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Abstract

In this paper we explore the use of features derived from
multiresolution analysis of speech and the Teager En-
ergy Operator for classification of drivers’ speech under
stressed conditions. We apply this set of features to
a database of short speech utterances to create user-
dependent discriminants of four stress categories. In
addition we address the problem of choosing a suitable
temporal scale for representing categorical differences
of the data. This leads to two sets of modeling tech-
niques. In the first approach, we model the dynamics of
the feature set within the utterance with a family of dy-
namic classifiers. In the second approach, we model the
mean value of the features across the utterance with a
family of static classifiers. We report and compare clas-
sification performances on the sparser and full dynamic
representations for a set of four subjects.

1 INTRODUCTION

Much of the current effort on studying speech under
stress has been aimed at detecting stress conditions for
improving the robustness of speech recognizers; typical
research of speech under stress have targeted perceptual
(e.g. Lombard effect), psychological (e.g. timed tasks),
as well as physical stressors (e.g. roller-coaster rides,
high G forces) [1].
modeling speech in the context of driving under varying
conditions of cognitive load which are hypothesized to
induce a level of stress on the driver. The results of this
research may be not only relevant to building recogni-
tion systems that are more robust in the context de-
scribed, but also applicable to and inspired by applica-
tions that may infer the underlying affective state of an
utterance. We have chosen the scenario of driving while
talking on the phone as an application in which knowl-
edge of the driver’s state may provide benefits ranging
from a more fluid interaction with a speech interface to
improvement of safety in the response of the vehicle.

In this work we are interested 1n
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The recent literature discussing the effects of stress
on speech applies the label of stress to different acoustic
phenomena. Following the taxonomy proposed by Mur-
ray et al. [2], we are investigating the effect on speech
of what the authors call “third-order stressors,” that is,
the effect of external stimuli as well as underlying affec-
tive conditions.

2 SPEECH DATABASE

The speech data was collected in an experiment in a
driving simulator at the Nissan’s Cambridge Research
Lab. Subjects were asked to complete a series of rounds
while engaged on a simulated phone task: while the
subject drove, a speech synthesizer prompted the driver
with a math question consisting of adding up two num-
bers whose sum was less than 100. We controlled for
the number of additions with and without carry-ons in
order to maintain an approximately constant level of
difficulty across trials. The two independent variables
in this experiment were the driving speed and the fre-
quency at which the driver had to solve the math ques-
tions. Subjects drove at 60 m.p.h. in the low speed
condition and at 120 m.p.h. in the high speed condition
(the perceptual speed in the simulator is approximately
half). When a subject complained of motion sickness in
the high speed condition, the speed was reduced to 100
m.p.h. The frequency at which the driver was prompted
for an answer was once every 9 seconds in the slow con-
dition, and once every 4 seconds in the fast condition.
The driver’s answers were captured by a head-mounted
microphone and recorded in VHS format.

3 FEATURE EXTRACTION

Nonlinear features of the speech waveform have received
much attention in studies of speech under stress; in par-
ticular, the Teager Energy Operator (TEO) has been
proposed to be robust to noisy environments and use-
ful in stress classification [3],[4], [5]. Another useful
approach for analysis of speech and stress has been
subband decomposition or multi-resolution analysis via
wavelet transforms [6],[7]. Multi-resolution analysis and



TEO-based features have also been combined for rec-
ognizing speech in the presence of car noise and shown
to yield superior rates [5]. In this work we investigate
a feature set consisting of variants of features proposed
in [5] and [7] based on the TEO and multi-resolution
analysis and apply it to the task of modeling categories
of drivers’ stress.

After sampling the speech signal at 8kHz, multires-
olution analysis is applied to the discrete signal z[n] to
decompose it into M = 21 bands corresponding to the
frequency division shown in Figure 1. The decomposi-
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Figure 1: Subband Decomposition

tion in this implementation is based on repeated iter-
ations of the minimum-phase 8-tap low and high pass
filters associated with the orthogonal Daubechies-4 [8].
Following the decomposition, the average Teager energy
is found for every subband signal according to
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where N,, is the number of time samples in the mt?

band and \Il() is the discrete Teager energy operator:
¥ (z[n]) = 2%[n] — z[n — 1]z[n + 1] (2)

An inverse DCT transform is then applied to the log of
the energy coefficients to obtain the TEO-based “cep-
strum coefficients” Ej [5]:

E = Z log(em)COS[W] I=1,---,L (3)

The extraction of the cepstral coefficients defined in (3)
is applied to the speech waveform at every frame. Define
then EUl as the L x 1 vector containing the cepstral
coefficients from the rt* frame: El'l = [Egr], cee EE]]T.
In order to reflect frame-to-frame correlations within an
energy subband, the following autocorrelation measure
has been proposed [7]:

r+T [n] H[n+7]
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where 7 is the lag between frames, 7T is the num-
ber of frames included in the autocorrelation window,

and j is an index which spans all correlation coeffi-
cients within the same scale along all frames to nor-
malize the autocorrelation. Define the vector contain-
ing the logarithm of the L autocorrelation coefficients as

ACE_LY = [log ACEYL - 1og ACEY)]" We define
the frame-based feature vector as the set of L cepstral

coefficients and the log of the L autocorrelation coeffi-

clents:
El]
rl —
FST = [ ACE_L[ ] (5)

Taking the log of (4) is done to avoid modeling a fi-
nite support density distribution (which results from the
normalization of (4)) with a single or a small number
of Gaussians in the learning stage. The values of the
constants for this implementation are M = 21, 7 = 1,
T =2, and L = 10 (resulting in a feature vector of di-
mensionality 20). The frame features are derived from
24 msecs. of speech and are computed every 10 msecs.

4 MODELING

4.1 Dynamics within the Utterance

In this section we treat the dynamic evolution of the
utterance features to discriminate between the different
categories of driver stress and consider a family of graph-
ical models for time series classification. One of the
most extensively studied models in the literature of time
series classification is that of a hidden Markov model
(HMM). An HMM is often represented as a state tran-
sition diagram. Such representation is suitable for ex-
pressing first order transition probabilities; it does not,
however, clearly reveal dependencies between variables
over time, or clearly encode higher-order Markov struc-
ture. Representing an HMM as a dynamical Bayesian
net (figure 2), however, allows these statistical depen-
dencies to emerge. This representation also suggests
some natural extensions to the structure of the HMM
model and aids in the development of general-purpose
algorithms that may be used to do learning and infer-
ence for a variety of structures. An assumption behind
the hidden Markov model, as shown by the dependency
diagram of figure 2, is that the observations are inde-
pendent of each other given the hidden state sequence.
One may alleviate this limitation by incorporating some
dependency on past observations. A simple way to
do this is through a first-order recursion on the previ-
ous observation. This yields the autoregressive hidden
Markov model (ARHMM) (also known as a switching
auto-regressive model).

The representational capacity of an HMM is also
limited by how closely the number of hidden states
approximates the state space of the dynamics. Since
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Figure 2: Graphical Models

the naive way to overcome this limitation —namely, to
increase the number of states of the hidden discrete
node— yields an increase in the number of parameters
to be estimated, distributed state representations which
make use of fewer parameters have been proposed. One
such structure is the factorial hidden Markov (FHMM)
model. In an FHMM the state factors into multiple
state variables, each modeled by an independent chain
evolving according to the same Markovian dynamics of
the basic HMM.

One can also introduce dependencies between the
chains to impose structure while retaining parsimony.
For instance, the different state chains can be arranged
in a hierarchical structure such that, for any time slice,
the state at any level of the hierarchy is dependent on
the state at all levels above it. (See figure 2 for a model
with 2 chains.) The result — a hidden decision tree evolv-
ing over time with Markovian dynamics — is called a
hidden Markov decision tree (HMDT).

In addition to the single architectures just described,
we also consider the performance of a composite model
obtained by fitting several single HMMs to clusters of
the data set and combining each model’s classification
of a time series. HMM parameters and cluster member-
ships are iteratively estimated by embedding the HMM
training algorithm (which learns the parameters of a
cluster given its data assignment) within a K-means al-
gorithm (which assigns time series to clusters according
to the probability of membership to each cluster). Since
the K-means algorithm requires a pre-specified number
of clusters K, we vary K from 2 to 6 clusters, apply
the procedure described above, and retain the cluster-
ing which maximizes a homogeneity test between the
classes and the clusters Intuitively we keep the value of
K which yields the purest clusters, with most of the clus-
ter members being of the same class. (See [9] for details
on the homogeneity test.)

4.1.1

The family of graphical models shown in figure 2
has in common a set of unobserved discrete states dis-
tributed on a single or multiple chains, and continu-
ous observation nodes. The following formulation of the
learning algorithms can be applied to any of the previous
structures, as well as to extensions not described here.
For instance, a distributed state representation may be
combined with an autoregressive hidden Markov model
to obtain an autoregressive factorial HMM. We will as-
sume that every discrete node has only discrete parents
—that is, the parameters associated with a discrete node
consist of a conditional probability table (CPT)- and
that the continuous nodes have a conditional Gaussian
distribution. We represent the hidden state as a vector
st = [551) ng)]T to generalize to the case where the
hidden state is distributed along several chains, and the
observations as the d-dimensional set {x}7_,. In gen-
eral, a continuous node may have both continuous and
discrete parents. Since the kind of dependency on con-
tinuous nodes we are interested in is first-order autore-
gressive, a conditional Gaussian node has distribution

P(Xt|Xt—1; S¢ = i) ~ N(Xt; Bixt—h Ei) (6)

Learning and Inference.
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Letting x;_1 = 1 and B; = p; in (6), we obtain the dis-
tribution on Gaussian nodes with only discrete parents.

We can do learning on these structures by apply-
ing the EM algorithm. First, we compute the expected
value of the complete data log likelihood given the ob-
servations and holding the current parameters constant
(E step), and then maximize the expectation with re-
spect to the parameters to obtain a new estimate (M
step). The observation-dependent term of the complete
log likelihood is given by

L=F

logH HPT(Xt|Xt—1, st =1, {X}f)%l] (7)

where ¢} = &(s; = 1) is an indicator function. Com-
bining (6) and (7), and taking the derivatives of this
expectation with respect to the parameters of the dis-
tribution, the following estimates are obtained (see [10]
for derivations):

B = [Z (il | [Z o T ®

g — Zav()xexy B; 3, v(i)xi-1x )
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Equations (8) and (9) are written in terms of the expec-
tations (1) = E[qﬂ{x}ﬂ = Pr(s; = i|{x}7). Letting



x;—1 = 1 and Bi = fi; in (8) and (9) yields the estima-
tion equations for the case when the observation nodes
are only dependent on the hidden discrete state.

For each discrete node stm), the parameter set con-
sists of a CPT where each entry iji is the subtable given

by Pr(sgm) = jlpa(s(™)) = i). The maximum likelihood
estimate of the discrete parameters is then given by

NG
TS GG (10)

where (;(j,1) = Pr (sgm) = j,pa(sgm)): 1|{x}f)

The EM algorithm consists of iteratively collecting
the expected sufficient statistics 7 and (; in the E step,
and updating the parameters of the model according
to equations (8)-(10) in the M step. Inference on these
graphs (evaluating the marginals above) can be done via
the junction tree algorithm. In this scheme, the observa-
tions are entered as evidence into the junction tree and
propagated. After two full rounds of message passing,
the junction tree is consistent (all adjacent cliques agree
on the marginal probabilities over their separators), and
each clique of the tree contains a joint probability dis-
tribution over the clique variables and the entered evi-
dence. The posterior over a variable of interest can then
be obtained by marginalization over any clique which
contains it. A similar marginalization can be applied to
obtain the probability of the observation that is needed
in the classification step.

For the implementations reported here, we have
modeled the output distributions with unimodal Gaus-
sian densities. The models’ free parameters have been
chosen as follows: a single HMM with 5 states; a mixture
of HMMs with pre-clustering with 5 states on each local
model; an FHMM with 2 chains and 2 states per chain;
an ARHMM with 1 chain and 3 states per chain; and an
HMDT with 2 chains. We used full covariance matrices
on the single HMM and on the mixture of HMMs, and
diagonal covariance matrices on the remaining models.

4.2 Features at the Utterance Level

Modeling of linguistic phenomena requires that we
choose an adequate time scale to capture relevant de-
tails. For speech recognition, a suitable time scale might
be one that allows representing phonemes. For the
supralinguistic phenomena we are interested in model-
ing, however, we wish to investigate whether a coarser
time scale suffices. The database used in this study
consists of short and simple utterances (with presum-
ably simpler structures than those found in uncon-
strained speech), and hence, global utterance-level fea-
tures might provide stress discrimination. A simple way

to obtain an utterance-level representation of the orig-
inal dynamic feature set is to use a statistic of each
feature time series defined along an utterance (e.g. its
sample mean, median, etc.). For the simulations here we
have chosen the sample mean of each dynamic feature
as the utterance-level feature value. Since the temporal
dynamics are now missing, we use static classifiers to
discriminate the four categories.

We consider two classification schemes, a support
vector machine (SVM) and a neural network (ANN).
A SVM implements an approximation to the structural
risk minimization principle in which both the empirical
error and a bound related to the generalization ability of
the classifier are minimized. The SVM fits a hyperplane
that achieves maximum margin between two classes; its
decision boundary is determined by the discriminant

f(x) = Zyi/\iK(x,xi) +b (11)

where x; and y; € {—1,1} are the input-output pairs,
K(x,y) = ¢(x) - ¢(y) is a kernel function which com-
putes inner products, and ¢(x) is a transformation from
the input space to a higher dimensional space. In the
linearly separable case, ¢(x) = x. A SVM is generaliz-
able to non linearly separable cases by first applying the
mapping ¢(+) to increase dimensionality and then apply-
ing a linear classifier in the higher-dimensional space.
The parameters of this model are the values A;, non-
negative constraints that determine the contribution of
each data point to the decision surface, and b, an overall
bias term. The data points for which A; # 0 are the only
ones that contribute to (11) and are known as support
vectors. Fitting a SVM consists of solving the quadratic
program [11]:

1
max F(A) = A~1—§A~DA
subject to Ay = 0
A < C1
A >0 (12)
where A = [A;---)N]7 and D is a symmetric matrix

with elements D; ; = y;y; K (x;,%;). C is a non-negative
constant that bounds each A;, and which is related to
the width of the margin between the classes. Having
solved A from the equations in (12), the bias term can

be found:
1 ; .
b= -3 % Ay (B (x—,x;)+ K (x+,xi)> (13)

where x_ and x4 are any two correctly classified sup-
port vectors from classes —1 and +1 respectively [12].



We also consider a two-layer ANN classifier provid-
ing a mapping of the form

z = f(x) = g2(Wag1 (Wix+b1) + bs)  (14)

where g¢;, W; and b; are the non-linear activation unit,
weight matrix and bias vector respectively associated
with each layer. We have trained a ANN to minimize
the following error criterion

F=FptFa=-Y tiInz)+wll®  (15)

where t; is a k X 1 vector of zero-one target values en-
coding the class of the x; data point, and w is a vector
containing all the parameters of the network (the entries
of W; and b;). The first error term (E;) is the nega-
tive cross-entropy between the network outputs and the
desired target values. Minimizing this error function is
equivalent to maximizing the likelihood of the data set
of target values given the input patterns. The second
term in (15) (Ey) is a weight decay regularizer that pe-
nalizes larger sizes of network parameters (controlling
smoothness of the decision surface and regularization
ability of the machine) [13]. The weights of the network
are updated according to the rule

Aw =030 = (i +pl) (g +w)  (16)

where g = Y..g' = >, igé: is the gradient of the
cross-entropy error function with respect to the network
weights and H = 3, g’(g’)” is the outer product ap-
proximation to the Hessian matrix. The parameter u
1s a momentum parameter chosen adaptively to speed
convergence. The derivatives needed to compute (16)
are calculated using standard backpropagation.

For the simulations reported here, we have built
SVMs with a Gaussian kernel function having width
parameter ¢ = 5, and two-layer ANNs with 10 and 4
hidden units, and sigmoid and softmax activation units
on each layer respectively.

5 RESULTS AND DISCUSSIONS

The speech data of 4 subjects was first divided into a
training and testing set comprising approximately 80%
and 20% of the data set respectively. The following
labels will be used to denote the four categories of data:
FF, SF, FS, SS. The first letter denotes whether the
data came from a fast (F) or slow (S) speed condition;
the second indicates the frequency with which the driver
was engaged in solving a task: every 4 seconds (fast) (F)
or every 9 (slow) (S). The results of the training and

Models || Training (%) | Testing (%)
FHMM 64.31 41.07
ARHMM 92.67 46.45
HMDT 62.48 39.29
HMM 94.78 49.85
M-HMM 96.44 61.20
SVM 59.52 46.70
ANN 81.94 50.57

Table 1: Mean Recognition Rates for all Classifiers

testing stage for each one of the subjects for the models
previously discussed appear in Tables 2 through 8.

Tables 2 through 6 show the results of the five time
series classifiers (FHMM, ARHMM, HMDT, HMM and
the mixture of HMM). Tables 7 and 8 summarize the re-
sults with a support vector machine (SVM) and a neural
network (ANN). The mean value of the overall recogni-
tion rates for training and testing sets for each of these
classifiers is shown in Table 1.

The average overall recognition rates reported in Ta-
ble 1 show that the FHMM and HMDT models achieve
similar recognition rates on training and testing sets.
The HMM and ARHMM also achieve similar recogni-
tion rates on both data sets, and both sets of classifiers
are outperformed by the M-HMM, which achieves the
highest performance of all models considered. The time
series classifiers can be ranked according to their perfor-
mance as follows: M-HMM, HMM, ARHMM, FHMM,
HMDT. This ranking is consistent with the performance
on both the training and testing sets. The recognition
rates of the utterance-level feature set are not signifi-
cantly different from the recognition rates obtained with
the dynamic feature set, except in the case of the M-
HMM, where the test set performance is notably better.

It is also important to note the variability of these
classifiers in modeling each of the categories considered.
Whereas all the models provide an adequate fit to the
FF category, each of them fails to consistently predict
above random the remaining categories for all subjects
(see Tables 2-8). This may be due to one or more of sev-
eral reasons: (i) the inherent modeling capacity of the
models considered, (ii) an underoptimized local solution
found during training, (iii) the discriminative capacity
of the features for the different categories, or (iv) the
inherent noise in the ground truth of the categories of
driver’s stress due to how accurately the experimental
procedure was able to effectively induce the assigned la-
bels. Since the FF category is the most “extreme” in
terms of driving speed and cognitive load on the driver,
it is tempting to assume that the better performance



Subject Training Rec. Rates (%) Testing Rec. Rates (%)
FF SF FS SS All FF SF FS SS All
1 72.10 | 89.47 | 53.19 | 76.47 | 68.25 || 83.33 | 75.00 0 75.00 | 50.00
2 68.42 | 70.83 | 70.00 | 95.24 | 73.98 || 41.67 0 23.08 | 40.00 | 30.30
3 60.00 | 25.00 | 71.43 | 57.14 | 56.76 || 71.43 0 66.67 0 42.31
4 68.42 | 72.22 | 43.90 | 55.56 | 58.26 || 66.67 | 60.00 | 8.33 | 42.86 | 41.67
Table 2: Classification Results (Factorial Hidden Markov Model)
Subject Training Rec. Rates (%) Testing Rec. Rates (%)
FF SF FS SS All FF SF FS SS All
1 97.67 | 94.74 | 95.74 | 94.12 | 96.03 || 83.33 | 37.50 | 50.00 | 25.00 | 50.00
2 92.10 | 91.67 | 100 100 | 95.94 || 66.67 | 33.33 | 38.46 0 42.43
3 91.43 | 75.00 | 88.57 | 95.24 | 88.29 || 71.43 | 33.33 | 55.56 0 46.15
4 86.84 | 94.44 | 87.80 | 100 | 90.44 || 66.67 | 40.00 | 58.33 0 47.22

Table 3: Classification Results (Single Autoregressive Hidden Markov Model)

on this label may be related to how reliably the driver
became stressed in these portions of the experiment.

6 CONCLUSIONS

In this paper we have investigated the use of features
based on subband decompositions and the TEQO for clas-
sification of stress categories in speech produced in the
context of driving at variable speeds while engaged on
mental tasks of variable cognitive load for a set of 4 sub-
jects. We investigated the performance of several clas-
sifiers on two representations of the speech waveforms:
using a feature set representing intra-utterance dynam-
ics and a sparser set consisting of more global utterance-
level features. The best performance was obtained by
using the dynamic feature set and by exploiting local
models and then combining them in a weighted classifi-
cation scheme. All classifiers produced recognition rates
above random for all subjects, but, with the exception of
the fast-fast category, showed variability in consistently
predicting each of the remaining stress conditions.
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