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Abstract

We introduce an online adaptive algorithm for
learning gesture models. By learning gesture
models in an online fashion, the gesture recogni-
tion process is made more robust, and the need
to train on a large training ensemble is obviated.
Hidden Markov models are used to represent the
spatial and temporal structure of the gesture. The
usual outputprobabilitydistributions— typically
representing appearance — are trained at run-
time exploiting the temporal structure (Markov
model) that is either trained off-line or is explic-
itly hand-coded. In the early stages of runtime
adaptation, contextual information derived from
the application is used to bias the expectation as to
which Markov state the system is in at any given
time. We describe the Watch and Learn system,
a computer vision system which is able to learn
simple gestures online for interactive control.

1 Introduction
One of the challenges in implementing gesture recogni-

tion systems is to design gesture models that work across
a wide variety of users and environments. The problem of
generalization is particularly acute when computer vision
techniques are used to derive features. Lighting conditions,
camera placement, assumptions about skin color, even the
clothing worn by the user can disrupt gesture recognition
processes when they are changed in ways not seen during
training.

We argue that rather than attempt to construct training
ensembles that cover all possible scenarios, it is preferable
to adapt existing models to the situation at hand. This
paper presents preliminary work in developing a system that
learns gestures in an online manner. The only knowledge
explicitly encoded into the model a priori is a Markov
model representing the temporal structure of the gesture.

We demonstrate the technique in a simple gesture recog-
nition system based on computer vision as input. Gesture
is used in an interactive context for controlling interaction
events. We show that with the online adaptive approach,
it is possible to use simple features that are not necessar-
ily invariant to the usual set of transformations that disrupt
recognition processes.

2 Motivation: Online Adaptive Learning of Ges-
ture

Typically gesture recognition systems are trained by
gathering a number of sequences that serve as examples

of a class of gestures, and a model of the class of gestures
is constructed automatically from these examples. Hidden
Markov models (HMMs) are a popular choice to model
gestures because they are easily trained and are efficient in
the testing phase [3].

One of the drawbacks of this traditional approach is that
the trained models only work well in testing if the situa-
tion under which the testing data are collected is typical
of the situations in which the training sequences were col-
lected. A systematic bias present in the testing conditions
with respect to the training data conditions may confuse
the classification. For example, if the input features are
not translation-invariant and the user has moved a bit, the
trained models may no longer be appropriate.

There are two common approaches to this problem: col-
lecting data over many different sessions, and choosing a
feature space that generalizes well. By collecting data over
many sessions and incorporating them all into the example
set, the hope is that the resulting model will encapsulate
all the kinds of variation in the gesture that the system is
likely to see during runtime. The drawbacks of this ap-
proach are two-fold: first, the number of examples that are
required may in fact be too great to be practical, and sec-
ond, as the number of distinguishable situations increase,
the model will require more and more degrees of freedom
to adequately represent the set of gestures.

The second approach, that of choosing the right feature
space, has the chief drawback that it is in general difficult
to craft a feature set that at once collapses the variation of
the signal so that a manageable number of examples are
sufficient, and still allows sufficient detail that the gesture
may be recognized among a set of gestures.

We argue that these difficulties may be somewhat eased
if we let part of the feature selection process happen dur-
ing runtime. In the next section we show how an a priori
model of the temporal structure of the gesture, when com-
bined with constraints from context, makes runtime feature
selection possible. We call this the online adaptive learning
of gesture to differentiate it from the usual gesture recogni-
tion methodology in which the gesture models are trained
off-line.

3 Temporal Structure, Context and Control
The idea of the online adaptive gesture learning algo-

rithm presented in this paper is that if the system has a
representation of the temporal structure of the gesture in
question and this can be combined with real-time informa-
tion derived from the application context, then the situation
is sufficiently constrained that a system may conduct feature
selection on the fly. Then later, when context information is



A B

Figure 1: The simplest Markov model appropriate for a periodic
signal. Given equal transition probabilities from state A to B,
the Markov model is symmetric in A and B. Without contextual
information, alignment of a signal to this Markov model would
yield one of two possible equivalent assignments of semantics to
A and B.

unavailable, the system will be able to recognize the gesture
via the learned representation.

The need for context arises because typically there is
insufficient structure in the temporal model to unambigu-
ously align a given input sequence with a potential traversal
of a priori defined states. For example, consider a gesture
composed of “up” and “down” phases. The temporal struc-
ture of such a gesture would be represented by the periodic
Markov model in Figure 1. If we try to align an observation
sequence to the Markov model in the figure, we find there
are two ways to do this. One possible outcome assigns state
A a mean feature vector that we call “down” and B a mean
vector of “up”. The other outcome swaps the assignment
of “down” and “up”.

If our only concern is recognition then such a transpo-
sition is unimportant; the likelihood of the learned HMM
producing the observed sequence is the same in either case.
However, our goal is to use gesture for control of dynamic
human-computer interactions. As described in section 7
we exploit the temporal-context sensitivity of HMMs by
allowing a high likelihood of being in particular states to
trigger application events. In this approach, an inversion
of, say, “up” and “down” states is unacceptable. Note that
the ambiguity may happen not at just the level of single
states, but at the level of groups of states, such as whole
gesture models.

A way to resolve this ambiguity is to resort to some
external information, such as that provided by application
context. If we can get a hint from the application to dif-
ferentiate “down” from “up”, the ambiguity is removed.
Now that the features that correspond to the states has been
unambiguously determined, the context information is no
longer required to perform an alignment which avoids the
original ambiguity.

The learning algorithm presented in this paper incor-
porates the real-time learning of a hidden Markov model
given application context information.

4 Related Work
In [5] we use an approach similar to that presented in

this paper to extract two broad classes of the natural, spon-
taneous gestures that people make when they are telling a
story: biphasic gestures, which involve moving the hands
out of a rest position, into the gesture space, and back
to the rest position, and triphasic gestures, which consist
of an additional stroke phase while the hands are in the
gesture space. This classification scheme highlights the
temporal differences of an ontology of gestures developed
in [1]. A Markov model was hand-designed for each of

the two classes of gesture, which differed in their tempo-
ral structure. These Markov models were then combined
with image-based features derived from a long (5-minute)
video sequence to derive the appearance of various rest-
states used by the speaker. The present work similarly fits
a hand-coded Markov model with a block of video input.

In [4] we introduce the parametric hidden Markov model
(PHMM) formalism for representing a family gestures with
a hidden Markov model. A PHMM encodes the manner in
which the spatial form of the gesture changes as a seman-
tically meaningful parameter changes. For example, the
form of the gesture indicating the size of object depends on
the size of the object. The PHMM testing phase involves
computing the value of the parameter that maximizes the
likelihood of the gesture. PHMM output probability distri-
butions depend on a global vector-valued parameter. The
present work uses a similar style of online EM optimiza-
tion to determine the value of the parameters used in HMM
output state distributions.

Oliver, Pentland and Berard [2] use online EM methods
to adapt color-class models in real-time for their face and
lips tracking system.

5 Learning Algorithm
5.1 Expectation-Maximization Algorithm for

Hidden Markov Models
A hidden Markov model uses the topology of a Markov

model and its associated transition probabilities to express
the temporal structure of the gesture. For example, a pe-
riodic motion may be represented by a simple Markov
model with two states and transitions back and forth be-
tween them, as in Figure 1. During testing, the Viterbi
or forward/backward algorithms are used to compute the
likelihood that an input sequence has the same temporal
structure of the HMM, as well as match the state output
probability distributions. In the process of calculating this
likelihood, the forward/backward algorithm computes the
posterior probability tj = P (qt = j j O; �), the prob-
ability that the HMM was in state j at time t, given the
observation sequence O and HMM �. The quantities tj
represent the parse of the HMM.

If all the values tj are known, it is easy to see how to
update the output probability distributions. For example, if
the output probability distributions are Gaussian with mean
�j and covariance Σj, the update equations are:
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This is the Baum-Welch update used in training an
HMM. The Baum-Welch algorithm is an expectation-
maximization (EM) algorithm, where the expectation step
involves calculating the tj and the maximization step in-
volves updating the parameters of the output probability
distributions and transition probabilities.



5.2 Controlling the Online Adaptation
In the online adaptive learning of gesture, we use HMMs

to represent the gesture we wish to recognize, but instead of
running the Baum-Welch algorithm off-line, we run it dur-
ing runtime to update the output probability distributions.
In the present work, we start with a known Markov model
and transition probability matrix that represents the tempo-
ral structure of the gesture of interest, while the parameters
of the output probability distributions are randomized at
the start. As discussed in Section 3, without some hints
from application context, the states of the learned hidden
Markov model may not obey the proper semantics required
by the application (for example, “down” and “up” may be
swapped, or the “up” gesture may be swapped with the
“down” gesture).

The modification required to the Baum-Welch algorithm
for it to exploit context is basically to bias the  tj after the
initial computation of the expectation. Since the tj are
used as weights to update the state output distribution pa-
rameters, the biased ’s may be thought of as an attention
focusing mechanism. We may bias tj as a way to incorpo-
rate exterior knowledge to influence this focus of attention
and thus guide the learning. In the exposition that follows
we give one method to create a lattice of biased tj, by
defining a new quantity that is a linear combination of tj
and probabilities derived from application context.1

The information from application context is assumed to
take the form of posterior probabilities for each state:

!tj = P (qt = j j Ω) (3)

where Ω represents application context. These posterior
probabilities are then combined with the usual HMM pos-
terior probabilities tj = P (qt = j j �) to obtain a new
posterior probability which incorporates the HMM and the
application state context:

Γtj = �jtj + (1 � �j)!tj (4)

which is subsequently normalized so that
P

j
Γtj = 1. �j

is a scalar quantity that is proportional to how much the
HMM state j has been tuned during online adaptation.

In the current system, we set �j to be proportional the
number of frames for which tj is greater than some fixed
value (say, 0.7). When beginning the adaptation, �j is at
its minimum value, then increases to some maximum value
during adaptation. The intuition is that this quantity con-
trols the degree to which the system follows the application
context versus the HMM. It also overcomes the fact that
when bjt takes the form of Gaussian distributions, starting
with large covariances to represent uncertainty brings bjt
to zero and so the state is never exploited by the HMM.
The effect of �j during runtime is to artificially bias the
algorithm to use neglected states.

We also incorporate a global learning rate � to con-
trol the adaptation process. The idea is that at the start
of the algorithm, when the state output distributions pa-
rameters have random values the algorithm should learn

1In the present system, we implement this bias by altering the
form of the output probability distribution rather than by di-
rectly manipulating tj .

aggressively, and that later when the parameters have ap-
proached good “final” values the algorithm should change
the values less aggressively. This prevents the algorithm
from changing the gesture model to match some spurious
input.

In the present system � is derived from the confidence
value �j described above. We currently set the relationship
between �j and � in an ad hoc manner. For a state which
has seen no probability mass tj , we would like quantity
to be 1.0. It is important that the learning rate always
have some value greater than zero, so that the algorithm
can continually adapt to slow changes in the gesture signal.
Optionally, we normalize � by the frame rate of the online
EM process.

The learning rate � is incorporated in the EM update by
simply mixing the old value of the parameter with the new
value:

�
0

j = (1 � �)�j + �

X

t

Γtjxt (5)

The quantities P (xt j qt = j; �) are computed over
the sequence hxt�T : : :xti, and the EM algorithm is run
once over the sequence. At some time t + ∆t, this process
is repeated (caching values where possible) over the next
window hxt+∆t�T : : :xt+∆ti, and so on, throughout the
lifetime of the application – there are no distinct training
and testing phases.

6 Images as Input
6.1 Tracking

The Watch and Learn system uses the online adaptive
algorithm described above with whole images as input.
Color images are acquired at a rate of 30Hz from a camera
pointed at the user. A body-centric image of the user is
derived from the input image by subtracting the pixel values
of the image of the scene without the user (the background
image) from the current image. This difference image is
then binarized to obtain a silhouette image. A simple EM-
based tracking algorithm updates the center of body-centric
image at the center of the silhouette. The body-centric
silhouette image is then multiplied by the original image
to obtain a color image that is body-centric and does not
include the background.

The EM-based tracking algorithm models the spatial
distribution of the silhouette pixels over the image as a
Gaussian with fixed covariance.
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where Ix;y is the value of the pixel at (x; y), c is the vector
of tracked coordinates from the previous time step, b is
threshold for binarizing the image and Σ is the constant
covariance matrix that is chosen to approximate the size of
the user in the image.

hx;y is calculated over a window centered about c. If the
likelihood of this model falls below a threshold, the algo-
rithm enters a seek mode in which the mean of the Gaussian
is assigned a random value at each successive frame until
the likelihood is above the threshold. Otherwise, the mean



of the Gaussian is updated to reflect the translation of the
silhouette.
6.2 Output Probability Distribution

The pixel values of the cropped color foreground image
centered about c at time t are concatenated to form the fea-
ture vector xt. The last two seconds of the color foreground
images are buffered in memory. These form the observa-
tion sequence over which the online adaptive EM algorithm
updates the output probability distribution parameters.

The output probability distributions b jt = P (xt j qt =
j) take the form:

bjt =
1p

2��j
e
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1
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(8)

where �j is a scalar, and X and Y are the dimensions of
the image corresponding to xt.

The output probabilities bjt(x) are computed over all
states j for the current time step only; the values are saved
in a buffer of the last T time steps. Updating the output
probability distribution parameter �j proceeds as equation
1, here involving the weighted sum of the images xt in the
image buffer. The update of�j is similarly a weighted sum:

�j =

X

t

Γtj(xt � �j)
T
(xt � �j)
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t
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After each maximization step, it would be correct to re-
compute the value of the output probability distributions
for each state and each image in the image buffer, since
the parameters of the distribution have changed by the up-
date equations. In the present system, however, we do not
recompute these likelihoods for the reason that much com-
putation may be avoided by computing the likelihoods for
only the newest image. If the buffer is small and the changes
in the parameters are continuous, then the outdated values
of the likelihood associated with the oldest frames in the
buffer will not upset the learning algorithm. Empirically
we have found this to be the case.

In the Watch and Learn system, computing the weighted
sum of images for the maximization step is the most com-
putationally intensive step of the algorithm and need not
be executed at every new time step. Thus with the cur-
rent system, the input image buffer is updated at 30Hz,
while the learning algorithm executes at no more than 4Hz.
Both the expectation and maximization steps of Watch and
Learn have been implemented to use MMX single instruc-
tion/multiple data (SIMD) instructions available on the Intel
Pentium II processor.

7 Application: Conducting
One activity in which there is strong contextual infor-

mation is musical conducting, where both the musicians
and the conductor follow a score. The Watch and Learn
system has been applied to a simplified conducting scenario
to demonstrate that a simple beat gesture may be learned
by adaptive online learning.

The interaction between the user who plays the role of
the conductor and the system is as follows. The user steps
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Figure 2: The Markov model used to represent the temporal
pattern of a beat in the Watch and Learn system applied to the
simple conducting scenario.

in front of the camera and waits for the system to play a
series of beats (wood block sounds) that establish a tempo.
After a few beats, the user begins to follow the beat with his
hand. After a few bars of following the system’s beat, the
system begins to play a piece of music. Having taught the
system his own beat gesture, the user is now free to change
the tempo of the piece currently playing.

For the simple beat pattern described,a simple three state
Markov model is used to model the temporal structure of the
gesture (see Figure 2). The Markov model begins in a rest
state, which is learned at first when the user is standing in
front of the camera waiting for the system to establish a beat.
During the fourth beat generated by the system, the user is
supposed to have begun following the beat with his gesture.
At this point, contextual priors are changed to match the
expectation that at the instant of the system-generated beat,
the user should be in the “downbeat” state. Given that at
this stage in the learning the rest state has already been
learned by the system, the “upbeat” state will be learned
correctly because temporal structure provided will lead the
system to ascribe the moments before the downbeat to the
“upbeat” state, and furthermore, presumably the images
during the actual upbeat motion will look different than the
“rest” state.

As the user counts out the beats, the appearance models
(the means of the output probability distribution) associ-
ated with each state gradually appear as reasonable ap-
proximations to what an observer might call the “upbeat”,
“downbeat” and “rest” phases of the gesture. Figures 3
and 4 show a typical set of appearance models for the beat
Markov model during the adaptation process. Figure 3
shows the appearance models in the middle of the adapta-
tion process, Figure 4 after the adaptation is complete. The
system continually adjusts these states to reflect the sub-
tle changes in the way the user executes the gesture from
instance to instance.

Figures 5 and 6 show tj and !tj over a window of
64 frames (about 2 seconds) of video. Figure 5 is taken
during adaptation, Figure 6 after adaptation. Note that
during adaptation, the probabilities from the application
!tj (square wave) guide the state membership tj .

QuickTime video of the camera input and the learning
algorithm are located at http://www.media.mit.
edu/˜drew/watchandlearn.

Figure 7 shows appearance models learned in a second
session with the system. Note that even while many of the
viewing circumstances such as pose, distance to camera,
and clothing have changed, the adapted appearance models
have the correct semantics.

We wish to remind the reader that Watch and Learn in no
way attempts to track the user’s hands; it is purely through
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Figure 3: The appearance models (images) associated with each
state of the beat HMM during online adaptation. When the algo-
rithm is started, the pixels values of the images are randomized. At
this point, the appearance model of the rest state has been trained,
and the appearance model of the “up” state is being adapted.

Rest Up Down

Figure 4: The appearance models (images) associated with each
state of the beat HMM after online adaptation.

the combination of the temporal structure model and the
contextual information that gives rise to the semantically
correct appearance models. Ultimately, the most important
requirement is that the user be cooperative, especially dur-
ing the periods of high learning rate, and consistent. It is
quite possible to train Watch and Learn to recognize foot
tapping instead of hand beats, as long as the user consis-
tently does so.

Changes in tempo are made in a very simplistic manner
according to the rise and fall of t;up: when t;up falls
below a certain threshold, a “beat” event is generated. The
time between the current beat and the last beat is calculated,
converted to MIDI clock units and passed on to the MIDI
time-keeper running on the host computer. Presently, no
attempt is made to synchronize where the particular down-
beat falls with the downbeat in the score. If at some point
the user returns to the rest state, tempo changes are not
made and the piece continues playing at the last tempo.

8 Discussion and Future Work
An online adaptive learning algorithm for learning ges-

tures has been presented. The approach differs from the
usual train/test paradigm in that much of the training pro-
cess may occur online. The algorithm requires a Markov
model that represents the temporal structure of the gesture
to be learned. This is combined with contextual infor-
mation to train the output probability distributions during
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Figure 5: Plots of tj and!tj (square wave) for the beat gesture,
during online adaptation.
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Figure 6: Plots of tj for the beat gesture, after online adaptation.
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Figure 7: The appearance models (images) associated with each
state of the beat HMM after online adaptation during a second
session.



runtime. Watch and Learn succeeds in learning a simple
beat pattern, and in another configuration has been applied
to learning a mapping to various drum sound patches with
a slightly more complex temporal model (see Figure 8).

We argue that the problem of generalization by feature
selection is eased with the online adaptive learning algo-
rithm presented above. By delaying the estimation of the
output probability density parameters to runtime, the on-
line algorithm is free to choose only those values which fit
the current set of data. Thus any particular bias in the fea-
tures present in runtime that would have upset an off-line
approach is absorbed in the online learning process.

The net result is that with the online algorithm, feature
selection is not as crucially important as with the off-lineal-
gorithm in obtaining generalization performance. As long
as the features are consistent over the set of learned states,
the online algorithm will set the output probabilitydistribu-
tion parameters appropriately. For example, image space
itself may make an extremely poor feature space for many
gesture applications because many of the usual desired in-
variants are absent.

Although in general computer vision has been dismissed
as a technique useful to computer music on the grounds
that the techniques are too computationally complex to run
quickly on today’s hardware, we note without hard jus-
tification that Watch and Learn is quite responsive. One
reason for this is the fact if events are triggered from tj ,
the temporal model enables the system to anticipate events:
for example, a MIDI note-on event may be generated at the
moment that t;up begins to fall below a threshold, which is
in a moment in advance of the peak of t;down (see Figure
6). Also recall that tj is being updated at 30Hz.

There are two drawbacks to the Watch and Learn system
as it is currently implemented. First, the system assumes
that the user is being cooperative at all times. This drives the
learning initially, but can be a problem once gesture models
have been learned. For example, once the beat gesture is
learned reliably, if the user does a completely different
gesture, this new movement should not be incorporated
into the model. However, if the gesture appears to have the
same temporal structure as the original beat, and occurs at
the moment in time during which the system expects a beat,
the system should incorporate the new information.

The second drawback to the Watch and Learn system is
the ad hoc manner in which the confidence values �j and
the learning rate � is determined. We expect to incorporate
more principled ways of controlling the adaptation.
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