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ABSTRACT

A complex stochastic process involving human behaviorsuardn group behaviors is computationally
hard to model with a hidden Markov process. This is becausesttite space of such behaviors is often a
Cartesian product of a large number of constituent prolbatsipaces, and is exponentially large. A sam-
ple for those stochastic processes is hormally composedanf@ collection of heterogeneous constituent
samples. How to combine those heterogeneous constituaplesin a consistent and stable way is another
difficulty for the hidden Markov process modeling. A latetrusture influence process models human be-
haviors and human group behaviors by emulating the work e&mtof experts. In such a team, each expert
concentrates on one constituent probability space, iigast one type of constituent samples, and/or em-
ploy one type of technique. An expert improves his work bysigdering theresultsfrom the other experts,
instead of theaw datafor them. Compared with the hidden Markov process, the tauocture influence
process is more expressive, more stable to outliers, asdikedy to overfit. It can be used to study the
interaction of over 100 persons and get good results.

This thesis is organized in the following way. Chapter Oeexd the notation and the background concepts
necessary to develop this thesis. Chapter 1 describestthi#an behind the latent structure influence
process and the situations where it outperforms the othsardic models. In Chapter 2, we give inference
algorithms based on two different interpretations of tHuence model. Chapter 3 applies the influence
algorithms to various toy data sets and real-world data $étshope our demonstrations of the influence
modeling could serve as templates for the readers to dewdtap applications. In Chapter 4, we conclude
with the rationale and other considerations for influencelahag.
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Chapter 0

Notation and Preliminaries

In this chapter, we collect together the concepts involvetthis thesis, as well as the notation. This chapter
proceeds in the following order. We first define probabilipase, random variable, random vector, and
stochastic process. Then we review Markov chain, hidderkaprocess, and the inference algorithms
of a hidden Markov process. This is followed by a discussibih@ computational time complexity of the
coupled hidden Markov process, and other complex latenablar dynamic processes. We will describe
briefly how the latent structure influence model copes wiik ttme complexity issue by mapping the
original large number of “concepts” into only a few conceptsle preserving most information.

A probability space (2, F, P) is a measure space with total measure dpgX) = 1). The first term
of this 3-tuple,2, is a nonempty set, whose elements are calledtlieomes (or states) of nature The
second term of this 3-tupld?, is a subset of the power set@f(F C 2) and forms ar-algebra. The seff
is called a set oévents(c-algebra ovef). The 2-tuple(2, F') forms a measurable space. The third term
of this 3-tuple,P : F' — [0, 1], is aprobability measure of the measurable spa¢@, F).

A random variable X is a measurable function from a probability sp@aePr) to some measurable
spaceR, normally a subset of real numbers or integers with Beralgebra £ : Q@ — R). A function of a
random variable X is a measurable functiofi: X — Y. Since the composition of measurable functions
is a measurable function, a function of a random variabledastaer random variable. A random variable can
be characterized by itsumulative distribution function Fx(z) = P(X < z), or its probability density
function (or pdf) p(z) = a%FX(:c). A discrete random variable can also be characterized lpydtsability
mass function (or pmf) fx(z) = P(X = z). The cumulative distribution function, probability detysi
function, and the probability mass function are inducednfriie probability measur@r of the original
probability spacé(, Pr).

A random vector (or a multivariate random variable) is a vector of scalar random variablas =
(X1, X9, - X3).

Example 1. Let us consider the outcome of one flip of a coin. The outcomeegither heads or tails
(@ = {H,T}). The set of events are (1) neither heads nor tails, (2) he@lgails, and (4) heads or tails
(F ={{},{H},{T},{H,T}}). Thetuple{Q?, F'} forms a measurable space, since (1) the empty/}sistin
F, (2) for any set¥ in F', its complement’\ ' is also inF', and (3) the union of countably many setdiis
also inF'. We can define a probability measuraas the following, (1) the probability of getting neither ksa
or tails is zero P({}) = 0), (2) the probability of getting heads is 0.R({ H}) = 0.5), (3) the probability
of getting tails is 0.5P({7T"}) = 0.5, and (4) the probability of getting heads or tails isR({{ H,T}) = 1).
The functionP is a measure since (1) the empty set has measure 2¢kg | = 0), and (2) the measure
of the union of a countable number of pairwise disjoint eséathe sum of the measure of the individual
events P({} U{H}) = P({}) + P({H}).P({} U{T}) = P{}) + P{T}).P{} U{H,T}) = P({}) +
P({H,T}),P({H}U{T}) = P({H})+P({T}), andP({,U{H}U{T}) = P({})+P({H})+P({T})).

15



16 CHAPTER 0. NOTATION AND PRELIMINARIES

The functionP is a probability measure sincB(Q2) = P({H,T}) = 1.

We define a random variabl& over the probability space of the outcome of one flip of a c@n a
the following. The random variabl& can be either zero or one. Thealgebra defined ovelX is
{{},{0},{1},{0,1}}. The tuple{{0,1},{{},{0},{1},{0,1}} forms a measurable set. The function from
the probability space of one flip of a coin to the measurabesp{0, 1}, {{}, {0}, {1},{0,1}} is defined
as the following: X (H) =0, X(T) =1, X({}) = {},X{H}) = {0},X({T}) = {1},and X ({H,T}) =
{0,1}. The functionX is a measurable function since the pre-image of every ewvetite o-algebra of
{0,1} is ac-algebra of{ H, T'}. The random variableX can be characterized by its cumulative probability

0 <0
functionFx (z) =< .5 0 <z < 1 ,probability density functiopx (z) = .56(x — 0) + .56(z — 1) (where
1 1<z

5 2=0,1

0 otherwise

J is the Dirac delta function), or probability mass functigg (0) = { . We can also define a

random vectorX = (X1, X9, X3) of the outcome of three flips of a coin.

A stochastic procesgor arandom proces$ { X;} can be regarded as an indexed collection of random
variables. Formally speaking, a stochastic process isgorarfunctionX : I — D, which maps arindex
i € I taken from thendex set/, to arandom variable X; € D defined over a probability spa¢e, P).

A stochastic process discretewhen its index set is discrete. A stochastic proceseiminuouswhen its
index set is continuous.

In most common applications, the index $a$ a time interval or a region of space, and the correspond-
ing index is either a time or a location. When the index &t a time interval, the stochastic process is
called atime series When the index sef is a region of space, the stochastic process is callegh@om
field.

A particular stochastic process can be characterized byothiedistributions of its random variables
PX[i] X[ia]--X[in] (X [11] X [i2] - - - X[in]) corresponding to the indicés, iz, - - - in € I for all natural num-
bersN. A time series istationary if its distribution does not change with time

PX[i]-X[in] (X[01] - X[iN]) = DXy r)X[in+r] (X0 + 7] X[in + 7])

A discrete-time Markov process(or Markov chain) is a discrete stochastic proceg¥,, } with the
Markov property , i.e., the probability distribution of the futustate X, is independent of the past states
X;,i < n given the present stafg,,,

P(Xn-l—l‘XO"'Xt) = P(Xn-i-l‘Xn)

. A Markov chain can be characterized by its initial probiépidlistribution P(X;) and its one-stegran-
sition probability P(X,+1]/X,). The k-step transition probability of a Markov chain can lenputed
as

Pt Xa) = [ Pl Xoneiot) Pt X)X+ Xt
. The marginal distributior(X,,) of a Markov chain can be expressed as
P(X,) = / P(X1)P(X0 | X1)dX,

. If there exists a probability distribution such thatr = [ P(X,,41|X,)7dX,,, then the distributiorr is
called astationary distribution of the Markov chain{ X,,} and corresponds to eigenvalue 1. The ones-
step transition probability of a Markov chain with finite nbar of states can be expressed asaasition
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matrix (P; ;) = (P(Xn4+1 = j|X, = )). This matrix is aMarkov matrix since its rows sum up to one,

A hidden Markov process{(X,,Y,,)} is composed of two stochastic processgk;, }, and{Y,,}. The
latent state process{ X, } is a Markov chain with finite number of states. It is parameégt by theinitial
probability distribution

T = (P(Xlzl) P(X1:M)) @
, and thestate transition matrix

P(Xpi1 =1Xp=1) -+ P(Xpe1=M|X,=1)
A = 5 ; e
P(Xpi1 =1Xp=M) - P(Xpy1 = M|X, = M)

. Theobservation process{Y,,} is coupled with the latent state process through a memargleannel. In
other words, the probability distribution af, is independent ofX,,,, m # n given X,,, P(Y,{X,}) =
P(Y,|X,). The types observation of our interest are finite alphabatjsGian, and mixture of Gaussians.
When the observation is finite alphabet, it can be paranzettly arobservation matrix

PY,=1X,=1) -+ P{Y,=N|X,=1)
0 = z ; (3)
P(Y,=1X,=M) - P(Y,=N|X,=M)

When the observation is Gaussian, it can be parameterizédebsneans and variances corresponding to
individual latent states

0 = {P(Yn’Xn = 1) :N(Ynhulaa%)a o P(Yn‘Xn = M) :N(Yn§ﬂM70]2\4)} (4)

When the observation is mixture of Gaussians, it can be peterined by the means and variances corre-
sponding to individual latent state — mixture identifierrpai

P(Yp|Xp=1,7=1) - P(Yu|Xy=17=0C)
0 = 5 s
P(Yp|Xp=M,7=1) - P(Yp|X,=M,71=0C)
NYn; i 0t) - N(Yas e, oic)
— : : (5)
N(YnQ,UMbUJijl) N(YnQNMCaU]Z\/[(j)

The usage of hidden Markov processes often involves theWolly problems. (1) Given an observation
sequence of an HMM, as well as the corresponding latentstgigence, find out the characterization of this
HMM. (2) Given the characterization of the latent state psscof an HMM {7, A}) and an observation
sequence generated by this HMNIY{, }), infer the corresponding latent state distributid®&X,,|{Y.,}).

(3) Given an observation sequence generated by an HMM, fmbeakt parameters (in the maximum like-
lihood estimation sense) that accounts for the obsenatsmguence, and the corresponding latent state
distributions.

Given an HMM parameterized kyr, A, #) and a realization of this HMM™, the maximum likelihood
latent state distribution can be estimated usingftiheard-backward algorithm in terms of theforward
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parameters o (s), and thebackward parameters 3;(s). The statistics involved are:

a(st) = P(st,y1yt)
Bi(st) = P(yit1-- yTISt)
Ye(st) = P(st;y1--yr)
§iotr1(5e,85041) = P(seSt41,y1-- Y1)

The iteration is given as the following:

ai(s1) = 7 P(yils1) (6)
M
as1(s) = Y a1(sio1) - as,_ys, - Pyelse) (7)
St71:1
pr(st) = 1 (8)
Bi<r(st) = Z aStStJrl/Bt-'rl(st-'rl) - P(yt+1]8t+1) 9)
St+1:1
Ye(se) = Oét(St) '5t(3t) (10)
(st 5041) = D au(se) - B (se01) - P |sesn) (11)
The maximum latent state assignment can be computed ugngténbi algorithm
01(s1) = w1 P(yils1)
YPi1(s1) = s1
0¢(st) = rﬁ%i(at—l(st—l) : P(St‘st—l) 'P(yt‘st)
Yir(st) = argmaxg, 0r—1(st—1) - P(stst—1) - P(yt|st)
path(T) = argmax, or(sr)
path(t <T) = 1(path(t+1))

Given the observationgy;), ., the maximum likelihood estimation of the parameters, abagethe
corresponding latent stat(aﬁt)lgtg can be computed via tHeM algorithm . The EM algorithm works by
alternating between two steps:

E-step inference of latent state distributions from the paranseterd the observations. The statistics to

be inferred arev; (s¢;m, A, p(yelst)), Br (se;m, A, p(ytlst)), v (se; 7, A, p(ytst)), §t—t+1. We use
Equations 6-11 to infer the latent state distributions.

M-step maximization of theexpected log likelihoodE,,_,_, (1og ((y)i<ier | (st)1<icr ) ) with the
latent states inferred in the previous E-step and the oatens.

The parameters related to the latent states are maximizéd iollowing way:

Ts = 71(3)
A = S ft—>t+1(i J)
ij =
Zt 1 %()

The parameters related to finite observations are maxinmziee following way:

Zt 1 7¢(8) - 6(yt, y)
Zt:l Ye(s)

Pyls) =
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where
. 1 2=3
6(i,j) = o
0 i#j
is the Kronecker delta function. The parameters relateddasGian observations are maximized in the
following way:

T .
i, = thl Y(8) - i
s = T
> i=1 7t(8)
T —
N D1 1(8) Y oo T
S i T - /’LS : :us

whereji, andjj; are column vectorsA™ means the transpose of mattix

We often formulate the EM algorithm in matrix form, since w@zed formulas are computationally
more efficient in Matlab or S/S+. Sometimes vectorized fdaslare easier to understand. When we
formulate the statistics in matrix form,

dy = ( ar(sg=1) -+ sy =M) )
5t(3t =1)
gt = :
5t(3t = M)
o= (wlse=1) -+ qlss=M))
P(yisy = 1)
0, =
P(yi|sy = M)
T
diagl( 1 -+ am )] 2
M

the forward-backward algorithm can be expressed as thanilfy matrix form:

ap = 7w-th
g1 = a1+ A0
Br =1
Gier = A0 fin
% = d - diag[f]
&—ty1 = diagldy] - A-diag[fyq - 5t+1]

The joint latent state inference and parameter estimasioimally computed by thEM algorithm .
The parameter maximization step proceeds in the followiag.Wrhe parameters involved with the latent
states can be computed as the following

T

A = normalize[Z&_l_,t]
=2

7 = normalize[¥]
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The parameters related to finite observations can be naastil using the following formulas:

p(75) = normalize[y 47-4,]
t

The parameters related to Gaussian observations can kémated using the following formulas:

PR o
Zt 1mc><1 : ,.—);;I‘
Y. — Zt'Vt(Z)gtg;fr - =T
T = T i - g
>t Lmex1 -y
Example 2. The speaking/non-speaking status of a person can be maakekeldidden Markov process. The
latent states are whether this person is currently uttearggntence. The observations are the indicators of
vowel utterances.

In the below, we train the HMM-based speaking/non-speagliagsifier with the audio clip “well, happy
birthday, Juan Carlos”. Afterwards, we apply the trained agebto the same audio clip, and find the latent
state distributions conditioned on the observations, al assthe most likely latent state sequence (the
Viterbi path).

The training clip looks like this:

[s,f,t]=spectrogranmaud, 256, 128,[], 8000);

Figure 1: The spectrogram of a training clip

The latent states are hand labeled in the following way:

stairs(s);

well h ae p i b ir thday W an k ar | o =

Figure 2: The features for the training clip
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The features(i.e., the observations of the hidden Markov process) wéames like this:

feat = fast_voicing_features(aud, 256, 128, sun(aud. ~2)/1 engt h(aud)/5);

=
I
[}
o
<]
(8} —
g
>
@
x
@
S
well h ae pi b ir thday wan k arlo s
well h ae pi b ir thday wan k arlo s

5 rTrT T T 71T T T TTT T 1T T 17T T
>
Q.
S _
IS
a’ —
g
3]
[} -
o
[%2)

3 I I I S N S N S | I I I N |

well h ae pi b ir thday wan k arlo s

Figure 3: The features for the training clip

We proceed to train a hidden Markov model with mixture of Gauss observations. The reason why we
use a hidden Markov model is that there are two discrete statéhe system: speaking, and non-speaking.
Each of these two states moves to the next state with a ediatiwariant transition probability. The reason
why we use mixture of Gaussians model to fit the observatignghe audio features) is that one Gaussian
is not powerful enough to fit the features well.

The parameters corresponding to the latent states are tiresition matrixA, and the initial sate dis-
tribution 7. The initial state distributionr only affects the log likelihood slightly, and we normallyeus
the eigenvector corresponding to eigenvalue 1 of the statesition matrixA. Since the latent states are
already given asS; = s, the one-slice parameterg (i) and the two-slice parametets_.;1(4,j) can be
solved directly from the latent state assignment:

"}/t(Z) = (5(St,i)
§iotr1(i,5) = O(st,9) - 6(S¢41,7)

>> A = full (sparse(s(1:end-1),s(2:end),ones(length(s)-1,1)));

1A discussion of the three features can be found in Basu [1]
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>> A(1,2) = 1; %hack! add a transition from non-speaki ng to speaki ng
>> A = diag(l./sun(A 2)) A
>> di sp(A)

0. 9999 0. 0001

0. 0001 0. 9999

The parameters related to the observations are the mixtiiog pnd the means and covariance matrices
for the various Gaussian distributions. Suppose we use mmirf/ Gaussian distributions to capture the
observationg, corresponding to state, and the means and covariance matrices @reandy;; for thei-th
Gaussian distribution in the mixture. Then the probabitignsity of an observatiol; = y; conditioned
on a latent stateS; = s; equals to the weighted sum of the probability densities &fous Gaussian
distribution components. The weights are the prior probaés that the observationy; is taken from the
i-the Gaussian distribution:

P(Yt = yt|St = St) = ZN(%;M, Ei) 'P(Mt = i|5t = St)

The mixture priors and the various Gaussian distributiorrgoaeters are computed using the EM algo-
rithm?. The reason why the likelihoods decrease is that two migtare more than what we need for this
training clip. As a result, one component Gaussian distidu for each of the two latent states cannot
capture enough observations.

>> featl = feat(:,s(1:128:128+si ze(feat, 2))==1);
>> [mul, signmal, priorl] = m xgauss_en(featl,2,’ cov_type , diag );
**xx*x*xx| | kel i hood decreased from 6. 4552 to 3. 8445!
>> feat2 = feat(:,s(1:128:128+si ze(feat, 2))==2);
>> [mu2, sigma2, prior2] = mxgauss_en(feat2,2,’ cov_type ,’diag );
*+xxx*xx| j kel i hood decreased from 2. 2061 to 2.2042!

Thus, the trained parameters for the HMM-based speakimgépeaking classifier are

A - 19999 .0001
N .0001 .9999

T = (.5 .5)

1090 0105
PY,=ylSi=1) = N |ym=|[ 206727 | % = 1.6374
4.7067 0104

2551 0105
PY,=y|S=2) = .0862-N [y;u= | 201436 |, = 1.6374 +
4.4968 0104

.6590 .0180
9138 N | y;p1 = 9.2836 |,%; = 38.0866
3.9553 .0224

Let us apply the trained HMM to the same features and find @ulatent state probability distributions
conditioned on the given observation sequence. We firsttoded! out the observation likelihood3(Y; =
y¢|St), i.e., the probabilities of the observatioli's = y; conditioned on the latent statés = 1 and S; = 2.

2The Matlab functions mixguass_em.m, mixgauss_prob.mb&ek.m, and viterbi_path.m was written by Murphy [2].
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Bx = m xgauss_prob(feat, mul, sigml);
By = m xgauss_prob(feat, mu2, si gma2);
plot ([priorl =Bx;prior2 *=By]’)

The observation likelihoods are plotted as the following:
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Figure 4: The features for the training clip

The forward parameters; (s;), backward parameters; (s;), one-slice parameterg (s;), and two-slice
parameterst;_.;+1(st, st+1) can be computed from, A, P(Y = y,|S;) in the following way:

[ al pha, beta, gamma] = fwdback([.5 .5], [.9999 .0001;.0001 .9999],...
[priorl =Bx;prior2 =By]);
obslik = [priorl *=Bx;prior2 *By];
for i=1:size(al pha,2)-1
Xi (:,:,i) =[.9999 .0001;.0001 .9999].«*...
(al pha(:,i)*(beta(:,i).*obslik(:,i))");
Xi (o) =xi(o,, 1) sum(sum(xi(:,:,1)));

end

The one-slice parameters are plotted as the following
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Figure 5: The features for the training clip

The Viterbi path can be computed in the following way:

obslik = [priorl *=Bx;prior2 *By];
path = viterbi _path([.5 .5],[.9999 .0001;.0001 .9999], obslik);

An interesting theoretical issue with the hidden Markov eldd about its representability. In other
words, what kinds of applications are suitable for hidderrkda modeling; What type of statistical charac-
teristics is captured by a hidden Markov model; If an appiicais suitable for hidden Markov modeling,
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how many latent states are needed (the appropriate ordee aiddeling hidden Markov process); If an ap-

plication is suitable for hidden Markov modeling, and if wavk the correct number of latent states, are we
guaranteed to compute the correct model when the lengtreafample sequence tends to infinity. Accord-

ing to the understanding of the author, although there amyriaeoretical answers to the above questions
for Wiener filter / Kalman filters, only a few things are knowar hidden Markov models.

Intuitively, the hidden Markov model is suitable for symisally controlled processes. Examples of
such processes are: computer programs, a worker followiisty@t instructions, a diary of a human’s daily
life, an utterance of a sentence. Although those processepresent themselves as real vector sequences
(Xt)1<t<+00, WhereX € R, they are actually controlled by a discrete number of “stagad the proce-
dure to follow from one state to another state. The statethébabove example processes are: the variables
in computer programs, the different situations on a word, site schedule of a person, and the words in the
language. The procedures to follow for the above examplegsises are: the control structures in computer
programs, a description of what to do in different situagi@md what new situations to expect, the arrange-
ment of the schedule, and the grammar of the language. Siaog human activities and human society
activities operate on the natural language, which is symlbyl nature, we would expect many applications
of the hidden Markov process in those areas.

For a symbolically controlled process, it is a good practicevestigate the data, and compare the intu-
itively figured out control structure with the computed aohstructure based on hidden Markov modeling.
For a simple symbolically controlled process, a human camatly understand the “control” of this process
by observing it, via the Occam’s razor principle (entitieewld not be multiplied beyond necessity). For a
complex symbolically controlled process, a human can niyrfiad out ways to approximately understand
the control of this process by observing it. The computedrobstructures of those processes, based on the
maximum likelihood principle, normally resemble the ititegly figured out control structures.

Ephraim [3] reviewed the history, theory, algorithms of tidden Markov process, as well as the ex-
tensions of the original finite-state finite-alphabet hiudéarkov process. In this review, the extended
models were applied to speech recognition, communicatieary, signal processing in audio, biomedical,
and image, fault detection, economics, and meteorologgp€#4] reviewed the applications of the hidden
Markov process from year 1989 to year 2000 in the followingdfewith about 360 references: acoustics,
biosciences, climatology, control, communications, eroetrics, handwriting and text recognition, image
processing and computer vision, signal processing, spg@dessing, and misc applications. The two re-
views give a comprehensive idea of what a hidden Markov misdelnd what a hidden Markov model is
for.

Baum [5] proved the convergence of the maximum likelihood.Marameter estimation from an ob-
servation sequence of a hidden Markov process to the traeneders of the hidden Markov process, when
the length of the observation sequence tends to infinitynBpl also gave the (iterative) expectation max-
imization (EM) algorithm for estimating the parameters dfidden Markov process from an observation
sequence. The EM algorithm will attain a local maximum wHhssniumber of iterations tends to infinity.
However, it should be noted that the convergence of the EMridtgn to the true parameters of the hidden
Markov model is not guaranteed, even when the length of teerehtion sequence tends to infinity.

Anderson [7] gave a set of sufficient conditions for a finii@tes finite-alphabet hidden Markov process
to be realizable, and derived a constructive solution tad¢adization problem under those conditions. The
problem under the discussion of [7] was: for a unknown hiddankov process with finite number of states
and finite number of observation symbols, under what camustican we reconstruct this hidden Markov
model from the probabilities of all finite-length outputisgs generated by it. The set of sufficient conditions
given in [7] are: 1) The unknown hidden Markov processinse-invariant i.e., its parameters does not
change with time. 2) The state transition matrix of this umkn hidden Markov model isreduciblg i.e.,
all states of this unknown hidden Markov matrix can still bgited with a probability greater than some
positive constant after an infinite time. 3) The observasequences of the unknown hidden Markov process
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arelong term independente.,lim, 4 _,, P(uwv) = p(u)p(v). 4) The observation sequences tend to

be independent exponentially fast with their distaregonential forgetting i.e., p;m;’;) ~1—0(e .
In 3) and 4)u, v, w are consecutive observation sequencesaocturs earlier.
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Chapter 1

Introduction

The dynamics of a human related behavior normally involvéarge probability space with sparsely dis-
tributed states. The latent structure influence processtefély compresses the state spaces of such behav-
iors and finds out the clusters by emulating the interactiba group of humans/agents. When the latent
structure influence process is applied to non-human-ekEtehastic processes as a team-of-experts model,
there are pros and cons on whether a team of experts outiparép single expert. In this chapter, we de-
scribe several data sets of either human behaviors or hunoaip ¢pehaviors, and illustrate their large and
highly clustered state spaces. We also discuss the prosoas€theteam of expertapproach to general
stochastic processes. We conclude this Chapter with a fatgfaition of the latent structure influence
process.

1.1 The Stochastic Processes of Human Behaviors

The stochastic processes under discussion in this thesielated to human behaviors involving multiple
categories of concepts, or human group behaviors. Thoserioet have the following two properties. First,
they normally involve large probability spaces, with spéydistributed states. Second, the behaviors do
not change rapidly with time.

For the first property of human-related behaviors, a belhasioften encoded by an-tuple. Each
position of thisn-tuple takes one of a finite number of states, and represesiib-behavior. As a result
of the encoding, the size of a behavior space is the multifitin of the sizes of its sub-behavior spaces.
The sub-behaviors are highly clustered, since they combitie each other in a very limited number of
ways. As a result, the behaviors can actually take a verydiomumber of states. For example, a human
group behavior can be encoded &s:s in his office while B is in his apartmeniThe behaviors of the
individuals (i.e., the sub-behaviors of a group behavi@a) @ principle combine freely to form group
behaviors. However, a human group normally shows sometstajand some group behaviors appear very
rarely. In this example, it is very likely that most people & their offices during the work hours, and in
their apartments in the midnights. For another examplenaambehavior can be encoded bam sitting in
the restaurant, eating, and it is noisy around.nmiéne locations, actions, and speaking/non-speakingsstatu
of a person can in principle combine freely for form humanadwétrs. But some combinations appear much
more frequently than other combinations.

For the second property, the human-related behaviors soesatooth/continuous in the sense that the
knowledge of the behavior of a stochastic process attipnevides information in predicting the behavior of
the stochastic process at time /At for a smallAt. In addition, the smaller th&t is, the more information
we have for predicting the behavioriat At. For examplegiven that A is in his office, A is very likely to
remain in his office one minute later, and A is even more litelye in his office one second later
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Of the two properties of human-related behaviors, the shmests property can be exploited to denoise
the observation sequences and to gain a better undergganidihe behavior sequences we are modeling.
The large probabilistic state space for describing thevaelsis unfavorable, since modeling a large number
of states often requires a large number of parameters, anolis@n overfitting. We can effectively compress
the large probabilistic state space by exploiting the faet bnly a few states appear often. The latent
structure influence process explores the smoothness propéithe same time, it overcomes the difficulty
of overfitting by studying how the probability distributisrof constituent behaviors (e.é is in his office
B is in his office | am in the restaurantl am sitting at a sample time linearly combine to predict the
probability distributions of them at sample timie+ 1, and how to update the probability distributions
of the constituent behaviors individually according toithiespective observations. When the probability
distributions of the constituent behaviors are not lineadlated, we adopt the feature trick to map the
old collection of constituent behaviors to a new collectafnconstituent behaviors with linearly related
probability distributions, and work on the new collectidiconstituent behaviors.

One such stochastic process is the cellphone usage datatedlin the Reality Mining project. In this
project, Eagle and Pentland [8] recorded the cellphoneassafj81 participants from the MIT community
for over nine months. The recording includes the partidigiacellphone communications, their proximity
information, their locations, and their activities. Thégees of information are indicated by the participants’
voice/SMS conversations, cellphone Bluetooth scanniaigiawver usages, and cellphone on/off status. This
data set provides the ground truth to reconstruct the [gaatits’ activities and communications, as well as
to answer questions such as, what are the participantsiomta how their relations change over time, and
how the participants’ relations and their individual bebeas influence each other.

A dynamic modeling of such data sets answering the aboveigns$nvolves a complex behavior space
in nature: Suppose our interest is in the interaction dyoaraf the participants’ schedules, and we assign
only two latent states (out-of-office/in-office) to eachtm@pant in our analysis. Since the participants’
states can combine freely with each other, we will end up @ithnumber of states for the whole system,
and this number of states is intractable. A dynamic modelcogre with this large probability space by au-
tomatically factoring th&1 participants into several clusters, and placing the pearsoth similar schedules
into the same cluster. As a result, any two different clgstege almost unrelated, and they can be studies
independently. Each cluster requires only two latent stated it can be studied easily.

The data set is also noisy, and the noises can be filtered oexgigiting the smoothness property of
human-related behaviors. Examples of such noises arer aniggat run out of his flash memory/battery and
cause data loss, he might leave his cellphone in his office¢hibius the cellphone recording no longer re-
flects his behaviors, the Bluetooth device might fail to rdqaroximity information, or record the proximity
of people at the other side of certain types of walls. Thusrethic algorithm considering the participants’
past behaviors and the participants’ relations with eablbrowill definitely remove certain types of noises
and result in better performance.

The data sets collected by the Life-Wear system [9] provituslaer example of the complex stochastic
process involved with human behaviors. In a Life-Wear systgata is collected in real-time from several
accelerometers, microphones, cameras, and a GPS, ahetdtéo different parts of a soldiers’ clothing.
Inference of soldier state is made in real-time, and datanaatically shared among different soldiers wear-
ing the Life-Wear systems based on the pattern of activipwshamong the group of soldiers. In an early
Life-Wear system [10], we were required to infer 8 locatigaffice, home, outdoors, indoors, restaurant,
car, street, and shop) , 6 speaking/non-speaking statuspéeeh, I-speaking, other-speaker, distant voices,
loud crowd, and laughter), 7 postures (unknown, lie, sitndf walk, run, and bike), and 8 events (no-event,
eating, typing, shaking-hands, clapping-hands, drivbrgshing teeth, and doing the dishes). There were
8 x 6 x 7 x 8 = 2688 number of different combinatorial states.

Similar to the Reality Mining project, we have a large bebawpace involvin2688 number of com-
bined behaviors. This means that a carelessly constructetblnmeed to characterize &688 behaviors,
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and the probabilities that the user of a Life-Wear systemarfoem one of the2688 number of behaviors

to another. This is not necessary, since a concept from degarg does not change the characteristics of
another concept in a different category, although the fonwvikk bias the latter. As a result, we can study
different categories of concepts independently, and bieptobability distributions among the concepts in
a category with the probability distributions among theaapts in another category. For example, we sit in
the same posture no matter whether we are indoors or outddokgever, we are more likely to be sitting
when we are indoors than when we are outdoors.

The data sets are noisy, and sensor failures are unavoidabléo insufficient power supply, sensor
faults, connection errors, or other unpredictable caufbis means that an inference algorithm for soldier
state must be robust against sensor noises and sensogdailur

The latent structure influence model copes with this prolddgrsimultaneous learning the structure of
multi-agent interaction and applying the learned stradtimformation in combining past evidence. We
believe that our latent structure influence model is an efiigirobust method for modeling the dynamics
of interacting processes. Itis in the tradition of N-heagsaiic programming on coupled hidden Markov
models [11], the observable structure influence model [a8Y the partially observable influence model
[13], but extends these previous models by providing gregrerality, accuracy, and efficiency.

1.2 Dynamic Team-of-experts Modeling

A dynamic team-of-experts model emulates the way a grougiEgms monitor a complex stochastic pro-
cess and influence each other. This model is an abstractitre dfuman-related behaviors and should fit
them well. There are pros and cons on whether it should bdeabf® a non-human-related stochastic
process. In the same fashion, a group of persons are notmgei@dato out-perform an individual in general.

The dynamic team-of-experts approach can have the folgpWwanefits. (1) When the evidence is com-
posed of several heterogeneous types of features, it isaneot a good idea to assume that the feature
vector consisting of different types of features obeys asSiam distribution, or a mixture of Gaussian
distributions. A better idea is to assign different typegseaitures or different combinations of them to dif-
ferent experts, and let the experts adjust their modelsrditgpto theconclusionsof each other. The final
conclusion comes by combining tleenclusionsof different experts. For example, when we classify the
accelerometer recording from a person into different pestuhe features we consider might include: the
short window spectrograms, the number of peaks and the niaxivalue of the peak amplitudes in a short
window, the mean and variance. It is normally better to iospleose different features individually, and
combine the computation results from those features. (2¢MW\#hclassification problem or a data mining
problem is too complex to be solved by any single methodigxpiee performance of a combination of
different methods is at least as good as any single methaa kKnow the performances of different experts
in different situations. (3) The experts can compare thesults and adjust their models, so that their results
with polarize towards / away from the results of each othér.The result of a team of experts is generally
less sensitive to errors of a single expert, since the eafaagy expert is restricted by thairfluence.

However, the dynamic team-of-experts approach can haveltbeiing drawbacks. (1) When we assign
heterogeneous types of features or combinations of theriffévesht experts, we generally do not know a
priori what combinations of different features is enoughdn expert to come to a conclusion. As a result,
some experts may end up inconclusive due to the lack of irdéom. (2) Sometimes the conclusions of
the experts are very different, and the performances of timay be hard to evaluate or quantify. In this
situation, combining the conclusions of the experts is notimeasier than working directly on the feature
vectors.

A striking characteristic of group learning is the groupas@ation phenomenon. This phenomenon
was first presented by Stoner [14], who observed that aftepapgof persons discussed their individual



30 CHAPTER 1. INTRODUCTION

decisions on a imaginary life-or-death issue, and put #rguments together, the group decision as a whole
tend to be more risky than the average of the individual dmtss In our latent structure influence process
modeling, the group polarization phenomenon results infdhewing feedback process and reduces the
overall entropy of the team-of-experts. When the expenspaoe their conclusions with each other, they
tend to favor those experts (including themselves) whoeagtth them, will adjust their models to coincide
with those of the favorable experts, and will be willing ti&damove influence from them. The adjusted
models and influence coefficients will in turn make the faltgaexperts even more favorable. As a result,
group polarization occurs.

1.3 The Latent Structure Influence Process

The latent structure influence process models the dynarhicaran-related behaviors by simulating the
interaction of a group of humans/agents. It compressesthe brobability space of the sample sequences
by clustering/polarizing different perspectives of thertan-related behaviors. In the below, we use the
Life-Wear example to motivate the latent structure inflieepmocess approach, compares and contrasts the
influence approach with other state-space approaches,am@ dormal definition of the latent structure
influence process.

The four state-space models under our comparison are:téme fructure influence process, the coupled
hidden Markov process, the hidden Markov process, and thardic Bayesian network. The Life-Wear
system is an early prototype of the more complex DARPA ASS$g§3tem [9]. The Life-Wear system
samples its wearer's behavior with an accelerometer aidhs hip, another accelerometer at his left wrist,
a microphone at his chest, and a camera at his chest. Basd® @ampled data sequences, the Life-
Wear system understands the behavior of its user by infethie probability distributions among eight
locations, six speaking / non-speaking status, seven sstand eight events at each sample time (i.e.,
where the user is, whether he is speaking, what he is doirgwéiether something interesting is taking
place). The inference algorithms for the four state-spaodeis have a similar form: they all work by
alternating between the time update step, and the meastdiateustep. In the time update step, the Life-Wear
system computes the probability distributions at the naxt@e time from the probability distributions at the
current sample time. In the measure update step, the Life-8¥stem adjusts the probability distributions
by the new evidence collected with the accelerometers, foeophone, and the camera. In other words,
the time update step finds the best guess of the behavior dfifin&Vear user based on the model and
the past evidence, and the measure update step adjustsegsewgth new evidence. Beyond this seemingly
similar form of their inference algorithms, the four modeltsrk with the probability distributions in different
measure spaces, and execute the time/measure update iffenestty. As a result, they have different
computational performances.

e The latent structure influence process works with the malgirobability distributions of the loca-
tions, the speaking/non-speaking status, the posturesthanevents, respectively. The time update
step computes the marginal probability distributions atribxt sample time by linearly combining the
marginal probability distributions at the current samjmest. When we write the marginal probability
distributions into a row vector, thafluence matrixhat is used to update the marginal probability dis-
tributions is learned and plotted in Figure 3.3. The measpdate step incorporates the new evidence
into the marginal probability distributions just computed

e The coupled hidden Markov process works with the joint pbiliig distribution of the joint states.
Each joint state consists of one of the eight locations, dtigecsix speaking/non-speaking status, one
of the seven postures, and one of the eight events. As a,rifmilatent state space g 6 x 7 x 8 =
2688 number of states, and the state transition matrix for tindatipg is 82688 x 2688 square matrix.
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The state transition matrix is unnecessarily sparse andedargely compressed (while preserving
its eigen-behavior).

e We can use a single hidden Markov process with several dtatesdel the stochastic process sam-
pled by the Life Wear system and involving a combination cflions, speaking/non-speaking status,
postures, and events. However, a single hidden Markov psoséth several states is not expressive
enough for the transitions of the combined states, and tihmprEssion of th&688 x 2688 state tran-
sition matrix of the coupled hidden Markov process involagaore complicated procedure than just
adopting a single hidden Markov process. Alternatively,car use four hidden Markov processes to
model the transitions of locations, speaking/non-spepkiatus, postures, and events, respectively.
In this way, we have simplified the coupled hidden Markov pescwith the cost of a less accurate
understanding of a Life-Wear user’s behavior. The lattedeh@an be considered as a latent struc-
ture influence process with no influence among differentgestives. When we write the marginal
probability distributions into a row vector, the influencatnix in this case is the matrix in Figure 3.3
whose off-diagonal sub-matrices are all zeros.

e When we use a dynamic Bayesian network to model a Life-Wearaubehavior, we first need to
define a set of random variables and analyze the conditiamglefpendence among those random
variables. We then represent the conditional (in)deperslaiith a graph, and use the message passing
algorithm to infer the probability distributions at the galmtimes. For this approach, constructing
the graph representation of a stochastic process is a ivial-task, the message passing algorithm
might be computationally prohibiting depending on the wéicsize, and manually constructed graph
representations do not scale with the modifications of tbélpm.

Based on the above comparison, we comment that the latentwse influence process models a complex
stochastic process in terms of how different perspectifési®stochastic process influence each other lin-
early and cluster/polarize. With this linearity assumptiae can effectively control the model complexity,
and capture useful structural information inherent in tloelsastic process at the same time.

In the definition below, the random variabfliéc) ={1,--- ,m.} represents the perspectivat sample
timet, and the random variabbét(c) represents the evidence sampled at tirfoe the adjustment 05,@. We
assume that the (marginal) random variatﬂé‘éJ can be updated marginally according to their influences

without involving the combined random variabﬁSt(l) . --St(c)), as shown in the equations (1.1, 1.2)
below.

Definition 1. Alatent structure influence process a stochastic proces{§t(1), e ,St(c),Yt(l), e ,Yt(c)}.
In this process, th&atent variablesst(l), ‘e ,St(c) are finite—stateS,fC) € {1,--- ,m.} and their (marginal)
probability mass functions are defined as the following:
P9 =5 = 7l (1.1)
c
c c 1 1 1 c1,c
PSS = sih1s) = sV s =5y = N h(gl))s(c) (1.2)
c1=1 t t+1
wherel < s < m,, hgﬁ{ﬁ = dlc.0) . asﬁ{; , S dler) = 1, and ZJ ) Ec;’) = 1. Theobservations
Y, = {Yt(l), e ,Yt(c)} are coupled with the latent state® = {St , ,St(c)} through a memoryless

channel:

v\ ~ PIs) (L.3)
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Several comments concerning this definition are listedviaelo

e The restrictioy ", d(“¢) = 1, and> " ! = 1 in the definition is necessary to guarantee that

j=1%.j

the influenceof any stateSt(C) at timet on the state§t(fr11) at timet + 1 sum up tol. The definition

also implicitly gives the formula foP(St(fjl)) as a function ol(P(St(c))
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In the same way, any row of the state transition matrix of a@&idMarkov process sums up to one
(equation 2), and the state transition matrix also impjigives the formula fo(S; ) as a function

of P(St)

e For a latent structure influence process, we can charagtgszstate transition with amfluence

matrix :
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(01702) (01702)

11 1,mc2

(c1,02) (c1,02)

mClyl Mecq,Mey

41D A(LD) 4(10) A(1.0)
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(PStE = 1) P(SEL = ma) - P(SIE) = 1)+ PSS = mo))
(Pst? = 1) P(SY = ma) -+ P(S( = 1) P(S = me)) - H

In comparison, for a hidden Markov model, we have

(P(Stra=1)--

P(Sip1=m)) = (P(Sy=1)---P(S;=m))-A

e The definition does not completely characterize a latenictfire influence proceksThe definition
gives the time-update formula to eStIdeéSt+1|y1<tl<t) from P( |y1<t1<t) However, it says
nothing about the measure-update formula that incorponadey eV|dence into the latent state esti-
matesP(Sffr)l\y“lgtlgtH). In chapter 2, we will consider the latent structure inflleepcocess with
two different ways to incorporate new evidence.
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The latent structure influence process is used to fit givererghon sequences involving human-related
behaviors. The influencé“1:¢2) reflects how one sequenegagrees with the other. The tasks involved
with a latent structure influence model are generally

e latent state inference, i.e., to infer the latent st tﬁéc) from the observation{Yt(c)> and model

). (@ere), (a2, and (P75,

e parameter estimation, i.e., to infer the parameters gieriatent states and the observations.

parameter<7r

e joint latent state inference and parameter estimatiorhitndase, we are only given the observations,
and we are required to find out the parameters, as well astdrd Kates, that best fit the observations.

To conclude this chapter, we point out that the human-rél&ighaviors have normally strongly clus-
tered/polarized perspectives. The latent structure inflegprocess models these behaviors by emulating
the interaction of a group of humans/agents, and computiagdifferent perspectives of the human-related
behaviors coincide with each other. When influence modesrapplied to a general complex stochastic
processes, there are pros and cons concerning whethepérfmrns the other models. In the following
chapters, we will derive the algorithms of the latent sutetinfluence process, and inspect its performance
in modeling various data sets.
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Chapter 2

Inference algorithms for the influence model

When we model the dynamics of a multi-agent stochastic ggycere often need to cope with a large
probability space, whose states are comprised of the diatdbe individual agents. This fact has the
consequence that we need an exploding number of traininglearand need to fix an exploding number
of parameters. This is in general not necessary, since tmavimes of any two agents are normally either
in agreement with other, or totally unrelated. The latentcttire influence process fits such a multi-agent
process by emulating how a group of agents influence each dthehis chapter, we present two different
ways to incorporate new evidence into the latent statesateat structure influence process, and derive the
inference algorithms for the influence modeling.

2.1 The Linear Approach to the Influence Modeling

The influence model is a tractable approximation of the atédale hidden Markov modeling of multiple
interacting dynamic processes. While the number of statethé hidden Markov model is the multiplica-
tion of the number of states for individual processes, thaber of states for the corresponding influence
model is the summation of the number of states for indivigdwatesses. The influence model attains this
tractability by linearly combining the contributions ofthatent state distributions of individual processes at
timet to get the latent state distributions of individual proessat time + 1.

To illustrate the difficulties of the hidden Markov modeliofa system of multiple interacting processes,
and to motivate the influence model approximation, let usictam a system of’ interacting processes. In

this system, the latent state for procesat timet is denoted agtc) and has a multinomial distribution
(1) (@)

over {1,--- ,m.}. The latent state for the whole system at timis denoted as; = s, ---s; ’ and
has a multivariate multinomial distribution ovét---1,--- ,m---mc} . The state transition matri&
——" \ ,

C C
propagates the system latent state distribution vedtgs;)) at timet¢ to the system latent state distribution

vector(p(si+1)) attimet + 1:

1>

(P(st)) (P(sg=1---1)---P(sg =mq---mg))

N——""
c c
(P(st+1)) = (P(s1))-G

(P(si=1)) = 7

The hidden Markov modeling of the whole system has the “cofsdimensionality” and needs to be
regularized, since the size 6f (which is[].m.) grows exponentially with the number of dynamic pro-
cesses in the system, while the size of training data onlw gralynomially with the number of dynamic

35
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processes. To cope with this issue, we introduce the systent matrix (8) and its Penrose-Moore pseu-
doinverse BT) , and compute in a space related to the system'’s influencéxnfat= B* - G - B, which

is logarithmically smaller, and preserves the eigen-stinecof G. In doing so, we confine ourselves to a
much restricted spad&, = B- H - BT = BBt -G - BB, whose expressive complexity gro@&'-order
polynomial with the number of processes in the system. Tleatewatrix for the system under discussing
has][.m. number of rows angd _m. number of columns. It can be constructed in two steps: (Xjngpr
all possible values the system latent state can take, arfdli(®) the rows of the event matrix sequentially
by the “one hot” encodings of the corresponding latent staliges. The event matrix transforms the system

latent state distribution vectdP(s,)) to the system’s marginal latent state distribution ve(tBt(stc))>:

(Psi)

1>

(P(st)) - B
H = BY-G-B

/N
e
—
V)
&~
&
SN—
—
Il

By introducing the above approximation, the latent statgpagation from time to timet + 1 becomes,

(P(sit1)) = (P(s1))-BB™-G-BB*
(P(si=1)) = m-BB*
(P6I2)) = (Plsen))- B

= (P(s;))-BBT-G-BB"-B

(P(Sicz)l)) =

The connection betweefP(s;)) and (P(#’)) by the event matrix3, and the connection between

(P(sﬁﬁfﬁ) and (P(sgc))) by the influence matrixd{ is shown in Figure 2.1. The influence matiik =

BT .G - B can always be expressed as the Kronecker product of a trsgsstochastic matriv) with a
collection of stochastic matricgsi(¢1:2)):

diq-AGD oo gy o AC)

dor - ACD . dog. ACO)

In terms of this property, the marginal state distribution ffrocess:, at timet + 1 is a weighted sum of
the “influences” of the marginal state distributions forgessed < ¢; < C at timet, where the influence
from process:; to process:, is computed by right-multiplying the marginal latent stdistribution ofc; at
time ¢t with the stochastic matrix(¢1-¢2).

In both the hidden Markov modeling of system dynamics andhitsnt structure influence model ap-
proximation, the observatiomfc) of a procesg at timet probabilistically depends and only depends on the
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Figure 2.1: (a) The event matri® produces marginal distributions from joint distributior(®) The influ-
ence matrixd linearly combines the marginal latent state distributibirae ¢ to generate the marginal
latent state distribution at time+ 1.

latent statesgc) of process: at timet.

Ploglss) = J]P(o}”]5?)

(P(og|s:)) = (Ploglsg=1---1)--
C

P(og|st =mq---mc))
c

The observationstc) for process: at timet can be either multinomial or Gaussian. When the obsenation
for process: are multinomial, we use,. to represent the number of possible observation symh@‘f%:e
[1...n.). We defineB(©) = (bgfj)), Wherebgf} = p(0\® = j|s(9 = i), as the observation matrix. When
the observations for process@re Gaussian, we use to represent the dimensionality of the. number of

Gaussian distributions corresponding to each latent stdte [1...m,]: 0(®) ~ N(uifz),oifz)).

2.1.1 The marginalizing operator B and its inverse B*

In this section, we formulate the marginalizing operatattmaps a joint probability mass function to
several marginal probability mass functions. We also @ethe best linear estimator (the linear inverse
marginalizing operator) that maps several marginal pritibalnass functions to a joint probability mass
function. These two operators are essential to this thesisg one task of this thesis is to get a good
estimate of a joint probability mass function by operateyamn the marginal probability mass functions that
are logarithmically smaller.

Before we proceed formally, let us image how the marginadizoperator and the (linear) inverse
marginalizing operator look like. The marginalization ogder is linear, since we only need to sum over
the joint probability mass function of those joint stateatthas a particular marginal state realization to get
the marginal probability mass function of this marginatetaealization. For example, if we want to know
the probability that a power plant fails in a network of povpéants, we can add up all probabilities of the
network that says this particular power plant fails.

We normally cannot recover the exact joint probability miasstion from several marginal probability
functions, since the joint probability mass function caméamore information than the marginal probability
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mass functions. To be more specific, the information thatesl different marginal probability mass func-
tions is not given by a list of probability mass functionstuitively, in order to estimate the joint probability
mass function by using a linear combination of the margimabgbility mass functions, we would assume
that all marginal probabilities have equal contributiomgl ghat the joint probability mass function for a joint
state is proportional to the sum of the marginal probabititggss functions of the constituent states. For
example, if we want to know the probability that all powermikain a network are normal, we can assume
that each power plant has equal contribution to the factaf jbint state. As a result, we can first add up
the probabilities that the individual power plants are naknthen normalize the sum to estimate the joint
probability. This intuition is correct, as we will show balo

The rest of this subsection proceeds in the following waystFwe define the marginalizing oper-
ator formally. Then, we derive the linear inverse margiai operator, and explain the mathematical
intuition. Based on our knowledge of the marginalizing @per and its inverse, we will discuss several
matrices: BTGB and BHB™. The matrixB is a marginalizing operatoi3* and BT are the pseudoin-
verse and transpose &f, respectively. The matriXs is a Markov matrix corresponding to a joint state
S(( S ... S ), and the matrixi{ is an influence matrix corresponding to the marginal states
S ... 8, We will show that those matrix operations map between infteematrices and Markov
matrices. The computations have intuitive interpretatiomhe analysis is important, since we need to
search for those matrices to maximize some likelihood fonst

Let us begin with an example of the matiik

Example 3. Let us imagine that we have a network of four power plants ruetbl, 2, 3, 4 respectively.
Each power plant takes two states: normal and failed, andstage of the network is a 4-tuple of the states
for the individual power plants. By this description, thaitit) states of the network form a probability space
{Q, P}, and the (marginal) states for individual power plants faprobability spaceqQ(©), P(9)}, where
c=1,2,3,4. We use the random variablés®) to describe the probability spacé€(©), P(¢)}, where

gl _ 1 power plant ¢ normal
2 power plant c failed

. We also use the row vectors

(g = (gl — (c) —
(P (S ))S(C):m} (PO =1) P(S© =2) )
e={1,2,3}
(P(C)(S(C))) = (PO(SM =1) pOSH =2) pB(5@ =1) PR (S = 2)
S={1,2}

PBI(SG) =1) PBI(SE) =2) pW(SW =1) pW(SH =2) )

to denote the probability mass function for one random \@ei®(©), and a concatenation of the probability
mass functions for random variables, respectively. In #maefashion, we use the random vector

<S<c>) — (S §® §B) gu)
1<e<4
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to describe the probability spadé?, P}, and we use the row vector

(P <<S(C))1<c<4>> B

to describe the probability mass function for the randomtmecﬁ

random function

S (S@) R DR ) BRI C) BT SN )
1<c<4

(P((s) =

1
1
1
2
2
2
2

to describe the probability spadé?, P}, and we have

i <S <(S(C)) 1<c<4>> - r <<S(C)) 1<c<4>

A marginalizing operator that maps the joint probability ssafunction (P ((S(C))1<c<4>> to the
c={1,2,34} . o

marginal probability mass functiong” (5(<)))

(r ()

e={1,2,3,4}

S(e)={1,2}

S()={1,2}

—_

O O O OO OO O = = e e e

2
1
2
1
2
1

2

IS

e i e e T i e == R == M e B o B en B en B e i e

— = = = =

~— — ' ' ' N

(11 11)) P

)
)
)
)
)
)
)

1))

O OO MFH M OOOO M - = =

— === O O OO -0 OOO

8

OO = - OO HEMFEF OOKFKFEOO = =

_— ) OO, M, OO MFEFOORFRFEOO

SR O R OFrRORFROF,FORF, OO

(P <<S(C)) 1£c£4>> P

_— O OO, O OFOKFOMFMO
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(s9)=(11 1 2))
5)) = 12 2))

5 = 11 2))

S)) = 12 2))

5)) = 2 1 2))

S)) = 2 2 2))

S)) = 2 1 2))

S©) = 2 2 2)))

L<ecy- Alternatively, we use the

This marginalizing operator get®( (s(¢)) by summing over all joint probability mass functions
P (( s g2 gB) g ))

for all states such thag(©) = s(¢)
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Let us suppose we hav@ random variabless®, 5 ... §(©)  Each random variabl§(©), where
1 < ¢ < C, can taken, number of state§(®) = {1,2,--- ,m,}. Let the random function
C c—1
(c) — (0) .
i <(S >1§CSC> - 02—31 ’ <cl—1 md)

be the joint state. The marginalizing operator is a matrit thaps from

(P (S))Szl.. [Ime

to
(P (5 g0

Definition 2. Themarginalizing operator
B ((mc)1gcgc) = B((m1 ma -+ mg))

is a (]‘[CC:1 mc> X (ZCC:1 mc) matrix, where

cl
B;; <+ c=argmax,i— g me > 0,
c2=1

C
s=j= D me
cl=1
1 ,if s =floor (%) mod My 1
ij = c1=1"Me
0 otherwise

The best estimataB™ that maps the marginal pmf’s to the joint pmf is the “inverséthe marginalizing
matrix B. Since the matrixB is not full-ranked, its inverse does not exist. As a resu#t,attempt to find
the best matrix that takes the effect of inversion (MoorafBgse pseudoinverse). Let us take a digression
and inspect the Bayesian interpretation of pseudoinvee$ard we give the inverse of the marginalizing
operator.

The problem involved with the pseudoinverse operator igisgllinear systemsi - © = b, where we
know the matrix4 and the vecton, and need to find the vectat to satisfy this equation. When the
matrix A has full rank and is not ill-conditioned, i.e., whét|| - || A~!|| is relatively small, the systems
A% = bhave unique solutions and are not interesting to us. Intfigwhen linear systems do not
have numerically stable solutions, do not have solutionsioonot have unique solutions, we would think
that the information provided by the linear systems are nough, and provide more information to the
linear system in order to solve it. One way to provide infotiorais to assume that andb have Gaussian
random noisest ~ N(0,021), andb ~ N(0,02 - I). The best linear estimator (in the sense that it has the

minimum mean-square errgi — A - 7|2 + (02/02) - | ||2) is thusZ = (ATA + (02/02)- 1) ' AT =
(ATA + a2 1)~ ATh. The Moore-Penrose pseudoinverse of matris defined ast™ = lim,>_ (AT A+
D)1 AT = lim,2_, g AT(ATA + o21)~ L.

Definition 3. Thepseudoinversed™of a matrix A is the unique matrix that satisfies the following criteria:
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1. AATA=A
2. ATAAT = AT, AT is a weak inverse for the multiplicative semi-group
3. (AAT)* = AAT, AAT is Hermitian
4. (ATA)* = AT A, AT Ais Hermitian
Alternatively, A* can be defined by the following limiting process:

At = = lim (ATA +*1)71AT = lim AY(ATA + 1)

a?—0 a?2—0
The pseudoinvers@&™ of a marginalizing operatoB (( m1 my --- mc )) has a simple form:
BT = ¢ - BT + ¢, wherec; andc, are constants determined by, - - - , mc.

Theorem 1. Given a system af' interacting processes, ang,. number of possible values for the latent
states(®) for processl < ¢ < C, we have,

1
Bt = ——— . (D;-BT+Dy-1
znmk ( 1 + 2 Xc:m.:x]:[mc)
¢ k#c
. m m mgc mc
Dl — dlag[zm_1>"'7 m_17"'7 m—77zm—]
ik ik ik ik
mi mc
. 1 1
R D CIE IO D D
el Tk kA1 kAC Ok k£C R
mi mc

whereBT represents the transpose Bf

Proof. In order to prove thaB3™ is the pseudoinverse d#, we need to show four thingsBB™B = B,
BT*BB* = BY, (BBT)T = BB*, and(B*B)T = BTB. Below, we used|ci, ¢, i, j] to represent
the element at th&® row, 5" column in the sub-matrix index bf¢;, co) of the matrix A (whose size is

Y ome X Y me).

T Hk#m Mk )€1 =20 =]
(B™B)[c1,¢2,i,5] = {0 =02, F ]

[litercome a1 #c2

ZHmk (BT B)[c1,c2,1, j]

¢ k#c

Zc Hk;ﬁc mp — Zc;ﬁq Hk;éc,cl my 1 =C,1=]
- - Zc;ﬁcl Hk;ﬁc,cl my ca=cyiF ]
[itereo Mk c1 # ¢

It follows that(B*+B)T = B+B, BB*B = B, andB*BB* = B*.
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To show(BBT)T = BB+, we notice

_ 1
> 1T mu

¢ k#c
= (BD1B" + BDsls o m.) "

.(BB*)"

= BDiBT + I{m.x5 m,D2B

1
= BDiB"— (). —)  Imexsme

c mC c c

= BDBT + BDsls o x[me

= BB"
O
The computation ofB+ has a very intuitive interpretation. SuppoS€",--- ,S(©) are C' random
variables. Each variable takes finite number of valu#é: = {1, ---m.}, wherel < ¢ < C. The random
functions (( S ... S )) “encodes” the individual random variables. Let us look att®* maps

a joint probability mass function to several marginal ptaibty mass functions. Let us first naively sum up
all marginal probability distributiong?(S(¢)), wherel < ¢ < C, to get the joint probability distribution
P(S(( S ... S© ). Inother words, we use the following formula

(15(5(( s ... g )))) _ (p<5<5(c))>>

In the formula forP, the marginal probability mass function corresponding® = s(©) is summed up for
]_[017,éc me1 times in the joint probability mass function for all possibskalizations.

P(S(( SV .. 5@ =50 ... 5@ )))

1<e<C

1<8©<m,

P(5(e))
B Hcl#c Mcl
reflected by the matriX>,. The computation of is also biased, since the informatidn,., P(s(c)) =1is

~ . (e))
not useful forP. As a result, we need to cancel the effect by SUbtraCﬁééde by
Zk;ﬁc mLk
(T (S i)

The operation of removing the bias is reflected by the mdiix To further illustrate the effect of re-
moving the bias, we can compare the joint probability masstfan P via m (D1 BT+ Dy - 1)

As a result, we need cancel this effect by scaling the cartdb of S(© by . This operation is

and the probability functior? via le - BT. P might have negative values, while is always

positive. Let us suppose th&tis positive thus a true probability mass function. In thiseave getP by
adding a constant to all values Bf From our knowledge of information theory, we lose inforroatfrom
P to P. On the other hand, the matrl; - 1 tries to extract more information from the marginal digitibns
P(S), wherel < ¢ < C.

With the knowledge of3 and B*, we can compute the analytic form 8fGB and BH B, whereG
is a Markov matrix, and{ is an influence matrix. We need to point out izt G B (with restriction onG)
is an influence matrices, whilB H BT is a Markov matrices.
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. 1<e<C
Theorem 2. Let1 < S©) < m,, wherel < ¢ < (, are random variablesS ((S(C)) == ) be the

random functionB (( m; --- m¢ )), BT, H, G be respectively the marginalizing matrix, the inverse
of the marginalizing matrix, a influence matrix, and a Markoatrix related taS(©), wherel < ¢ < C, and
S. We have the following relations:

/mc1

e The analytical form oB*GB. Each row of thecy, ¢3)-th sub-matrix sum up tw

1
(BTGB) (cl,¢2,i,j) = T 3 G(Sa)...3<c>7t<1>...t(c>)_
C#CI ¢ S(Cl):’i
t(C2)=j
s(ezel)

t(c#c2)

Yetel me s (©) 4(1) .. 4(©)
(IT. me) - (Zc m—> s<1<Z:c<0> G( t )

t(e2) =5
t(c#c2)

> (B*GB)(c1,e2,i,j) = 1 %

Mmel ZC P

J
>3 (B*GB) (c1,c2,s<cl>, j) -1
cl j

e The analytical form related t& H B*. Each row of BH B™ sums up to 1.

(BHB+) (8(1) .. .S(C)jt(l) .. t(C)) = Z (H (61’62717]) ' H ) - (Hcmc)

cl,c2 c#c2 Me

7;:5(‘31)
j=t(c2)

>> (BHBT) (s syl @) =

t(1)..¢(C)

e The constant matrices s~ . ) x (s me) @A L ([Tme)x ([T me) -

Bis moyx(SmBT = 1(Tmox(IIme)
B ([ Im)x([ImaB = LEmox(Sme)

Instead of giving a derivation of the above equalities, veedrthe computation and describe infor-
mally how we make a best linear estimation of the influencerimabrresponding to a Markov matrix,
and how we make a best linear estimation of the Markov matrixesponding to an influence matrix. In

order to compute the entry correspondingStﬁ = sgc 1) 5502) = (‘32) from the matrix BTGB (i.e.,
(BTGB) (cl, ca, sgcﬂ (c2) )) we sum up all entries aff that are compatlble with the fa(St( U gcﬂ

and 5502) = sg@) and there are(HG,,éc1 mc) X (HC;,,éc2 mc) number of summands. Since we sum up
[1cc, me number of items involving:;, we need to scale this sumby[[,..., m.. This leads to

m.:2

ZZ 3 ( RGOS t(0>):1

C#Cl J=1 gle) = (ca) —;
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Now the rows of(c1, ¢2)-th sub-matrices all sum up to In comparison, we want to extract one arbitrary
row from the(cl, ¢2)-th matrix for alll < ¢1 < C and sum those rows tb Since the contribution of each

5D to0 (<2 wherel < ¢l < C, is inverse proportional to the number of states we need to offset
. > eter I/me T

the quantltyHC;1 = Y se—i dogter—; G (s -+ 50D, 1) (O] by =247 of the likelihood that

5(2) = ¢(¢2)_ Notice that the sum of all entries of the Markov matfsum up to[ [ m.

-@f;j'E:E:G(AD”‘w%AU”iw» -1

S(cl) t(c2)

In order to compute the entry ¢BHB™) ((s(c))lgcgc , (t(c))lgcgc) , we sum up all entries idf
compatible withs(®), andt(®). There ard>" m..) x (3. m.) summands in total. Since eati?) contributes
to BH B for [] ..., m. number of times al (s, t(?)) for somes(*!) , we need to scale the contribution

of t(¢2) down by 1 #1 — . This leads to
c#Fcg 1Y€

1
H(cl,2,i,j) - =— | = C
0127;2 ( Hc;ﬁc2 Me

’i:s(d)

j:t(c2)

t(1)...4(C)

EachS(®) contributes a quantity of to each row ofBH B+ , and all of theC' marginal random variables
S©) wherel < ¢ < C, have a total contribution of' to each row ofBHB™. As a result, we want to
down-shift the values obtained t6y — 1 and distribute this quantity among 4. m. entries. This gives
the offset.

We compute below the matricés™, and BH B™ related to the network of four power plants.
Example 4. Let us compute the pseudoinvei3e of the marginalizing operator

B((m1 me M3 m4)) = B((2 2 2 2))

for the network of four power plants (Example 3) as well agothteresting objects.
1 c 1 .
The constants~——, > =, and— >, . 7— are computed as follows:

¢ k#c
1 B 1
SO IT ma Mg X M3 X My + My X Mg X Mg 4+ my X mg X my +mq X ma X mg
¢ k#c
B 1
92X 2X242%X2X242X2X242%x2x2
1
32
Me 4 ¢=1,2,3,4
my,

3
N = —2¢=1,2,3.4
27C ) ) )
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The matrixm - Dy is computed as:

cllk+#c

The matrixl(z mc)X(H mc) is

Vs omex(Mome) =

The pseudoinversB™ is thus:

B+
1

+5 +5 +5
-3 -3 -3
+5 +5 +5
1 -3 -3 -3
T 64 | +5 +5 -3
-3 -3 +5
+5 -3 +5

-3 +5 -3

U NG VAT O GG VT T O S

U G VT O GG VT T O S

I e T T O e Gy S

0o[—=

I e T T O e Gy S

U G VT GG VT T O S

oo

U G VAT GG VT VT O S

0o[—=

= e e e

_ m . (Dl . BT + Dy - 1(Zcmc)><(ncmc))

+5
+5

+5
-3
+5

oo

= e e e

ool

U NG VAT O GG VT T O S

+5
+5

+5
-3

+5

ool

— = = = e e e
G G VUG T VG SN O W

ool

ool

= e e e

U NG VAT GG VT T O S

U G VAT O GG VT T O S

U G VAT O GG VT T O S

T = T T O Gy S
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The constanty . [T, Mk Dcsey [isees Mkr [listey cp 7k fOr computingB™ B are:

ZHmk = M9 X M3 X Mg+ My XmgXmyg—+mp X mg Xmyg+mp Xmg Xms
¢ k#c
= 32
S I me = 16,c1=1,2,3,4
c#cy k#c,cq
[I = 4a.2=1234
k#ci,c2

The matrixB* B is

20 —12 4 4 4 4 4 4
~12 20 4 4 4 4 4 4

4 4 20 —-12 4 4 4 4

b1 4 4 —12 20 4 4 4 4
BB = 5~ 4 4 4 4 20 —-12 4 4
4 4 4 4 —12 20 4 4

4 4 4 4 4 4 20 -12

4 4 4 4 4 4 —-12 20

This is the best matrix we can get from the marginalizing ma&trand any other matrix4 that most resem-
bles the identity matrix.

Let matrixH = (h(cth)

sle1) g(e2)

) 01702:{1727374}

be the influence matrix of the network of four power plants.
s(e1) s(e2)={12}

(01702)

In this matrix,hs(cl) L(cz) TEPrEsents the “influence” from staté“) of power planic; to states(¢2) of power

(01702)

plant ¢z, and h (15, is the (s(®),5(<>))-th element in thec, c2)-th sub matrix ofH. Let matrixG
be the Markov matrix of the hidden Markov process model ofntavork, corresponding to the latent
structure influence process model. Let the random varigb(gS) S(2 S S(4))) pe the state of the
network, “encoded” by the states of the individual powemtta and

S ((3(1>3(2>3<3>3<4>)) — 8.5sMW18.5@ 18,408 g @

With this notation,

1
_ (W0 pen en an Y1
< (U 5§V + (2) s + (3> s * (4> s mg X ma X my "
(1,2) (2,2) (32) 1
<h8<1)78<2) + h8<2)78<2) +h RO + (4) (2)> my X mz X my +
(13) 2,3) (33 1
<h (1) +h <2) o +h <3) o + bl <4> <3>> my X e X My
(1,4) (2,4) (3.4 1
<h m o+ h <2> oo T h <3> oo g (4> (4)> mi X mg X mz

4—1
mi1 X mo X m3g X My

The expression foBTGB (c1, c2, s, s2)) has too many terms, we do not write an explicit expression
here.
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2.1.2 Estimation of Forward and Backward Parameters

For hidden Markov models whose latent varialSlecan take hundreds or even thousands of values, its
influence modeling is rather intuitive: We attempt to find e set of latent variableS(©), wherel <

¢ < O, and establish the connection betwe#f) and S, as well as the connection betwesff) and the
observationg”. The inferences involved wit©) can be computationally much cheaper and more stable
than the inferences involved withi. In this section, we show that if the latent varial$leof the original
hidden Markov model can be mapped linearly from a set of k&S (¢, and if for each random variable
S, we know the conditional probability?(Y (¢)|S()) for the observatiort (), then the inferences with
5(©) is much cheaper and more stable. In addition, our underisigurad the original random variablé

can come from the mapping fro(®) to S. This section proceeds in the following order. We first state
how the conditional probability of an observation conditd on the random variable be mapped to the
conditional probability of this observation conditioned the random variable§(©). Then we give the
forward-backward algorithm of the influence modeling basadinear mapping. Last, we state how to
connect the probabilities involved withand the probabilities involved with(®).

Let us first review the forward-backward algorithm in mafarm, and inspect how we reduce a complex
hidden Markov model inference problem involved with a largenber of latent states to a much simpler
one via the influence modeling. The matrix form of the forwhatkward algorithm is the most natural
form for this formulation.

(©) blesd (e))'=e=C
In the below, we letS;”, wherel < ¢ < C, be random variablesy; = (St ) be a random

vector, andS ((St ) > be the index oI(St ) . The index random variablg can take[ [ m.

1<ce<C
number of different values. Le% (St, (Yt(c)> - ) } be a hidden Markov process characterized by the
initial state distributiont, = P(S; = s) , the state transition probability(S;+1]S:), and the emission
probability P (Y“”)lgcgo 1S, ) = L P(v{|5). Given (Y@)ISCSC, the statistical values;(s;),
t c t t t 1<t<T

Bi(se), v(se), and &1 (sy, se1) are the forward parameters, the backward parameters, thelice
parameters, and the two-slice parameters respectively:

o 1<e<C
ai(sy) = P <St, <yt(1)>1<t1<t>
_ (e)) ==
fuls) = P ((ytl )t+1<t1<T s
c 1<e<C
wlse) = P (St’ <yt(1)>1<t1<T>

rnilsnsi) = P (59)
St, S = St, S
t—t+1(Sty St+1 ts St+1, | Ygy <t <T

. Let {(St(l), e ,St(c),Yt(l), e ,Yt(c)>} be a latent structure influence process characterized by the
marginal initial state distributionsgc) = P(S%C) = s), the marginal state transition probabilities
P(sgfr)l]sgl) sl = P r{9)  and the emission probabilitig®(Y,”|5\”). Given (Yt(c)>

(1) (o) *
St 8t
the statistical values!” (s;), B (s;), % (s¢), andgt(ﬂfj{(sﬁcl), sgfl)) are the marginal forward param-

eters, the marginal backward parameters, the marginakliceparameters, and the marginal two-slice

1<eLC

1<t<T’
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parameters respectively:

c1,c c c c o)) 1sesC
SR s = P (s (1))

1<t: <T

We express the above parameters and the statistics retatieel hidden Markov model with the following
matrix form:

(M) = (m - TLm )
() = (au() - all.me))
Bi(1)
(Br) = :
Bi(I1.me)

Py -y D5 = 1)
(P (yelse)) =

Py -yl s = 1, me)

We express the above parameters and the statistics retated katent structure influence model with the
following matrix form:

1 1 C C
() - (S A )
mi mc
C C
(o) = ( o) o am) o ol o 7 Dme) )
mi mgc
50 (1)
: my
Y (my)
c) .
(ﬁt) - ©) :
(1)
: me
5 (me)
(1) (1) (1) (1)
o (e PuYIsD —1) ... prWs®h =
<p(y()’3( ))) = diag( (v 1S ) (v 1Sy m)
mi
Py (C)|S(C) 1) - Py (C)|S(C) = me) )
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With this notation, we can verify that the statistical paedens for a hidden Markov model can be
expressed in the following non-recursive form

(ar) = (m)-(Py1ls1)) - G- (P(y2ls2)) -+~ G- (P(yelst))
(Be) G- (P(og11]s)) -+ G - (P(orls)) - 11T, mex1
(1) = (an).*(Br)
(Giotv1) = G.x((B) - ()
Plyr---y) = (OéT)‘i(H o) a=1-(B1)=ar B

The forward and backward parametéss) and(/3;) can also be expressed in the following recursive form:

d(s
(a=1) = () (P(yils1))
(ar41) (ar) - G- (P(yels))
(ﬂt:T) = 1Hcch1
Be) = G- (P(yesls)) - (Be1)
Since we have assumed that the probability mass functianst(‘fband the probability mass functions

for S; can be mapped to each other with the marginalizing operatand its inverseé3 ™, the space of valid
probability mass functions are restricted, and the tramsinatrix has the restriction thét = BB*GBB™.

With this assumption, we can recombine the terms and wriertarginal forward paramete(sygc)> as the
following:

7-BBT-(P(y|s1))- BBY-G-BB*-.-BB*.G- BBt (P(yst))
(Oét) - B
= (7 B)- (BT (P(yls1)) B) - H-- H- (B (P(yls:)) - B)

>

We can also recombine the terms and write the marginal bad@mameter{ﬂt(c)) as the following:

(Be)
<6t0)> L H- B+'(P (Yt+1lst+1)) - B

BBY -G BB" - (P(yi41lst)) - BBT - G- BB - (P(yrlst)) - 111, m.x1

( )

= H- (BT (P(yts1]st41)) - B) -~
( )

H - (B* - (Plyrlsr) - 11, mox1 )
-H - (BT - (P(yr|st)) - B) - (BT - 111, m.x1)
-H - ) -

(BT - (P(yrlsr) 1;721

H - (BY - (P(yi41lst+1)) - B B) -

3) = B-(47)
The likelihood of observing sequenge- - - yr can be expressed as
Plyr---yr) = (Oégc)) : (@(C))
The recursive formulas for the marginal forward and backiymrameters are thus:
= (79) - (B"- (Pls) - B)

)
() = (o) H- (B (Plysals) - B)
) - Zln%'lzmcxl

)

= H- (BT (P(yts1]st41)) - B) - <ﬂt+1)
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As a result, if we can compute@B™ - (P(y|s¢)) - B) in terms ofSt(c), we can make the inference without
involving S;. This is actually true, as we will demonstrate below.

Theorem 3. Let 1< 86 < Me, Wherel ¢ < C, be random variables, and the random variable
<C <c<C
S ((St(c)> o > be the index o(S(C)) . The random variables() are independent:

P (5 <<3(c)>1sc§c>> _ 1:[P (S(c)>

.LetB(( my --- mc ))andB* be the marginalizing matrix and its inverse, and
P(S=1)
obslik = BT. -B
(5= II.me)
We have
L
obslik(ci,c0,i,j) = — 2iter g - P(S) = j) +

(Tem) - (S )
L_p(Ss) =4). P(S(2) =j) |1 #co

Hk;écl Lo
T P8 =) a=eni=g
0 ,C1 = CQai #]

2.1.3 Parameter Estimation

In this section, we give the likelihood function for a latstdte influence model, with the assumption that the

marginal probability mass functions can be mapped lingarly joint probability mass function. We con-
<c<C

sider two situations: the latent statéS ) e are known exactly, and only a probabilistic estimate of
1<t<

1<e<C
(St(c)) e is known. Based on the likelihood function, we derive theapagter re-estimation formula for
t
o <C

1<c<
the latent state influence model. It should be noticed treatdrelations o St(c) within the same

time slicet are not captured by the influence matrix. They are providethéybservations, when we com-
bine the evidence from new observatidf$y;|s;) with the estimation from old observatiof¥ 5;|¢1....—1).

, , _ 1<e<C o\ 1<e<C
The influence matrix only captures the correlations bew\(e@t(ﬁ)l) and (St( )> :

1<e<C _ ( (C)>1§c§C

corresponding to the observations

When we know the latent states exacq (c)) E)

1<t<T 1<t<T

(e))1se=C () 1=es ol :
(Yt ) = (yt ) , the likelihood function can be computed as follows:
1<t<T 1<t<T

p <<y§0)>::;(f> = (HP (St+151) ) ‘ (Hp( t@))
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We can find a new estimate of the parameters to try to maxirhzéog likelihood function:

oer ((47) 21,

T-1
= Zp T (c) Z 0g Z Z h(fil’?(q) + ZZIng |8t
c1=1co=1 t=1 c=1

> XC: ©) = S g 46 1 2
= p(ﬂsgc) + 1 Z:l Z:I 0og (cl) (02) + Z;Z; ogp(y |3t (2.1)

c=1 t=1 c1=1co t c=

C ¢
= Zié(s( ),z) logﬂl(c) +

c=1 i=1

' T C
ZZZZZ&#”,@ 5(s\2), ) - log h(0102)+zz' 5(s\”,7) - log p(s i)

t=1 c=1 cl=1i=1 j=1 t=1 c=1 i=1
A C me
2 S 3 el
c=1 i=1
C C Mel Me2 C Me
1,¢2)
D20 DD ) oghiT P + 3034 logp(ui”l)
c=1cl=11i=1 j=1 c=1 i=1

where the step 2.1 is according to the Jensen’s inequdil#yfuinction

3i.j) = {é oy

is the Kronecker delta function, and

# = 5(s19,4)

€N ) = 3ok osi )
t=1
T
500 = a1, i)
t=1

are the sufficient statistics fOfi(c), hgcjl’d), and p(yt(c)|z') respectively. We can maximize the parameters
involved in the influence matriX! by equaling them to the corresponding sufficient statistics

) = 7 (2.2)
=(cl,c2)
(che2) _ 1. gﬂi (2.3)
1,7 C Zmd g (c1,c2) )

We can maximize the parameters that map from the latensdiatihie observations in the same way as in
an ordinary hidden Markov model.
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When the latent states at time= 1..7" are not known. We can choose parameters that maximize the
expected log likelihood function:

I (o)) 1SesC
Es1-ar Ing <<yt >1<t<T>]
= Ez.3 Zlogw © + Zlog Z Z h %?2 @ + ZZlogp y{9)s ]

cl=1c2=1 t=1 c=1
(c1,c2)
> Eqpy Zlogﬂ % +Z Z Zloghfdf e +ZZlogp ulst) ]
t=1 c2=1cl=1 S S g
C me
=SSR [ ]
—=1i=1
C Me1 Meo T—1
1) . 2) . 1,c2
Z Z E (1) (e [5( (c ),z) : 5(3&/21),])] -log hgcy 4
p i e S SRR
C me T
Y>3 D E [5(39,2‘)] log p(y;”|i)
c=1 1=1 t=1 k

Il>
(]
S@
g
>]A
J:

c C
SOSTS S EA () - log hlF +ZZW(C log p(y;”|i)

c=1cl=11i=1 j=1 c=1 =1

According to the attributes of the expectation operatorthrdronecker delta operator, the sufficient statis-
tics are given in the following way, and the parameters eeldbd the state transitions are maximized by
equations 2.2 and 2.3:

(C)

6(01 02) (27 j) = Z St(c—lnfi-zl

90 = A0
t=1

We summarize the EM algorithm for the latent structure infieemodel in Algorithm 1.

2.2 The Non-linear Approach to the Influence Modeling

We need to notice that the probability space of a joint randanable S ((S(C))1<C<C) is exponentially
larger than the probability spaces of its constituent ramdlariables, and there are many mappings between
the probability space of the joint random variable and theginal random variables. In Section 2.1, we
defined a class of linear mappings between the joint randamabla and the marginal random variables,
formulated the latent structure influence model based @mtlaipping, and showed that the inference algo-
rithms for an latent structure influence model is equivalerthe inference algorithms for the corresponding
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Algorithm 1 The EM algorithm for the latent structure influence modeldr)

E-Step
(at_l) “H-B* (p(Gi1]5-1) B t>1
(59) = { Efngf?mcjl ) ) =T
: p(yt—lyst—l))B'(ﬂt+1) t<T
() = (af”)-asagl(8”)]
Go1 = diagl(af))]- H-BY (p(fi-a|5i-1) B - aiagl(5”)]
p(y) = <a§6)>'<ﬂtc)>
M-step

e Parameters related to the latent state transitions

T
Aij = normalize[zgﬁjl)_)t]
t=2
Tlel
S =
11><mc
T
dij = normalize[SZ&_l_,tST]
t=2
7 = normalizewic)]

Parameters related to multinomial observations

-

P95y = normalize[z "y’t(c) T Oy.60)]
t

Parameters related to Gaussian observations

4@ >30T 7
t;Y‘t(C) : I)mc><1
c c c)T

(@2 _ Zt%(,i)?ji )gt() _ Aoy T

i - i M

Zt ’Vt(C) : 1mc><1
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hidden Markov model. In this section, we show that a nonaimaapping from the marginal random vari-
ables to the joint random variable also exists (the mappio fthe joint random variable to the marginal
random variables is always linear). We also formulate ttenlsstructure influence model based on the non-
linear mapping, and derive the inference algorithms. Weseié shortly why we need to map the marginal
probability distributions to the joint probability didhution, and why we call it non-linear.In the non-linear
case, the forward-backward algorithm for an influence m@dah approximation to the forward-backward
algorithm for the corresponding hidden Markov model.

In the following paragraphs, we describe the influence patars, the evolution of the marginal latent
state distributions for individual processes, and the mdagiens for individual processes as probabilistic
functions of the latent states. The usage with an influenadeirie generally: inference of latent states given
parameters and observations, estimation of paramete¥s fitent states and observations, or simultaneous
latent state inference and parameter estimation from wéisens. A graphical model representation of
the influence model is plotted in Figure 2.2. In this figures left column represents basis step, and the
right column represents the induction step. Black squakeslaservable, and white squares represent latent
states. Our task is to learn the parameters and latent $tate®bservations. The two-column convention
is adopted from Murphy [2].

Let us assume that we ha¢éinteracting stochastic processes and1 < ¢ < C) number of latent
states corresponding to procesm the system’s behavior space. Following Asavathiratha#] jve use
D¢ as the network (influence) matrix, whose columns each ado pand A2 (1 < ¢, ¢; < C)
as the inter-process state transition matrix, whose rows ag tol. The influence matrix is defined as the
Kronecker productl = D @ A = (de, ., A2)) = (hgf]l’”)) where H is a block matrix whose sub-

matrix at rowe; and columre is dChCQA(Cl’@). The influence matrix is used to generate the marginal latent
state distributions for individual processes at titme 1 from the marginal latent state distributions at time

¢. The marginal latent state distributions for individuabgesses at time 1 is given as#(© = (p(s\ =

1),...,p(s? =me)) 2 (79, ..., 2), and we concatenate the row vectaf® into a longer row vector
7= (70, ..., 7).

We express the marginal probabilistic distributions ofeﬂagc) for processes at timet as a row vector
ﬁ(.&) = (p(s () _ = 1), p(s; () _ 2),...,p(8§c) = m.)), Wherel < ¢ < C, ij(sgc) = j) = 1, and

concatenate these row vectors together into a longer rotoneg(s;) = (ﬁ(sgl)),ﬁ(sgz)), e ,ﬁ(s§0>)).

Using this notation, the influence marginal latent staté&rifigions for individual interacting processes are
evolved as

p(8i+1) = p(5)-H
p(51)) = 7#

There are many ways to establish the equivalence relativela an influence process represented by the
influence matrixd and a Markov process represented by the state transitiamxngatWe follow Asavathi-

ratham’s formulation in [12] Section 5.1 = (g; ;), wheregs, 5., = [[.>_,, h(fil’) O Intuitively, this
means that we can linearly combine the marginal latent diatebutions at time to g7ef[+ti1e marginal latent
state distributions at time+ 1, and that a joint latent state distribution for a system cafaeltored into the
product of the marginal latent state distributions of indiial processes for this system.

The observations;ﬁc) for processc at sample timed < ¢ < +oo can be either finite symbolic or
Gaussian and are statistically determined by the correbpgratent stategc). When the observations for
processc are symbolic, we use, to represent the number of observation symbx}% € [l...n.. We
define B() = (bl(.?), Wherebgf} = p(0l® = j|s(© = 4), as the observation matrix. When the observa-
tions for procesg are Gaussian, we use to represent the dimensionality of the. number of Gaussian
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P(;ﬁlz)ﬂ =z xd AT '72 5t+1 =22 n( St “di AGD
xp(ai2, |3 li xp(3i3h 158
p(E2) = () - p(a, 58 p@) = p(E)P @iﬁ )
>
p(E2) = 7@ () = 2 p(E ) di 2 A

><P(01 )1|552:)1
L2) | 42)

p(62) = p(52)) - p(62152)) @152

2)
P(0t+1) = P(5§+ VP (01 15341)

)
C s,
p(iﬁ:i) =) wde o ACC) (9t+1> > P(gL )di, cALO)
xp(G )5 = xp(3i 115 ])
C C C C C)
p(A9) = p(E)p(E159) p(a)) = p(E D@D ED)

Figure 2.2: A graphical model representation of the infleemodel.

distributions corresponding to each latent st € [1...m.]: 0 ~ N (u' £2>)'

s(c)’

2.2.1 Latent State Inference

In the inference algorithm below with a non-linear mappinggipretation of H, the computation of the for-
ward parameters needs special care. be the conditionalrmabpgobability forstc) given the observations

yt(fl) wherel < ¢; < C andtimel < ¢; < t. Let the marginal backward parameters be the conditional
1<01<C
robabilit of( “”’) 7 givens!®
p % Ye, b1<t, <T g ¢

Theorem 4. Let the marginal forward parametetéc st ), the marginal backward paramete@ 2 )
the marginal one-slice parametets® (s\”), the marglnal two-slice paramete&s®;?) (s{"), Efl)) of a

latent structure influence model be

c c a))sasC
A6) = o (40, ()55

1<t <t

(c1>)1§°’1§0 (c)
(ytl t+1<t1<T‘St

¢ c c 1<c1<C
A = P () D)

1<t <T

c C c1 I<a<C
5 () )

(c1,c2) ca) (c2) .
& ( Sii1) L<t,<T

—t+1 » 2t+1
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They can be computed recursively in the following way:
c c c 1<e<C c C
a6 = o () ) A
1
c c c 1<e<C c c c1,
o620 = o () T) X acEhn

C1y8;
Vi) =1
c c - c,c c 1<e<C
5§<)T(31£ )) = Z Z (£6)1 (c1) * <<y1§+)1) ‘ §+1> 5t+1( t+1)
a=1 (1) _y Pett
sl =

06

C1,C; C C C1,C: C: C: C ISCSC C
R SE) = ) B BRI P((yﬁﬁl) \s§+21’>

ol (50 . 8O (500

Proof. In the following, we demonstrate that we can solve for thegimat forward parameters without first
solving the joint marginal forward parameters.

e Basis Step
oz(Sgc))
= p <S§C)v <y§61))1<61<0>
(e )
S\ 1< <C c
= (0 ) o
e Induction Step
a(sgz)
= p é%(%f”)if:f
o)) (.6 )

o (st (y<c1>>150130 e
t—19 \ Yy 1<ti<t—1 sgill)sgc)

Z Z “)) 25) (©

c1=1 (1)
s =t

o
<
o~

s)

—

—
A
o
A
Q
o
o~
X))
\_/ N— \_/\_/
[

In the following, we show that we can get the marginal backiearameters without the knowledge of the
joint backward parameters.
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e Basis Step. We have(s

57

() = 1 trivially, and

TECTRC N o S NIV O AL
Z (sp') - Blsy’) = Z p (ST ’(ytll )1§t1ST
91 si)=1
T T
_ (er)) ' S1=C
- p<<yt1 )1§t1<T
C m
1 SO @y _ (e1)) =1
C z—; © olor ) Bler) = <yt1 )1§t1<T
c= s=1
¢ Induction Step
5(3§C<)T)
1< <C

p ((yt(f )>

t+1<t1<T

)

mc
_ () [, (e)\'=S9=C | ()
= Z p<3t+17(yt1 )t+1§t1§T‘st 1< <C
o
C mg
1 () [, (e)\'=a=C ) (o)
- C 2. 2. (St“’ (ytl )t+1<t <T ¥
=1 sﬁille <t1<
C mg
1 () == (@)
= E'CZ:I (Z): p((yt1 >t+1§t1§T|5t+1 p(5t+1|5t )
= stillzl
C mo
1 (c1)\ 1=e=C (c1) 1<a<C (o) (c1
- EZ Z ((ytl >t+2§t1§T|St+1 ' (yt+1) |sihi ) - p(sidalse” )
-
_ 1 — p(ee) () 1Sa=C (o)
- Z Z A( 3t+1 o0 glen) P \Y |S141
c1=1 s

t+1_

The one-slice parameteﬁs
backward parameters

01702

The two-slice parameteéét 1(s

1

) can be computed from the marginal forward parameters andanginal

1< <C

' ) |s§0)>

) can also be computed from the marginal forward parameters

t+1<t1<T

c ) (e2)

» St
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a§0>( (c)) and the marginal backward paramet,éf@

c1,cC c c c c1 1<e1<C
el ) = (s (o )>l<t1<T>
_ (e1) [, () ==C ,
B <St (ytl >1<t <t P<st+1|st )
() 'S5 (e () 'SA=C ) (o)
P<(yt+1> ‘Stfl P (ytll >t+2<t1<T|St+21

c c1,c e\ 1IsasC (. c
= ol P () ) e

St t+1
]
2.2.2 Parameter Estimation
Suppose the latent states at time 1..7" is already knowrt; = s§1> (C) . The likelihood function is
(C) 1§C§C
p <(yt )1§t§T
T—1
= 75 (H g§t—>8t11> ’ (Hp(y?!i))
t=1
T c Lo T C
- () (T X, ) (T 1)
t=1c2=1cl=1 t=1c=1
We can find new parameters and try to maximize the log likelihfunction:
(C) 1§C§C
logp <<yt >1<t<T
= Z logﬂ e + Z Z log Z h(cilgﬂ (2 + Z Z log p( yt ]st
t=1 c2=1 cl=1 t=1 c=1
> Z logw e + Z Z Z log h(cilgﬂ (2 + Z Z log p( yt ]st (2.4)
t=1 c2=1cl=1 t=1 c=1
C me
= Z 5(35), i) - logﬂ(c) + (2.5)
c=11=1
T—1 C C me1 me2 ) ) Led T C me
SNSTS S i) - a(si ) og bGP + DS N a(s(,4) - log p(yi )
t=1 c=1cl=1 i=1 j=1 t=1 c=1 i=1
A C me
2 Z 7?2(0) logﬂf )y
c=1 i=1
C C Mel Me2 R 1 2 C Me
STSTS N @i 5) dog b + 373" 59(3) - log p(ys i)
c=1cl=11i=1 j=1 c=1 i=1
where the step 2.4 is according to the Jensen’s inequatityttee functiorn(i, j) = , ; ] is the Kro-
el

necker delta function. From 2.5, we know thdt = 6(s\”, ), 12 (i, j) = STV 6(s\ 4).6(s\7) 7).
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andy(© (i) = -7, 6(s\”, i) are the sufficient statistics far.”), hz(cjl’cz), andp(y.|i) respectively. We can
maximize the parameters involved in the influence makfivy equaling them to the corresponding suffi-
cient statistics:

NOR (26)
=(cl,c2)
1 ;
peved _ LGy (2.7)
2% C mea &(cl,c2)
S €

We can maximize the parameters that map the latent statée tobservations in the same way as in an
ordinary hidden Markov model.

When the latent states at time= 1..7" are not known. We can choose parameters that maximize the
expected log likelihood function:

[ () 1<e<C
Esysr Ing <yt >1<t<T
(c1,¢2)
= Esisp ZIOgW © T Z Z log Z h ?cl? o) + Zzlogp ulst) ]

t=1 c2=1 cl=1 t=1 c=1
(c1,c2)
> Ez.3p Zlogw © + Z Z Z log h fclf ) + ZZlogp y{9s) ]
t=1 c2=1cl=1 t=1 c=1
C me
= Z E (0 [5(3&0),1)} -log 7Ti(c) +
c=1 i=1 !

C
13D 3) 9 D) ST LELR IR BTl

St St

C me T
3 ZESE@ [5(39, )] log p(y7]i)
c=1 1=1 t=1
C me
= Z 7?2(0) logﬂl( ) 4
CZI Z:Cl Mel Mea ¢ me
003D £ loghT + 303590 logp(ui”)
c=1 cl=1 =1 j= =1

According to the attributes of the expectation operatortardronecker delta operator, the sufficient statis-
tics are given in the following way, and the parameters eeldb the state transitions are maximized by
Equations 2.6 and 2.7:

() _ (C)
£eLe)( 5y = Zsﬁ‘it‘fl

SCIOR SRlt
t=1

The parameters are re-estimated in the same way as in thenkatamt state case.
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Algorithm 2 The EM algorithm for the latent structure influence model

E-Step

62: _ {ﬁlxzmc ~ t = 1
Qp_1-H - diag[bt] t>1
_ 1
L
N, =
w L o)
= i
& = a-nN,

Bt = sz0><1 t=T
H - diag[bt]/\/tﬂﬂtﬂ t<T

% = d - diag[f]
1 = diag[o‘it 1] - H - diag[bs] - Ny - diag|F]

p(@) = HZ@I&C

t,ce i=1
M-step

e Parameters related to the latent state transitions

Ay = normallzeg §t o

t=2
Tlel
S =
11><mc
T
dij = normalize[SZ&_l_,tST]
t=2
7 = normalizewic)]
Parameters related to multinomial observations
P95y = normalize[z "y’t(c) T 5yt,5<c)]
t
Parameters related to Gaussian observations
— T
#(C) _ S, (c) ~(c)
Zt —»(c : mc><1
() ~c) ~(c)
Y y
EZ('C)Z _ Zt tz t . _»Z('c) ’,JZ('C)T

Zt : mc><1
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2.2.3 Viterbi-decoding of the Influence Modeling

Theorem 5. Finding a Viterbi path for an influence process is NP-conmmlet

Proof. We prove this theorem in 2 steps. We first show that given a hard

assignment for all latent variables on all processes attime (i.e. sgﬂl »1<e<C, 1<i<mis

either 0 or 1), finding a hard assignment for all latent vaeiaton all processes at timéi.e. s, 1 < ¢ <
C, 1 <i < m,is either 0 or 1) is NP-complete. We then show that we haveubuipservations together
with output matrices that fix; 1 while do not fixs;.

(Given s,y 1, finding 3, to maximizep(3;41|5;) is NP-complete) We reduce from the SATISFIABILITY

problem to an influence process with 2 time steps (stgmd step + 1), such that when the conjunction
normal form under consideration is satisfiable, we havelafat, |, where sgﬁl = 2 from some unknown
start states; to a specific stat@, ; with probability greater than O for the constructed influepcocess.
Following the notation of [15] A9.1[L01] SATISFIABILITY, w have SeV = {uy, .., ups } of variables,
collectionC' = {{4;,, ;,, .., ui,, }i=1..n } Of clauses over U, wheremeans. or or its negatioru. We know

that the SATISFIABILITY problem in general is NP-complete.

We construct the influence proceBs = D ® A = (d;;A;;) as follows: H hasmax (M, N) chains,
whereM is the number of boolean variables aNds the number of clauses. Eagdf) A;; is a2 x 2 matrix.
The evaluation of each boolean variahlgo true or false is represented by selecting either the brstar
the second row of;; A;; . After we have chosen one row for eachwe sum the rows together and get a row
matrix. Then we choose one entry for egcland multiply the entries together. The result is the prdivab
([12] (5.11)). We arrange the influence matrix in the follogriway such that when the conjunction normal
form is satisfiable, we have a path through: When the numlaeisek is less than the number of variables,
i.e., M > N, we fill all entries ind;;A;; with positive values, such that evaluation of boolean \meis
won't “block” the path. When variable; does not appear in clausg , we put 0 intod;; A;; such that
evaluation of variable:; does not provide a path through. wh&nappears in clauseg; , we setd;; A;; to be
d;j < (1) (1) ) , di; > 0 ,such that the evaluatiany, = 0 provides a path through.when appears in clause
10
0 1

To show that there exists an non-deterministic polynom@litfon, we note that we can solve all
p(5:4+1]5) for all 5, and get the maximum of these joint probabilities.

(We can provide observatior, o;+1, and output matrixB(©) to fix the latent stat@;1 while leaving
Lo ) That is to say, i6(© = 1, theno© = 1. If

c;j , We setd;; A;; to bed;; - < ) , d;; > 0 ,such that the evaluatiany = 1 provides a path through.

R JS)
s(© = 2, then there is a 50% chance thét = 1, and a 50% chance that® = 2. To look it in another
way, if o) = 2, thens(©) = 2. If 0(©) = 1, then there is a 67% chance th& = 1, and 33% chances that

s = 2. Now we stipulate that\” = 1, 0\7, = 2. O

g, undetermined) We set the output matBx®) = (

We use the following example to illustrate how the corresjiog influence matrix for a given conjunc-
tion normal form is constructed.

Example 5. LetU = {ul, U9, U3, U4} ,andC = {{u1 Vug V ’u,g}, {'1[1}, {UQ V 1[2}, }
. The constructed influence matrix looks like this:
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Wl

Il
Q==
Q==
D0 —
DO 0| —

Wl

N N L N LN L N N N e
N N L N LN L N N N e

Let's sets; = [1 0|0 1|0 1]0 1] , i.e. we setu; = O,us = 1l,u3 = l,us = 1, after we add the
corresponding rows together, we ha¥,_, , s s Hi« = [3 5[0 1|3 5/1 1] . This evaluation satisfie§’
sincesy = [0 10 1/0 1|0 1] is a solution. When we st = [0 1{0 10 1|0 1] , we haved _;_, 4 ¢ Hix =
(2 2110/ 3|1 1], we know it is not a solution sineé? (2) =0 .



Chapter 3

Experimental Results

In this section, we illustrate how an influence model canu@pthe correlations among different dynamic
processes and thus improve the overall dynamic inferenderpgance. We give three examples. In the
example of interacting processes with noisy observatiaad|lustrate the structure that an influence model
tries to capture, and how an influence model can be used towagtassification precision. We then extend
the noisy body sensor net example and compare the trainiagsend the testing errors of different dynamic
models. In the social network example, we illustrate howddke phone usage information can be used to
recover geographical information as well as the sociatsire of the cellphone users.

3.1 Interacting Processes with Noisy Observations

Let us suppose that we have six stochastic processes, arahwdesthese six processes with six sensors.
Each process can be either signaled (one) or non-signated) @t any time, and the corresponding sensor
has approximately 10% of its samples flipped. The interaatibthe six stochastic processes behind the
scene looks like this: processes one through three tendvibtha same states; processes four through six
tend to have the same states; the processes are more likeg ion-signaled than to be signaled; and

the processes tend to stick to their states for a stretcimef. tThe parameters of the model are given as the

following and are going to be estimated;; = ( gZ 8; > ,1<4,j<6,B; = ( ? ; > ,1<i<e,

dij = .33,1 <i,j < 3,andd;; = .33,4 <i,j <6.

In Figure 3.1, (a) shows the sampled latent state seque(ieshows the corresponding observation
sequences, (c) shows the influence matrix reconstructeddampled observation sequences, and (d) shows
the reconstructed latent state sequences after 300 otisrsval he(i, j)** entry of the(c;, co )™ sub-matrix
of an influence matrix determines how likely that process in statei at timet and processs is in statej
at timet + 1. It can be seen from Figure 3.1 (c) that the influence modelpetation recovers the structure
of the interaction.

) (©) (d)

(a
1

| T 5 |
=2 22 23 22
2 4 i 24 o8 a4 N
S 0 03 S
S6 | | S6 S S6
& . 500 1000 & . 500 1000 5123456 & . 500 1000

time step time step process id time step

Figure 3.1: Inference from observations of interactingaiyit processes.
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A comparison of different dynamic latent structure models
on learning complex stochastic systems

testing error (HMM16)

testing error (HMM64)

v

training error (HMM16)

“~\-____&—testing error (HMM/chain)

training error (HMM/chain)

training error (HMM64)
training error (influence)

testing error . —
0 50 100 150
s

Figure 3.2: Comparison of dynamic models.

The influence model can normally attain aroids accuracy in predicting the latent states for each
process. The reconstructed influence matrix has 8%lyrelative differences with the original one. Using
only observations of other chains we can predict a missiagn@hstate with87% accuracy.

We then constructed a more complex experimental settingnopare the performances of different
types of hidden Markov models. In this setting, we have a Margrocess witl2®, whereC' = 10,
number of states and a randomly generated state transitrnxmEach system stat& is encoded into

a binarysﬁl) e S§C>. Each of them,. = 2 evaluations of “bit”sﬁc)corresponds a different 1-d Gaussian

observationo|”: Digit s\) = 1 corresponds to\” ~ A[u; = 0,02 = 1] ; Digit s\” = 2 corresponds
to o§0> ~ Npz = 1,03 = 1] . Figure 3.2 compares the performances of several dynateictlatructure
models applicable to multi-sensor systems. Of the 1000 EEni@;)1<:<100 , We use the first 250 for
training and all 1000 for validation.

There are two interesting points. First, the logarithmycataled number of parameters of the influence
model allows us to attain high accuracy based on a relatsmigll number of observations. This is because
the eigenvectors of the master Markov model we want to ajpmate are either mapped to the eigenvectors
of the corresponding influence model, or mapped to the naltswf the corresponding event matrix thus
is not observable from the influence model, and that in aufdithe eigenvector with the largest eigenvalue
(i.e., 1) is mapped to the eigenvector with the largest eigieie of the influence matrix [12]. Secondly, both
the influence model and the hidden Markov model applied twidiglal processes are relatively immune
to over-fitting, at the cost of low convergence rates. THisasion is intuitively the same as the numerical
analysis wisdom that a faster algorithm is more likely tovarge to a local extremum or to diverge.

3.2 Real-time Context Recognition

An early version of the Life-Wear real-time context recdmgm system was developed by Blum [10], and
is comprised of a Sharp Zaurus PDA, an ambient audio recorddrtwo accelerometers, worn on hip and
wrist. This system is designed to classify in real time elgbations, six speaking/non-speaking status, six
postures, and eight activities. The classification is edraut in two steps: A pre-classifier (single Gaussian,
mixture of Gaussians, or C4.5) is first invoked on the audid accelerometer features to get a moderate
pre-classification result of the above four categories.

The pre-classification result of different categories mntiied into an influence model to learn inter-
sensor structure, and then this learned structure is uggehterate an improved post-classification result. In
this example the influence model learns the conditional givdities that relate the four categories (location,
audio, posture, and activity) and then uses this learnegeinfle matrix to improve the overall performance.
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Influence Matrix
rt]:ff;%e
outdoors 0.25
indoors 4
restautant
0.2

omer eakef 11
distan F3/0|ce 12
crowd 13 015

0.1

0.05

o ypin 24
Saping [ 2
PP ~driving 27
brushing teeth 28
doing the dishes 29

Figure 3.3: Influence matrix learned by the EM algorithm.

For example, given that the Life-Wear user is typing, we capéct the row of the influence matrix cor-
responding to “typing” and see that this person is very jikel be either in the office or at home, to not
be speaking, and to be sitting. As a result, the action ohtymian play a critical role to disambiguating
confusions between sitting and standing, or between spgals not-speaking, but not between office and
home.

By combining evidence across different categories usiegrifiluence model, the classification errors
for locations, speaking/non-speaking, postures, angitiesi decreased by an average of 23%, from 38%,
22%, 8% and 27% to 28%, 19%, 8%, and 17% respectively. Thegtasdification for postures does not
show significant improvement because of two reasons: ($)already precise enough considering that we
have labeling imprecision in our training data and testiatadand (2) it is the driving force for improving
the other categories, and no other categories are morénctirvda the posture category.

3.3 Speaker identification of a group meeting

Automatic speaker identification is important for docunmegthe meeting audio recordings. When com-
bined with the speech recognition technique, we can gemargbmatic meeting reviews.

The speaker identification algorithm to be discussed ingbition uses the audio recordings for indi-
vidual meeting participants. It assumes that a meetinggaee as a finite state Markov chain involving its
interacting participants, and each state describes adiffeonfiguration of who is speaking. The Markov
chain is latent and to be inferred. It also assumes that teeygmistributions for the audio recordings are
random variables conditioned on the latent states of th&kdtachain.

The specification of the latent Markov chain needs carefokicteration, since the number of states for
even a moderate-sized meeting can be very large. For exalaples assume that we hameparticipants
in a meeting, and each participant can only be in two staj@salsng, and non-speaking. The number of
possible states for the meeting is tH&h On the other hand, we noticed that human interactions ssigh a
a meeting is highly structured: there is normally one pergmeraking in a meeting session. The situations
where all people speak are rare and normally unimportanis,Tihstead of working with a hidden Markov
process with alR™ possible sates, we work with a dual latent structure inflagmrocess with only, + 1
number of states: one for each speaker and the rest for all sitvations.

The meeting data we are going to analysis was recorded fratherrcasual group meeting in 12/21/2004.
It lasts for 44 minutes, from a clapping at the beginning @f theeting to another clapping at the end of
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the meeting. More thaf9% of the meeting time was occupied by seven persons: one adlédb®led

as sandyl1221), and six students (labeled as msungl22122bniven1221, juan, jon, and anmol). We
assigned the four microphones to the following people: mg$dal, ron1221, sandyl221, and wenl1221,
and recorded the meeting from their angle. When one of thedertsons was speaking, we would expect
his microphone to pick up a louder voice than the other threzaphones. When one of the other three
speakers was speaking, we would expect different energijdiions among the four microphones due to
the relative positions of the three speakers and the fouropiones.

The speaking/non-speaking status of different personisear@-labeled and illustrated in Figure 3.4. The
normalized energy distributions among the four audio chlnim one- second-window bins (the features
we use) are plotted in Figure 3.5. Our goal in this sectiomlg to illustrate an application of the latent state
influence model. The readers can choose more advancedggatuch as the pitches for different speakers,
in other similar applications to attain better accuracy.

The ground truth of who is speaking
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Figure 3.4: The ground truth of the speaking/non-speakiatys of different persons in a meeting.
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the audio features used to identify speakers
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Figure 3.5: The features used to identify the speakers.

This section proceeds in the following order. First, we déscand compare different approaches to
align the audio sequences. Then, we segment the meetingebiesg with various unsupervised methods
(k-means, mixture of Gaussians, hidden Markov modelingl, thie influence modeling). The influence
model out-performs the other models, since it better capttine structure of the speaker identification
problem. Next, we segment the meeting by speakers withwsgopervised methods (mixture of Gaussians,
hidden Markov modeling, and the influence modeling). Agtie,influence model out-performs the other
models. We conclude this section by a discussion of why ttheésince modeling fits the structure of meeting
interactions better than the other models used in thissecti

In situations where the signal sequences have a commormegepoint (such as a global time stamp),
and the signal sequences do not have jitters, the sequdgoenaht issue is simple. However, in many
interesting applications, we do not have such a global titawes for us to precisely and trivially alignment
data. For example, the signal sequences collected by emthatieiices are often not synchronized, due
to the simplicity requirement of those devices. In such ades, we need to consider the cross-sequence
statistical characteristics to design an aligning albanit

We assume that the sound signals picked up by different plicnoes are linear combinations of the
sound sources (the persons). The weights of the sound sanedifferent from microphone to microphone,
due to the different relative positions of the sound soumes the microphones. We segment each of
the four sequences into five-minute segments, and shifegponding segments to attain maximum cross
correlations. The cross correlation of either the low-g#issed sound waves or the spectrogram amplitudes
of the sound waves are used. We attain very close resultsiinapproaches. The aligned wave sequences
are then overlapped (summed) together and played back ge jii quality of the alignment. They are
aligned very well and we cannot hear discrepancies in theiddtes span.

We first show how to separate the four speakers wearing ntiorggs using unsupervised learning tech-
nigues. The assumption is that when one/none of the foukepeavho wore a microphone was speaking,
the energy distributions among the four audio channels sigrgficantly different to reveal who was speak-
ing. The speaking/non-speaking classifier can work in tHeviing way. The samples were first captured
with five (number of speakers who wore microphones + 1) dlasté cluster can then be assigned to a
speaker if the channel corresponding to this speaker handstenergy statistically.

The (unsupervised) classification results with the k-medgarithm, the Gaussian mixture models, the
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hidden Markov model for all audio channels, one hidden Mankmdel per audio channel, and the latent
state influence model are respectively plotted in Figurés®7, 3.8, 3.9, 3.10, and 3.11.

seperating the speakers with the K—means algorith
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Figure 3.8: Unsupervised speaking/non-speaking claagdit result with the Gaussian mixture model
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seperetmg the Speakers with the influence EM
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Figure 3.11: Unsupervised speaking/non-speaking cleatdhn result with the latent state influence process

seperating the speakers with the hidden Markov process EmnM algorlthrn
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Figure 3.9: Unsupervised speaking/non-speaking claagdit result with one hidden Markov process

Seperatlr\g the Speakers with one HMP per speaker

msungl221.wav

ronizzi.wav

sandyl221.wav [

wenilizz2l.wav

S Eo s 2o

S
I 1

I) I‘% |

S = fo o = D) S 1 5o o

sSSSsSSsSsSsSSsSssSsSsssSsssssss

IIIF

.FI [l Tl \II III

SSSSSsSSsSSsSSsSSsSSsSssSssSsssssss8s

=

s

Figure 3.10: Unsupervised speaking/non-speaking cleagdin with one HMP per speaker

The (supervised) classification results are plotted infeigul2 and 3.13.
In order to understand why the influence model based classifieperforms the other classifiers, it is
important to notice that the influence model combines théesmge from different channels in the “concept”

level, i.e., when speaker A is speaking, speaker B is veshliko be non-speaking.

In comparison, the

other classifiers either combine the evidence from diffechiannels in the feature level or do not combine
evidence from different channels at all.
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seperating all people with Supervlsed [SIVIV]
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Figure 3.13: Supervised speaking/non-speaking clagsiiiceesult with the influence model

3.4 Social Network Example

The social network example demonstrates reconstructiegstitial structure of a set of subjects from
their cellphone-collected data [8]. In this data 81 sulsj@ebre Bluetooth-enabled mobile telephones that
recorded which cell towers were visible to the telephonas thllowing coarse estimation of the wearers’
location, and which Bluetooth devices are nearby, thusvitig inference of proximity to other subjects.

Note that Bluetooth signals include a unique identifier, ang typically detectable at a range of only a
few meters. In this study fixed Bluetooth beacons were alspl@rad, allowing fairly precise estimation

of subjects location even within buildings. Over the ninenths of the study 350,000 hours of data were

recorded.
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Figure 3.14: Finding social structures from cellphondemtéd data. (a) New students and faculty are
outliers in the influence matrix, appearing as red dots ddertge self-influence values. (b) Most People
follow regular patterns (red: in office, green: out of offibdye: no data), (c) clustering influence values
recovers work-group affiliation with high accuracy (labst®w name of group).

The temporal evolution of these observations was analyzed)uhe influence model with 81 chains,
corresponding to the 81 subjects. Each subjects’ chain wst@ained to have two latent states (“work”,
“home”) but with no restriction on social network conneittiv

In our first experiment with this data the observation veftoreach chain was restricted to the cell
tower visibility of each subjects’ 10 most commonly seenl talers. In the resulting model, the two
states for each subject corresponded accurately to ‘infflem’oand ‘at home’, with other locations being
misclassified. The resulting influence matrix, shown in Feg8.14 (a), demonstrated that most people
follow very regular patterns of movement and interpers@salociation, and consequently we can predict
their actions with substantial accuracy from observatiohthe other subjects. A few of the chains were
highly independent and thus not predictable. These chaimsesponded to new students, who had not yet
picked up the rhythm of the community, and the faculty adgisehose patterns are shown to determine the
patterns of other students.

In another setup, we used the Bluetooth proximity distrdsutas our observations. Again, the latent
states accurately reflect whether a person is at home of iceoffHowever with this data the resulting
influence matrix shows precisely the social and geometsitatture of the subjects. The dendrogram from
the proximity influence matrix shown in Figure 3.14 (b) captuthe actual organization of the laboratory,
clustering people into their actual work groups with onlyeinerrors. For comparison, a clustering based
on direct correlations in the data has six errors.
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Chapter 4

Conclusions

The current thesis has described my work in modeling andstadeding the dynamics of human related
behaviors. Those dynamics are characterized by largesgtatees and highly structured interactions. The
latent structure influence process models the dynamics wiahurelated behaviors by emulating how a
group of persons help each other to understand complexssese

The latent structure influence process is a state-spacelnaodkeits inference algorithm alternates be-
tween two steps: time updating (guessing what is going tpémamext), and measure updating (incorpo-
rating new evidence). In this thesis, | have inspected tvifergint approaches for measure updating. In
the linear approach, the individuals in the team of persmuate their guessing by averaging over each
other’s evidence. In the non-linear approach, the indaislwnly care about their own evidence. | derived
the forward-backward algorithm, and the parameter maxdtiim algorithm for each measure updating
method. | also proved that finding a Viterbi path for a laténicgture influence process with the non-linear
measure updating strategy is NP-complete.

The influence modeling is applied to an imaginary network @f@r plants. With the latent structure
influence process, we can have a more accurate understafdimgindividual power plants’ normal/failed
states by looking at each other’s states. We can compute lewadwer plants are connected at the same
time.

We also used the latent structure influence process to segmpeakers in a group meeting, to infer a
person’s location, posture, speaking/non-speakingstand event, and to infer the structure of a cellphone
user community. In all three applications, we either getdoetccuracy, or get invaluable insights that could
not be derived without the influence modeling.

There are several unanswered questions, and | am willingrsup their answers. (1) When monitoring
a general complex process, in what situation(s) does a grbapoperating persons perform better than an
individual? (2) The current latent structure influence pssconly models the degree of agreement of any
two persons in a in a cooperating group. How can we model thatgn that two persons agree in one thing
but disagree in another, and what computational performaoes the extension incur? (3) Theoretically,
what dynamic processes are suitable the hidden Markov gsaed the latent structure influence process,
and how many information do they capture respectively ?
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