertainty
is the composition of two sources of uncertainty: uncertainty in the position of the
object at time t − 1, represented by covariance at xt−1, and uncertainty in velocity
distributions of HMM states at time t. These two sources of uncertainty may be made
distinct setting the covariance at yt to take into account the size and shape of the
object as an ellipse.

The network models the position and appearance of a single pixel drawn from
each of the past T images. In general we are not interested in modeling the color
and position of pixels taken singly from each frame of an image sequence, since each
object will consist of many pixels.

The network may be applied on multiple pixel observations by computing the
average marginal for each posterior we are interested in, as described in Chapter 5.
This proceeds by running the inference algorithm on the network for each observation
and keeping summary statistics on the marginals of interest. Unfortunately, the
combinatorics of the observation space are daunting: the number of possible value of
yt for an N ×M image is (NM)T . To follow an object through the entire T frames
requires drawing a pixel that belongs to that object on each frame simultaneously.

The size of the observation space may be reduced drastically by considering only
the current frame, and modeling the past velocity of the object as a known distri-
bution. The resulting network is shown in Figure 6-5. In the reduced network, the
object velocity at time t is denoted as vt.

The approach of running the inference algorithm for every pixel in even only the
most recent image is computationally prohibitive. However, a high percentage of the
pixels in an image will belong to no tracked object. Instead of examining every pixel,
we may sample the network to generate values of yt that likely belong to the object.

111

. . .

xt-1 xt

qt-T qt-T+1 qt

vt-T vt-T+1

qt-1

ltlt-1

vt-1

gt

dt at

rt(-1, -1) rt(1, -1)

ct(-1, 1) ct(1, 1)

ct(-1, -1) ct(1, -1)

rt(-1, 1) rt(1, 1)

yt

Figure 6-5: The approximation of the Bayesian network in Figure 6-1 with reduced ob-
servation space. vt denotes the (known) velocity of the object at time t.

A random variable in a Bayesian network may be sampled by drawing samples from
the variable’s conditional distribution, given that its parents have been sampled as
well. Once a number of yt samples have been collected, the color of each pixel at yt
may be collected from the image.

An entire image may be examined by the network by entering every pixel of the
image in turn, being careful to reject pixels with low likelihood, which are not likely
to belong to the object. Alternatively we may deduce that a pixel does not belong
to the object by comparing the likelihood for other tracked objects. The pixel then
belongs to the object for which the likelihood is greatest. A related approach is to
model a “junk” hypothesis, an object with a large size and appearance model with
high covariance. Any pixel not ascribed to the target object will be attributed to the
“junk” hypothesis, and may be subsequently ignored.

Note that the drawn samples of xt are predictions based on the current knowledge
of the current gesture taking place, the current HMM state and the past position of
the object.

6.4.5 Action and Context

The dependence on gesture and action is implemented by the arc from g to a, with
an associated probability table P (a = ai|g = gj), which maps a given gesture to one
of |a| actions.

One can imagine a variety of ways to have the system generate actions given this
map. One approach is to generate an action by sampling this distribution every time
the current gesture changes. The current gesture may be computed as the posterior
of g. The manner in which actions may be generated appropriately will of course be
dependent on the application.

112

A dependence on time-varying domain context is similarly implemented by the
arc from g to d. When the application enters one of |d| context states, this may
be entered as evidence at node d. The manner in which this impacts the current
interpretation depends on the probability table P (d = di|g = gj).

The action and context maps connect the network with the application environ-
ment. For example, we may identify the fact that certain application events are likely
to be accompanied by a THROW gesture. The occurrence of one of these events thus
drives expectations for a THROW gesture, with P (d = THROWCONTEXT | g =
THROW) > 0. This expectation guides the parse of the movement and all other
aspects of the network’s interpretation. This distribution may be learned, or set a
priori.

Similarly, if the system sees a THROW gesture (in any context d), the mapping
from g = THROW to a generated action a = THROWEVENT is specified by
P (a = THROWEVENT | g = THROW). Again, this distribution may be learned,
or set a priori.

6.4.6 Control

Lastly, nodes lt and lt+1 model the evolution of our state of knowledge regarding the
tracked object. The Markov model associated with the probability table P (lt | lt+1),
illustrated in Figure 6-6, tracks the progress of the state of the tracked object from
NEW, when it is just started, through SEEINGCATEGORICAL, which indicates
that a known gesture is occurring, to VALID, to indicate that this tracked object
has undergone a categorical movement at some point in the past. If when the object
is NEW, no categorical motion is seen, the object may become DEAD. Similarly, if
the object is VALID and no categorical movement has been seen in a long time, the
object may also become DEAD. The DEAD state corresponds to the belief that the
tracked object is not interesting as indicated by its patterns of movement over time.

The dependency P (g | lt) is used to select which set of HMMs is allowable in each
of the |l| states. P (g | lt = SEEINGCATEGORICAL) is nonzero for any gesture g
that is well known, while P (g | lt = NEW,VALID,DEAD) may be nonzero for any
gesture.

As an example, consider tracking the user’s hand. We hope that the currently
tracked object is the hand, but the system represents its uncertainty by lt = NEW.
If the currently tracked object moves back and forth, as in a waving motion that has
been seen before when tracking hands, lt = SEEINGCATEGORICAL. When hand
stops waving, lt = VALID signifying that this object has undergone a known motion
in the past, and therefore the increased confidence that the object is indeed the hand.
Eventually, if no known motion is shown by hand, lt = DEAD, signifying the lack of
confidence as the object as the hand.

6.4.7 Multiple Objects

The network includes distributions for the position and appearance of a tracked object
in the image. The nodes xt and ct model the (x, y) position and Y UV color of a single

113

DEAD

NEW

SEEING CATEGORICAL

VALID

Figure 6-6: Control Markov model models the state of our knowledge of the tracked object.

pixel drawn from the image. When position and color information is entered on xt
and ct, the likelihood as computed by the inference algorithm described in Chapter
5 will be higher if the pixel belongs to the object than if it does not. Both position
and color must match.

Multiple objects may be modeled simultaneously by adding a multinomial variable
h so that the network may model N = |h| objects simultaneously. In this arrange-
ment, h must be the parent of every node in the graph. Then, instead of using the
overall likelihood of a pixel entered into the network, we may additionally consider
the posterior probability of h to indicate to which object the pixel belongs. Simi-
larly, in the case where only one object is under consideration, we may still use the
multinomial h to model the true object and a “junk” hypothesis (|h| = 2), so that
the posterior of h may be used in the same manner.

Alternatively, we may maintain N distinct copies of the same network and test
the pixel against each of N networks. Both approaches have the same computational
complexity.

6.4.8 Propagation

The dynamic Bayesian network includes variables l and x that model dependencies
on the previous time step. It also includes an unrolled dynamic Bayesian network
for the HMM on velocity of each blob. Since the HMM may be unrolled sufficiently
many time steps T to capture entire gestures at once, we will require that only l and
x be propagated from time step to time step in the manner of a dynamic Bayesian
network. This is done at each time step in the manner described in the previous
chapter, where the marginal of the variable at time t is used to set the parameters of
the corresponding t− 1 variable in the next time slice. In the case of multiple pixels,
these marginals are the “aggregate” marginals as described previously.

6.4.9 Splitting the Network

We may use samples in an even more efficient manner if we also split the network
into two pieces: a low-level network that benefits from examining many samples,
and a high-level network that requires many fewer samples. The lowest level parts
of the network, including position and appearance, benefit from having many pixels

114

examined so that the appearance of the object is sampled many times, while the
high-level parts of the network, including the control network and the HMM, require
many fewer samples.

Samples of yt may be generated from network. The color values at each of these
positions is then collected from the current image. These color values are then entered
into the appearance network in turn. The likelihood of each of these color values is
determined by inference on the appearance network. All the but the top few of the
samples are then discarded, as ranked by appearance model likelihood.

Each of the remaining samples are then entered into the high-level network, which
is responsible for the frame to frame tracking of each hypothesis given the previous
state of the HMM. The “aggregate” marginal is then used to propagate the value of
xt to the next times step.

The position of the object determined, the velocity of the object may be computed
from a stored buffer that records the position of each blob over time. The velocities
vt−T through vt−1 may then be entered into the HMM. Posteriors on g may then be
computed, and l may be propagated to the next time step. Thus the state of the
HMM is propagated, as well as x, to impact the sampling process for the next time
step.

The splitting of the network is based on the observation that the high-level network
does not need highly accurate spatial position information. Similarly, the high-level
network does not require a high degree of temporal resolution since, for example,
the posterior of qt is not likely to change at frame rate. Therefore the high-level
network may be updated asynchronously with the mid-level network, further saving
computation.

As an example, again consider tracking the user’s hand. The image around the
predicted location of the hand is sampled. This predicted is based on the past position
of the object and the current state of the HMM. All but a few of these pixels are
rejected based on the fact that they do not fit the color-based appearance model. The
remaining samples are then used to update the tracking model, to give an updated
position of the hand. This position is used to calculate the current velocity of the
hand, the history of which is entered into the high-level network. The posterior of g
indicates that the hand is undergoing a waving motion, while the control network is
propagated such that lt = SEEINGCATEGORICAL to represent the fact that the
object is undergoing a known motion. Belief about the HMM step for the next time
step is then computed from the high-level network and then entered on the mid-level
tracking network.

6.4.10 Algorithm

In summary, the sampling, inference and propagation algorithm proceeds as follows:

1. sample the high-level network to obtain many samples of xt

2. look up each color ct at each location xt in the image

3. enter each value of ct into the appearance model, and record its likelihood

115

4. keep the top few (xt, ct), as sorted by appearance model likelihood

5. enter each top xt value into the high-level network in turn, and compute the
aggregate posterior xt

6. compute vt = xt − xt−1

7. enter vt through vt−T and dt into the high level network and run the inference
algorithm

8. propagate xt and lt to the next time step

Note that this algorithm encodes several approximations outlined earlier, includ-
ing propagating over a small number of samples instead of the whole image (or the
whole image sequence) and propagating only samples that have high likelihood by the
appearance model. In the case of tracking multiple objects, this process is repeated
for each replication of the network, or is executed only once if a single network with
multinomial random variable h is used.

6.4.11 Scaling Issues

One way to characterize the computational complexity of a Bayesian network is to
calculate how the clique sizes scale with various other quantities. For the network
presently under consideration, there is no clique that grows with the length of the
sequence T .

One concern is how the number of parameters to the Bayesian network grows as
the number of gestures increase. As can be seen from the example transition matrix
presented in section 5-8, the number of parameters to the transition matrix grows
exponentially with the number of gestures. Many of these parameters are zero, and
so a real-time implementation of Bayesian networks may use this fact to reduce the
number of mixture components considered in further calculations, effectively removing
this issue as a concern.

Presently, each HMM state has a unique output distribution assigned to it. If
the number of gestures is large, this approach would likely lead to a redundant set
of output distributions. In this case an approach whereby output distributions are
shared among states would be desirable. This can be accomplished by incorporating
a new discrete random variable r and conditional probability P (r | q) with output
distributions in turn selected by the value of r. This conditional probability P (r | q)
maps the states q onto output distributions indexed by r, and would have to be
trained for new gestures.

6.5 Experiments

For the following experiments the networks described above were implemented in the
hybrid Bayesian network software package described in Chapter 5. The experiments

116

Figure 6-7: Graphical interface to the runtime experimental system.

demonstrate a few of the many interesting inference and learning scenarios made
possible by the Bayesian network architecture.

Figure 6-7 shows a screen shot of the running experimental system. Example
video of the runtime system for each of the experiments is located at http://www.

media.mit.edu/~drew/movies. The following experiments report data taken from a
single session of the experimental system.

6.5.1 Learning Appearance Model Driven By Categorical
Movement

A multiple hypothesis approach to object discovery is necessary when tracking distinct
objects by appearance. In the first experiment we outline how the control network
models our belief that each hypothesis is a valid object. Appearance models are
induced implicitly when the system happens upon a object that moves in a familiar
way and the control network preserves the hypothesis.

To demonstrate this process, we would like the network to pick up on the appear-

117

ance of an unknown object when it undergoes a simple waving motion, as if the user is
trying initiate a dialog with the system by waving at it. One of the |g| gesture models
was hand coded for a back and forth movement, approximately a waving motion.
Only two states were used in the HMM. The HMM of the network was unrolled to
T = 30 time steps, about a second and a half of clock time. The network was config-
ured to follow four object hypotheses, and the appearance model was configured to
include three Gaussian components, each on YUV color values.

Two additional “null gestures” are defined: g = STATIONARY to model the
absence of motion, and g = RANDOM to model movement that are modeled by no
other gesture. Both are modeled by a single state with zero velocity, STATIONARY
wth a small covariance, RANDOM a large covariance.

Each tracking hypothesis is “seeded” in a region of the image in which there is
some image motion. These regions are modeled by a mixture of Gaussians over image
coordinates, which is trained in an online fashion by sampling the image and entering
as observations those image locations which have changed more than some threshold
value. A tracking hypothesis is seeded again when lt = DEAD, implying that under
that hypothesis appearance model, no categorical motion was seen. The transition
probabilities of the control Markov model are configured such that once a hypothesis
undergoes a categorical motion, many timesteps must pass without seeing another
categorical motion before lt = DEAD.

The output distributions for the Markov model on lt is constructed to support the
above process as follows: For lt = VALID, g may be STATIONARY or RANDOM.
For lt = SEEINGCATEGORICAL, g may be STATIONARY or L/R WAVE. For
lt = DEAD, g may be again STATIONARY or RANDOM.

During runtime, the user waves a color object in front of the camera. The amount
of time it takes for some hypothesis to correctly acquire the object depends on how
much motion there is in the scene. If there is no other motion in the scene, the
network will begin tracking the correct object after about three or four periods of a
wave. A video sequence illustrating an example of this process is located at http:

//www.media.mit.edu/~drew/movies.
Figure 6-8 shows the posteriors of lt, gt and qt over time during the object acqui-

sition phase.
On occasion, the algorithm will use one or more blob hypotheses to track the users

arm or hand, or the shadow of the arm or hand instead of the object itself. Presently,
there is no way to avoid such ambiguities.

6.5.2 Learning Novel Gestures

Once the appearance model of the target object as been acquired, the network may
be used to induce models of gestures that the system has never seen before.

In this demonstration, a gesture model is initialized with high covariance for each
state output distribution. Configured this way, a sequence that is not modeled by the
known waving gesture will be assigned to the new gesture model. The new gesture is
trained in an online fashion with an EM algorithm: after each time step, the statistics
outlined in Chapter 5 are recorded for each state output probability distribution. This

118

0

1
l = NEW

0

1
l = SEEINGCATEGORICAL

0

1
l = VALID

0

1
l = DEAD

0

1
g = STATIONARY

0

1
g = L/R WAVE

0

1
q = 1

0

1
q = 2

3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0
0

1
q = 3

t i m e t

Figure 6-8: Plot of posterior probablities of lt, gt and qt during the acquisition of an
object. The object is repeatedly restarted until frame 470 when the tracked object exhibits
a motion described by HMM g = L/R WAVING, a left to right waving motion. At that
time, the control network registers lt = SEEINGCATEGORICAL. The waving gesture is
approximated by two states, q = 1 and q = 2, which alternate. When the gesture ends
the control network registers l = V ALID denoting that the object has undergone a known
categorical motion, and consequently should be saved.

119

is the expectation step. Then, at every tenth tick, the maximization step is executed
to arrive at new values of the parameters of the output distributions. The novel
gesture is gradually trained after only a few examples.

The Markov model associated with lt allows the training of the new gesture only
after lt = VALID, by initially allowing g = TRAINED only for lt = V ALID. Figure
6-9 shows posterior values over time of lt, gt and qt during the time the novel gesture
is learned. Figure 6-10 shows the output distributions for the two states of the gesture
model for the novel movement.

Note that the acquisition of the new gesture proceeds in an unsupervised fashion.
If a domain context signal is available, it may be used to train a different “unused”
gesture, such that the resulting gesture to action mapping is correct for that gesture.
In the more difficult unsupervised case, feedback may be used to train the gesture to
action mapping so that the gesture corresponds to an appropriate output action.

Because the target object was presumably selected because it exhibited a known
categorical motion, it is reasonable to incorporate the known gesture into the network
such that it also may be considered a known gesture, and so may also be used as a
cue for object discovery. This can be accomplished by creating an observation on the
variables l and g, where lt = SEEINGCATEGORICAL and g = i the new gesture.
The observation may be incorporated into running statistics of g, the parameters of
which may be updated periodically.

6.5.3 Learning Gesture Model to Action Mapping

In the last experiment, we show how a simple reinforcement learning-based mechanism
may be used to train the gesture to action mapping. In this demonstration, we assume
that actions are generated from the system when the current gesture g changes. We
define the current gesture as the gesture for which the posterior of g = i is maximum.

An action is generated by sampling the action selection matrix P (a = i | g = j).
The last action and gesture pair is saved to memory, such that when the user offers
positive or negative feedback, this pair is used to generate an observation which is
then incorporated into the running statistics of the action selection matrix.

Specifically, if we denote (a = i, g = j) as the last action and gesture pair, and
the system receives positive feedback at a subsequent time step, then the observation
(a = i, g = j) is added to variable a’s statistics. If we have the additional constraint
that gestures and actions are in a one-to-one mapping, we may also add a “soft”
observations on all gestures other than k:

P (a = i | g = k) =

{
1/(|g| − 1), if k �= j
0, otherwise.

Similarly, if the feedback is negative, we may add a soft observation on a:

P (a = k | g = j) =

{
1/(|a| − 1), if k �= i
0, otherwise.

120

0

1
l = NEW

0

1
l = SEEINGCATEGORICAL

0

1
l = VALID

0

1
l = DEAD

0

1
g = STATIONARY

0

1
g = L/R WAVE

0

1
g = TRAINED

0

1
q = 1

0

1
q = 2

0

1
q = 3

0

1
q = 4

6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0
0

1
q = 5

t i m e t

Figure 6-9: At time t = 600 a novel movement is approximated by neither
g = STATIONARY nor g = L/R WAVE. The gesture model g = TRAINED is trained
to model the up and down movement of the tracked object. Later, at frame 820, the system
sees a known left to right waving gesture.

121

- 4 0 - 2 0 0 2 0 4 0

- 2 0

0

2 0

4
5

t = 5 5 0

- 4 0 - 2 0 0 2 0 4 0

- 2 0

0

2 0

45

t = 6 0 0

- 4 0 - 2 0 0 2 0 4 0

- 2 0

0

2 0

45

t = 6 1 0

- 4 0 - 2 0 0 2 0 4 0

- 2 0

0

2 0

4
5

t = 6 2 0

- 4 0 - 2 0 0 2 0 4 0

- 2 0

0

2 0

4

5

t = 6 3 0

- 4 0 - 2 0 0 2 0 4 0

- 2 0

0

2 0

4

5

t = 6 5 0

- 4 0 - 2 0 0 2 0 4 0

- 2 0

0

2 0

4

5
t = 8 0 0

- 4 0 - 2 0 0 2 0 4 0

- 2 0

0

2 0

4

5
t = 1 0 0 0

Figure 6-10: Continuous online training of the novel gesture is shown at several time steps
in left to right, top to bottom order.

and analogous observations on remaining gesture models such that the one-to-one
mapping is preserved.

At the start of training the gesture to action mapping, when there are few example
pairs available, the change in the mapping after a single example will be great. This
early rate of adaptation my be slowed by adding a Dirichlet prior to g [27], which
amounts to adding synthetic (uniform) observations to a variable before runtime.

Figure 6-11 shows the posterior value of gt over time, the points in time when
action was taken and the corresponding feedback given by the user. Figure 6-12 shows
the action selection matrix P (at | gt) over the same time course. In this example,
only positive and negative feedback observations are used, without observations to
enforce a one-to-one mapping.

6.6 Conclusion

A framework for the online learning of gesture has been introduced. A dynamic hy-
brid Bayesian network which incorporates a variety of information is demonstrated to
support a number of interesting inference and learning scenarios. The model is able
to leverage previously learned gesture models, exploit domain context information,
learn actions associated with gestures, and control the development of multiple track-
ing hypotheses. A taxonomy of successively more constraining movement models is
combined with a sampling-based approach, allowing an efficient real time implemen-

122

0

1

g = STATIONARY

0

1

g = L/R WAVE

1 0 0 0 1 1 0 0 1 2 0 0 1 3 0 0 1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0

0

1

g = TRAINED

t i m e t

Figure 6-11: The posterior value of g is shown over time. When the value of g changes,
an action is emitted (square). At some point later the user provides either positive (plus)
or negative (cross) feedback on the action taken by the system.

a

g

t = 9 5 0

1 2

1

2

a

g

t = 1 1 0 0

a

g

t = 1 2 5 0

a

g

t = 1 4 0 0

a

g

t = 1 5 5 0

a

g

t = 1 7 0 0

Figure 6-12: The action selection matrix P (at | gt) at several points during the time
depicted by Figure 6-11.

123

tation.
The combination of the above sources of information into a single probabilistic

model gives the designer many options in deciding what to learn and when. The
experiments presented here demonstrate only three such scenarios: the acquisition
of a simple appearance model driven by known categorical movement models, the
subsequent acquisition of new gesture models, and a reinforcement learning-based
learning of the mapping from gesture to action.

The flexibility of the Bayesian network approach will allow other novel scenarios.
For example, it reasonable to consider training the mapping from gesture to domain
context events. As with the demonstrated scenarios, it will be important to ensure
sufficient constraints so that the learning will be easy. In developing ever-more com-
plex models for online learning, this concern will be paramount, and will require a
careful crafting of the model and design of the interaction and feedback.

124

Chapter 7

Conclusion

7.1 Summary

This thesis presents four projects which demonstrate the adaptive approach to gesture
recognition, where in each case what is adapted and what drives the adaptation varies.
Taken together, they demonstrate that the adaptive approach may be applied in a
wide variety of gesture recognition scenarios. Each differs significantly along the
lines of the problem addressed, the nature of the constraints brought to bear, and
mathematical techniques.

The Parametric Hidden Markov Model (PHMM) demonstrated how the HMM
formulation may be extended to represent families of gestures, and how the PHMM
may be used to extract “how” a gesture is executed, which in many dialog situations
is a important piece of information not found in the spoken dialog. Determining how
a gesture was executed proceeds by adapting a parameter in an online fashion. Con-
straints on this adaptation include a learned manifold representation of the gesture
family.

The natural gesture video parser exploits a rather different set of constraints. A
coarse model of the behavior of a person telling a story is leverage to adapt appearance
models of the speaker at rest. These rest state appearance models are then exploited
to perform a more complete parse of the speaker’s gestures.

The Watch and Learn system builds upon the natural gesture video parser by
adapting all the appearance models of the gesture model in a real time implementa-
tion. This adaptation is driven by a time-varying context signal that is derived from
application context. Once the appearance models are learned, the system is able to
parse the gesture without the aid of the context signal.

The final project demonstrates the implementation of a Bayesian network-based
system for online gesture learning. This ties together mathematical ideas of the
PHMM and the idea of driving adaptive appearance models from motion as demon-
strated by the natural gesture parser and Watch and Learn, while extending the
ideas in a variety of directions. For example, the notion of driving the learning from
multiple sources of constraint is explored.

125

7.2 Features and Behavior

The various adaptive models presented in this thesis exploit a number of notions of
behavior, each coupled with a different set of features computed from sensory input.
For example, the PHMM has been demonstrated on the three-dimensional position
of the head and hands of the user, the natural gesture parser and Watch and Learn
use low-level image-based appearance models, and the final Bayesian network-based
system exploits a combination of tracked objects and appearance models.

The choice of features impacts the nature of the behavior model. For example,
in Watch and Learn, each of the HMM states corresponds to an appearance model
which is learned during runtime. At the start of the system when the appearance
models are unknown, the HMM is driven completely by application context. Thus
the behavior model must be matched to the application context information available
to the system. As the appearance models are learned, the same HMM must be able
to approximate changes in the video input over time. While the particular examples
presented are quite simple, in general, the HMM topology and states must be chosen
carefully to work with the context information and permit a working, learnable HMM
on appearance models.

In the frameworks that rely on tracking information, the model of behavior is
linked tightly with image geometry. In the Bayesian network-based framework, for
example, this means that two gestures that we identify as having the same behavior
may not be learnable under the same model if they exhibit different movement in
space. Note that one of the primary motivations of the PHMM is to abstract over
these differences in geometry in the case when the different versions of the same
behavior lie on a smooth manifold in space. Turning to natural gesture, the PHMM
approach will not work in the case of learning beat gestures, for example, because
they typically do not exhibit geometric regularity, but rather regularity in a motion
profile over time.

Low-level appearance-based representations are attractive from the standpoint
that they can be fit easily to any image-based data easily. But there are limits to
this approach as well. For example, the simple approach used in this thesis is unable
to model changes in the appearance of the object (though see [73] for a possible
approach that is compatible with the PHMM). The behavior models built on simple
image-based approaches will thus not be able to model the rotation of the object.
Similarly, significant motion in depth will not be learnable as such.

If we have a kind behavior model that we would like to use, is it possible to de-
termine automatically what features best support the desired behavior model? In
general feature selection is a difficult problem. But if there is a set of features that
are at the model’s disposal, it would be possible to try subsets or combinations of
features until features are found that support the behavior model. The goal of such
an optimization would be to employ compact, reusable high-level behavior models
across multiple systems. In fact, this process has much the same flavor as the adap-
tive approach presented in this thesis; instead of learning images or trajectories,
combinations of features are learned in support of a known behavior model.

Given the variety of frameworks and applications presented in the thesis, are there

126

any generalizations that may be made to indicate what features a general behavior
model might have? Considering only the space of systems demonstrated by the thesis,
I believe that the most important features of a behavior model applied adaptively are
that it must first represent the ordering of events in time. That is, state B typically
follows state A, without respect to how the states ’image’ in feature space. The
important aspect of such a model is that at some point, semantics must be bound to
each of the states.

Secondly, behavior models should exploit context. It may appear as if context is
just another set of features which are known a priori. But the important aspect of
context is that it bootstraps learning processes and indexes into previous experiences,
but otherwise is not complete enough to suffice as a whole behavior model unto itself.
Correlating context with the current set of features allows an adaptive process to
learn the order of events in a behavior learn their sensory representations, bind these
events to useful semantic labels, and ultimately learn new contexts.

7.3 The Field of Machine Perception

The adaptive gesture models above were developed in response to the dominant pat-
tern recognition paradigm, in which static models are employed to perform recogni-
tion. To some extent the progression of models and techniques reflects the changing
in my thinking about the problems of gesture recognition and pattern recognition,
my reaction to the overemphasis of bottom-up tracking in the field of computer vision
and the promise of adaptive systems. In particular, the work presented supports the
following:

• Domain context is a strong and often overlooked source of constraint that may
be used to solve pattern recognition problems. In some cases, the strength of
domain context will expose the fact that precise tracking is unnecessary in many
circumstances which were previously assumed to require tracking.

• The online adaptive approach will be more generally applicable than the alter-
native approach of a strictly memory-based system. The generalization ability
of the online adaptive approach stems from the ability of such systems to adapt
to circumstances that were not encountered in offline training scenarios.

• Bayesian networks are a powerful, expressive mathematical framework for con-
structing adaptive systems that incorporate a variety of modeling constraints.
Bayesian networks subsume many of the important probabilistic frameworks,
while allowing interesting hybrid structures adept at combining multiple sources
of information and similarly permit many types of learning scenarios.

• The online adaptive approach is one technique to address some of the standard
problems in applying computer vision techniques to the task of watching and
interacting with people.

127

I hope the ideas presented in this thesis will encourage future researchers to think
about their gesture recognition problem in a sophisticated way. In the remainder of
this chapter I speculate on the utility of adaptive gesture models beyond the projects
presented in this thesis.

7.4 The Future of Adaptive Interfaces

Adaptive gesture recognition models will play a role in designing interfaces for tomor-
row’s ubiquitous computing environments. As argued in Chapter 1, the convergence
of a large variety of computing devices and increased sophistication of user interac-
tion will encourage the design of interfaces that learn to work with the user. These
adaptive interfaces will be one mechanism to deal with the emerging complexity of
interfaces. We are already seeing the beginnings of this movement: the two most pop-
ular examples may be the newer consumer speech recognition systems that require
“training” passages to be spoken, and the Microsoft Office Assistant, which not so
surprisingly is built on a discrete Bayesian network [28].

Designers of tomorrow’s interfaces will use adaptive models because in many cases
it will be the only way to get things to work. Consider, for example, a computer vision
system that is to be deployed in indoors to monitor and interact with people in an
home environment. Now consider the harsh reality of selling a production version of
the system. The user buys the system at a retail store, unpacks it at home to find a
couple of small cameras that must be calibrated to the geometry of the rooms in which
they are deployed. Meanwhile the lighting must also be calibrated or perhaps even
changed to match a factory-specified skin color model model. After going through all
this, the user is disappointed to find out that many of the gestures that the system
requires don’t feel natural, and must be rehearsed many times before they become
second nature and are reliably recognized by the system. I doubt most people would
have the patience to configure such a system, and although it may be reasonable
to have a specialist initially configure the system, having one come out for every
significant change in the household will significantly slow the adoption of the system.

An adaptive interface will be more likely succeed in such a demanding environ-
ment, but only if the user understands that the system is adaptive. One challenge
in the design of an adaptive system is how the overall system should behave when
it is in the midst of adaptation, and possibly has an incomplete model of domain
context and the user. In the worst case, the system will be offering up responses that
are almost always inappropriate, and the user will be continually badgered to deliver
feedback until the system finally learns the desires of the user. A more reasonable
approach is to have the system first observe how things normally work, and incorpo-
rate these observations into its model. Later, as the system is able to reliably predict
the outcome of some of the events, it will begin to offer appropriate responses with
some degree of confidence.

One stumbling block for the adaptive interfaces approach is the fact that in today’s
world, people expect machines to behave deterministically, and so any machine that
doesn’t perform identically given the same input time after time is “broken” or “un-

128

reliable”. By definition, adaptive interfaces do not perform identically an successive
occasions. This concern will be addressed in part by designing adaptive interfaces
to represent their state of knowledge in a way that is accessible to the user. This
effectively returns the machine to the class of deterministic machines by exposing the
hidden state. How these systems should represent their internal state to the user is a
delicate design problem that depends greatly on the domain and the attitude of the
user towards the system.

I believe that this problem of the non-deterministic nature of an adaptive interface
will fade as a real concern, however, as the interfaces become so sophisticated that
it is too difficult to depict the state of the system, and, more significantly, that the
average user will be used to the idea of machines that learn. Tomorrow’s user will
expect the machine to pick up on how things work.

Lastly, I would like to suggest that in the near term, adaptive interfaces will
not have a more motivated application than in assisting the disabled and elderly
populations lead their lives. One of the greatest challenges facing these segments
of the population is that it seems as if each person has a unique set of problems.
Often these problems are addressed half-heartedly by publicly available products or
services, or no solution addresses the need satisfactorily and a custom solution must
be devised at significant cost. Too often the problem is inadequately addressed, partly
due to cost, or a matter of not having the right people tend to the person’s need.
A sufficiently sophisticated adaptive interface would be able to compensate for the
person’s disability, working with the person’s own remaining functional abilities, as
well as changing in response to changes in the nature of the disability.

Obviously, the work presented in this thesis only scratches at the surface of what
will required of tomorrow’s adaptive interfaces, and only hints at what will be possible
in the future.

7.5 The Role of Movement in the Natural World

Not much is known about the high-level workings of animal visual perception, so it
is difficult to say whether animals actually perform the top-down interpretation of
movement. Certainly there are many examples of so-called “pre-attentive” processes
that drive things that move to be considered further. For example, reptiles are almost
blind to objects that don’t move, instead relying on their keen sense of smell. And
there are plenty of demonstrations of perception guided by context, mostly in the
form of infant visual perception studies. This suggests that a similar context-guided
perception of movement is possible.

A robust common example of how top-down expectations of movement guide
perception happens when tossing a ball for a dog. If the person throwing the ball
goes to throw it but then doesn’t release the ball, the dog will often look where the
ball would be had the ball been released, and perhaps will even go running in that
direction. While it is possible that the dog has some experience with the physics of
the world, it is also likely that the dog is drawing on a ball-playing context built up
over years of playing ball with his owner.

129

Like the dog owner magicians similarly play on our expectations of where objects
are. A domestic cat will likely find television fairly uninteresting until a nature show
involving some sort of small animal or bird comes on. Rodents are known to freeze
when they see a large object that passes over them. While the focus of this thesis
has not been on biological plausibility it is interesting to consider examples of motion
selectivity in nature.

7.6 Adaptive Approach as a Computational Model

of Perception

Around the time when I began to think deeply about human movement and gesture
recognition, I had an epiphany when I watched again the computer graphic animated
short Luxo Jr.[42]. Written and produced by John Lasseter of Pixar, Luxo Jr. tells
a short story about two lamps, which as a viewer, we easily anthropomorphize into
a mother (or father) and child (see Figure 7-1). We quickly make the deduction that
the head of each lamp is the head of each character, the hinge at the middle of the
lamp is the waist, and so on. I found several other examples of animators similarly
bringing inanimate objects to life, but I found none that illustrate our ability to
anthropomorphize as well. What is going on when we view this film for the first
time? Is it possible to develop a computational theory of how lamps are viewed as
human? Why would we care if we could?

To no one’s surprise, while animators have amazing abilities to synthesize such
wonderful examples to tickle the brain [69, 43], they offer very few clues how the
interpretation of their animations proceeds in the heads of their viewers. I argue
that demonstrations such as Luxo Jr. indicate that perception is an active, iterative
process that is not strictly based on memory alone. Seeing Luxo Jr. for the first time
probably involves a back and forth process, in which a bit of the lamps motion is
interpreted, the outcome of which is used to initiate an interpretation of the lamp’s
geometry, which is used to refine the interpretation of the motion, which refines the
geometry, and so on. Small gestures such as the small lamp looking up at the larger
lamp serve to lock in the interpretation even further. All our domain-specific context
knowledge about children playing with balls with mother looking on is brought to
bear as well, as well as the pervasiveness of the laws of physics. Quickly, all this
disparate information is combined to arrive at a strong, unambiguous perception of
a human character.

Does this mean we are running an EM algorithm in our heads when we view
something new? Probably not. But the iterative flavor of my account of how we
see the film has the feel of EM, and suggest that todays probabilistic systems that
use EM for adaptation may give us a start on a computational theory. The adaptive
approach to gesture recognition similarly uses an iterative approach to lock in on
an interpretation, while the demonstrations of the approach presented in Chapter 6
presents the combination of multiple kinds of information such as movement, context
and appearance to arrive at a preferred interpretation. Adaptive approaches such

130

Figure 7-1: A frame from the Pixar short Luxo Jr..

as those presented in this thesis may eventually provide the basis for a powerful
computational theory of active perception. A good place to start is with structures
like that presented in Chapter 6.

If a computational model of active perception is developed to the point where a
system may come to understand Luxo Jr. without previous knowledge of how a lamp
may be anthropomorphized, I believe we will have arrived at a model that is general
enough to address many of the more practical concerns of developing systems that
monitor and interact with humans. The reasoning is simple: if the system can build
up a model of the lamp as a human, it ought be able to interpret any human as
human, as well as any human can. Thinking about the problem of interpreting the
lamp forces us to throw out everything that is irrelevant in interpreting humans as
human. The concepts we will have to throw out are the very same ones that trip up
todays gesture recognition systems.

Again, the present work only scratches at the surface of anthropomorphizing Luxo
Jr., but it offers ideas and techniques that are relevant and hopefully will stimulate
further research into this fascinating and important problem.

131

Appendix A

Expectation-Maximization
Algorithm for Hidden Markov
Models

We derive equation 2.3 from the expectation-maximization (EM) algorithm [22, 3] for
HMMs. In the following, the observation sequence xt is the observable data, and the
state qt is the hidden data. We denote the entire observation sequence as x and the
entire state sequence as q.

EM algorithms are appropriate when there is reason to believe that in addition
to the observable data there are unobservable (hidden) data, such that if the hidden
data were known, the task of fitting the model would be easier. EM algorithms
are iterative: the values of the hidden data are computed given the value of some
parameters to a model of the hidden and observable data (the “expectation” step),
then given this guess at the hidden data, an updated value of the parameters is
computed (“maximization”). These two steps are alternated until the change in the
overall probability of the observed and hidden data is small (or, equivalently, the
change in the parameters is small). For the case of HMMs the E step uses the current
values of parameters of the Markov machine — the transition probabilities aij , initial
state distribution πj , and the output probability distribution bj(xt) — to estimate
the probability γtj that the machine was in state j at time t. Then, using these
probabilities as weights, new estimates for aij and bj(xt) are computed.

Particular EM algorithms are derived by considering the auxiliary function Q(φ′ |
φ), where φ denotes the current value of the parameters of the model, and φ′ denotes
the updated value of the parameters. We would like to estimate the values of φ′. Q is
the expected value of the log probability of the observable and hidden data together
given the observables and φ:

Q(φ′ | φ) = Eq|x,φ [logP (x,q, φ′)] (A.1)

=
∑
q

P (q | x, φ) logP (x,q, φ′) (A.2)

where x is the observable data and the state sequence q is hidden. This is the

132

“expectation step”. The proof of the convergence of the EM algorithm shows that
if during each EM iteration φ′ is chosen to increase the value of Q (i.e. Q(φ′ |
φ) − Q(φ | φ) > 0), then the likelihood of the observed data P (x | φ) increases as
well. The proof holds under fairly weak assumptions on the form of the distributions
involved. Choosing φ′ to increase Q is called the “maximization” step.

Note that if the prior P (φ) is unknown then we replace P (x,q, φ′) with P (x,q |
φ′). In particular, the usual HMM formulation neglects priors on φ. In the work
presented here, however, the prior on θ may be estimated from the training set,
and furthermore may improve recognition rates, as shown in the results presented in
Figure 2-10.

The parameters φ of an HMM include the transition probabilities aij and the
parameters of the output probability distribution associated with each state:

Q(φ′ | φ) = Eq|x,φ

[
log

∏
t

aqt−1qtP (xt | qt, φ′)

]
(A.3)

The expectation is carried out using the Markov property:

Q(φ′ | φ) = Eq|x,φ

[∑
t

log aqt−1qt +
∑
t

logP (xt | qt, φ′)

]

=
∑
t

Eq|x,φ
[
log aqt−1qt + logP (xt | qt, φ′)

]

=
∑
t,j

P (qt = j | x, φ)

[∑
i

P (qt−1 = i | x, φ) log aij + logP (xt | qt = j, φ′)

]
(A.4)

In the case of HMMs the “forward/backward” algorithm is an efficient algorithm for
computing P (qt = j | x, φ). The computational complexity is O(TNk), T the length
of the sequence, N the number of states, k = 2 for completely connected topologies,
k = 1 for causal topologies. The “forward/backward” algorithm is given by the
following recurrence relations

α1(j) = πjbj(xt) (A.5)

αt(j) =

[∑
i

αt(i)aij

]
bj(xt) (A.6)

βT (j) = 1 (A.7)

βt(j) =
∑
j

aijbj(xt+1)βt+1(j) (A.8)

from which γtj may be computed:

γtj =
αt(j)βt(j)

P (x | φ)
(A.9)

In the “maximization” step, we compute φ′ to increase Q. Taking the derivative

133

of equation A.4 and writing P (qt = j | x, φ) as γtj we arrive at:

∂Q

∂φ′ =
∑
t

∑
j

γtj

∂
∂φ′P (xt | qt = j, φ′)

P (xt | qt = j, φ′)
(A.10)

which we set to zero and solve for φ′.
For example, when bj(xt) is modeled as a single multivariate Gaussian φ =

{µj,Σj} we obtain the familiar Baum-Welch reestimation equations:

µj =

∑
t

γtjxt∑
t

γtj
(A.11)

Σj =

∑
t

γtj(xt − µj)(xt − µj)
T

∑
t

γtj
(A.12)

The reestimation equation for the transition probabilities aij are derived from the
derivative of Q and are included here for completeness:

ξt(i, j) = P (qt = i, qt+1 = j | x, φ)

=
αt(i)aijbj(xt)βt+1(j)

P (x | φ)
(A.13)

aij =

T−1∑
t

ξt(i, j)

T−1∑
t

γtj

(A.14)

134

Bibliography

[1] A. Azarbayejani and A. Pentland. Real-time self-calibrating stereo person track-
ing using 3-D shape estimation from blob features. In Proceedings of 13th ICPR,
Vienna, Austria, August 1996. IEEE Computer Society Press.

[2] Y. Bengio and P. Frasconi. An input output HMM architecture. In G. Tesauro,
M. D. S. Touretzky, and T. K. Leen, editors, Advances in neural information
processing systems 7, pages 427–434. MIT Press, 1995.

[3] C. M. Bishop. Neural networks for pattern recognition. Clarendon Press, Oxford,
1995.

[4] C. M. Bishop, M. Svensen, and C. K. I. Williams. EM optimization of latent-
variable density models. In M. C. Moser D. S. Touretzky and M. E. Hasselmo,
editors, Advances in neural information processing systems 8, pages 402–408.
MIT Press, 1996.

[5] M. Black and A. Jepson. A probabilistic framework for matching temporal tra-
jectories: Condensation-based recognition of gestures and expressions. In Proc.
European Conf. Comp. Vis., 1998.

[6] A. Blake and M. Isard. CONDENSATION - conditional density propagation for
visual tracking. Int. J. of Comp. Vis., 1998.

[7] A. Bobick and J. Davis. An appearance-based representation of action. In Int.
Conf. on Pattern Rec., volume 1, pages 307–312, August 1996.

[8] A. F. Bobick and A. D. Wilson. A state-based technique for the summarization
and recognition of gesture. Proc. Int. Conf. Comp. Vis., 1995.

[9] A. F. Bobick and A. D. Wilson. A state-based approach to the representation and
recognition of gesture. IEEE Trans. Patt. Analy. and Mach. Intell., 19(12):1325–
1337, 1997.

[10] M. Brand and A. Hertzmann. style machines. In Computer Graphics: SIG-
GRAPH Proceedings, 2000.

[11] C. Bregler. Learning and recognizing human dynamics in video sequences. In
Proc. Comp. Vis. and Pattern Rec., 1997.

135

[12] C. Bregler and S. M. Omohundro. Surface learning with applications to lipread-
ing. Advances in neural information processing systems 6, pages 43–50, 1994.

[13] L. Brieman. Statistics. Houghton Mifflin, Boston, 1973.

[14] L. W. Campbell, D. A. Becker, A. J. Azarbayejani, A. F. Bobick, and A. Pent-
land. Invariant features for 3-d gesture recognition. In Second International
Conference on Face and Gesture Recognition, pages 157–162, Killington VT,
1996.

[15] L. W. Campbell and A. F. Bobick. Recognition of human body motion using
phase space constraints. In Proc. Int. Conf. Comp. Vis., 1995.

[16] J. Cassell. A framework for gesture generation and interpretation. In R. Cipolla
and A. Pentland, editors, Computer vision in human-machine interaction. Cam-
bridge University Press, in press.

[17] J. Cassell and D. McNeill. Gesture and the poetics of prose. Poetics Today,
12(3):375–404, 1991.

[18] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelahter. Probabilistic
networks and expert systems. Springer Verlag, 1999.

[19] Y. Cui and J. Weng. Learning-based hand sign recognition. In Proc. of the Intl.
Workshop on Automatic Face- and Gesture-Recognition, Zurich, 1995.

[20] T. Darrell, P. Maes, B. Blumberg, and A. Pentland. A novel environment for sit-
uated vision and behavior. In Proc. of CVPR–94 Workshop for Visual Behaviors,
pages 68–72, Seattle, Washington, June 1994.

[21] T.J. Darrell and A.P. Pentland. Space-time gestures. Proc. Comp. Vis. and
Pattern Rec., pages 335–340, 1993.

[22] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. In Proceedings of the Royal Statistical Society, volume
B-39, pages 1–38, 1977.

[23] W. T. Freeman, D. B. Anderson, P. A. Beardsley, C. N. Dodge, M. Roth, C. D.
Weissman, W. S. Yerazunis, H. Kage, K. Kyuma, Y. Miyake, and K. Tanaka.
computer vision for interactive computer graphics. IEEE Computer Graphics
and Applications, 18(3), 1998.

[24] M.J.F. Gales. maximum likelihood linear transformations for HMM-based speech
recognition. CUED/F-INFENG Technial Report 291, Cambridge University En-
gineering Department, 1997.

[25] D. Gavrila. The visual analysis of human movement. Computer Vision and
Image Understanding, 73(1):82–98, 1999.

136

[26] Z. Ghahramani and M. Jordan. Factorial hidden markov models. Machine
Learning, 29:245–275, 1997.

[27] D. Heckerman. A tutorial on learning with Bayesian networks. MSR-TR-95-06,
Microsoft Research, 1996.

[28] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The Lumiere
project: bayesian user modeling for inferring the goals and needs of software
users. In Proceedings of teh Fourteenth Conference on Uncertainty in Artificial
Intelligence, 1998.

[29] M. Isard and A. Blake. ICONDENSATION: unifying low-level and high-level
tracking in a stochastic framework. In Proc. European Conf. Comp. Vis., pages
893–908, 1998.

[30] M. Isard and A. Blake. A mixed-state condensation tracker with automatic
model-switching. In Proc. Int. Conf. Comp. Vis., 1998.

[31] Y. Ivanov, B. Blumberg, and A. Pentland. Em for perceptual coding and re-
inforcement learning tasks. In Symposium on Intelligent Robotic Systems 2000,
pages 93–100, Reading, UK, 2000.

[32] Y. Ivanov and A. Bobick. Recognition of multi-agent interaction in video surveil-
lance. In Proc. Int. Conf. Comp. Vis., 1999.

[33] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3:79–87, 1991.

[34] F. V. Jensen. An introduction to Bayesian networks. Springer, New York, 1996.

[35] M. P. Johnson, A. Wilson, B. Blumberg, C. Kline, and A. Bobick. Sympathetic
interfaces: using a plush toy to direct synthetic classes. In SIGCHI’99, pages
152–158, Pittsburgh, 1999. ACM press.

[36] N. Jojic and B. Frey. Topographic transformation as a discrete latent variable.
In T. Lean S. Solla and K. Muller, editors, Advances in Neural Information
Processing Systems 12. MIT Press, 2000.

[37] N. Jojic, N. Pretrovic, B. Frey, and T. Huang. Transformed hidden Markov mod-
els: estimating mixture models of images and inferring spatial transformations
in video sequences. In Proc. Comp. Vis. and Pattern Rec., 2000.

[38] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to varia-
tional methods for graphical models. In M. Jordan, editor, Learning in graphical
models. Kluwer Academic Press, 1998.

[39] M. I. Jordan. AAAI tutorial: graphical models and variational approximation.
In AAAI, 1998.

137

[40] R.E. Kahn and M.J. Swain. Understanding people pointing: The Perseus system.
In Proc. IEEE Int’l. Symp. on Comp. Vis., pages 569–574, Coral Gables, Florida,
November 1995.

[41] A. Kendon. How gestures can become like words. In F. Poyatos, editor, Cross-
cultural perspectives in nonverbal communication, New York, 1988. C.J. Hogrefe.

[42] J. Lasseter. Luxo jr. 1986.

[43] J. Lasseter. principles of traditional animation applied to 3D computer anima-
tion. In Computer Graphics: SIGGRAPH Proceedings, 1997.

[44] S. Lauritzen. Graphical Models. Oxford, 1996.

[45] S. Lauritzen and N. Wermuth. Graphical models for associations between vari-
ables, some of which are qualitative and some quantitative. Annals of Statistics,
15, 1989.

[46] G. J. McLachlan and T. Krishnan. The EM algorithm and extensions. Wiley,
New York, 1997.

[47] D. McNeill. Hand and Mind: What Gestures Reveal About Thought. Univ. of
Chicago Press, Chicago, 1992.

[48] D. Moore, I. Essa, and M. Hayes III. Exploiting human actions and object
context for recognition tasks. In Proc. Comp. Vis. and Pattern Rec., 1999.

[49] H. Murase and S. Nayar. Visual learning and recognition of 3-D objects from
appearance. Int. J. of Comp. Vis., 14:5–24, 1995.

[50] K. Murphy. Fitting a constrained conditional gaussian distribution. U.c. berkeley
technical report, University of California at Berkeley, 1998.

[51] K. Murphy. Inference and learning in hybrid Bayesian networks. U.c. berkeley
technical report csd-98-990, University of California at Berkeley, 1998.

[52] R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental,
sparse and other variants. In M. Jordan, editor, Learning in graphical models.
Kluwer Academic Press, 1998.

[53] D. A. Norman. The invisible computer: why good products can fail, the personal
computer is so complex, and information appliances are the solution. MIT Press,
Cambridge, Massachusetts, 1998.

[54] N. Oliver, S. Pentland, and F. Berard. A real-time lips and face tracker with
facial expression recognition. Proc. Comp. Vis. and Pattern Rec., 1997.

[55] S. M. Omohundro. Family discovery. In D. S. Touretzky, M. C. Moser, and M. E.
Hasselmo, editors, Advances in neural information processing systems 8, pages
402–408. MIT Press, 1996.

138

[56] V. Pavlovic, J. Rehg, T. Cham, and K. Murphy. A dynamic Bayesian network
approach to figure tracking using learned dynamic models. In Proc. Int. Conf.
Comp. Vis., 1999.

[57] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann, 1988.

[58] A. Pentland and A. Liu. Towards augmented control systems. In IEEE Intelligent
Vehicles 95, pages 350–355, 1995.

[59] H. Poizner, E. S. Klima, U. Bellugi, and R. B. Livingston. Motion anal-
ysis of grammatical processes in a visual-gestural language. In ACM SIG-
GRAPH/SIGART Interdisciplinary Workshop, Motion: Representation and
Perception, pages 148–171, Toronto, April 1983.

[60] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
recipes in C. Cambridge University Press, Cambridge, 1991.

[61] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. of the IEEE, 77(2):257–285, February 1989.

[62] L. R. Rabiner and B. H. Juang. An introduction to hidden Markov models.
IEEE ASSP Magazine, pages 4–16, January 1986.

[63] L. R. Rabiner and B. H. Juang. Fundamentals of speech recognition. Prentice
Hall, Englewood Cliffs, 1993.

[64] J. Schlenzig, E. Hunter, and R. Jain. Vision based hand gesture interpretation
using recursive estimation. In Proc. of the Twenty-Eighth Asilomar Conf. on
Signals, Systems and Comp., October 1994.

[65] P. Smyth, D. Heckerman, and M. Jordan. Probabalistic independence networks
for hidden Markov probability models. Neural Computation, 9(2), 1997.

[66] T. E. Starner and A. Pentland. Visual recognition of American Sign Language
using hidden Markov models. In Proc. of the Intl. Workshop on Automatic Face-
and Gesture-Recognition, Zurich, 1995.

[67] R. S. Sutton and A. G. Barto. reinforcement learning: an introduction. MIT
Press, 1998.

[68] J. Tenenbaum and W. Freeman. Separating style and content. In Advances in
neural information processing systems 9, 1997.

[69] F. Thomas and O. Johnston. Disney animation: the illusion of life. Abbeville
Press, New York, 1981.

[70] K. Tuite. The production of gesture. Semiotica, 93-1/2:83–105, 1993.

139

[71] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3(1):71–86, 1991.

[72] A. Wilson and A. Bobick. Parametric hidden Markov models for gesture recog-
nition. IEEE Trans. Patt. Analy. and Mach. Intell., 21(9):884–900, 1999.

[73] A. D. Wilson. Luxomatic: Computer vision for puppeteering. MIT Media Lab
Perceptual Computing Group Technical Report 512, Massachusetts Institute of
Technology, 1999. Available at http://www-white.media.mit.edu/vismod.

[74] A. D. Wilson and A. F. Bobick. Learning visual behavior for gesture analysis. In
Proc. IEEE Int’l. Symp. on Comp. Vis., Coral Gables, Florida, November 1995.

[75] A. D. Wilson and A. F. Bobick. Nonlinear PHMMs for the interpretation of
parameterized gesture. Proc. Comp. Vis. and Pattern Rec., 1998.

[76] A. D. Wilson and A. F. Bobick. Recognition and interpretation of parametric
gesture. Proc. Int. Conf. Comp. Vis., pages 329–336, 1998.

[77] A. D. Wilson and A. F. Bobick. Realtime online adaptive gesture recognition.
In International Workshop on Recognition, Analysis, and Tracking of Faces and
Gestures in Real-Time Systems, 1999.

[78] A. D. Wilson and A. F. Bobick. Realtime online adaptive gesture recognition.
In Int. Conf. on Pattern Rec., 2000.

[79] A. D. Wilson, A. F. Bobick, and J. Cassell. Recovering the temporal structure
of natural gesture. In Second International Conference on Face and Gesture
Recognition, pages 66–71, Killington VT, 1996.

[80] A. D. Wilson, A. F. Bobick, and J. Cassell. Temporal classification of natural
gesture and application to video coding. Proc. Comp. Vis. and Pattern Rec.,
pages 948–954, 1997.

[81] A. D. Wilson and A.F. Bobick. Using hidden Markov models to model and
recognize gesture under variation. International Journal on Pattern Recognition
and Artificial Intelligence Special Issue on Hidden Markov Models in Computer
Vision, in press.

[82] C. Wren and A. P. Pentland. Dynaman: recursive modeling of human motion.
Image and Vision Computing, to appear.

[83] Y. Yacoob and M. J. Black. Parameterized modeling and recognition of activities.
Computer Vision and Image Understanding, 73(2):232–247, 1999.

[84] J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-sequential
images using hidden Markov model. Proc. Comp. Vis. and Pattern Rec., pages
379–385, 1992.

140

