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Abstract

In previous work [4], we extended the hidden Markov
model (HMM) framework to incorporate a global para-
metric variation in the output probabilities of the states
of the HMM. Development of the parametric HMM
was motivated by the task of simultaneoiusly recogniz-
ing and interpreting gestures that exhibit meaningful
variation. With standard HMMs, such global varia-
tion confounds the recognition process. In this paper
we extend the parametric HMM approach to handle
nonlinear (non-analytic) dependencies of the output
distributions on the parameter of interest. We show
a generalized expectation-maximization (GEM) algo-
rithm for training the parametric HMM and a GEM
algorithm to simultaneously recognize the gesture and
estimate the value of the parameter. We present results
on a pointing gesture, where the nonlinear approach
permits the natural azimuth/elevation parameterization
of pointing direction.

1 Introduction
In [4] we introduce parametric hidden Markov models (HMMs)
as a technique to simultaneously recognize and interpret paramet-
ric gesture. By parametric gesture we mean gestures that exhibit
a meaningful variation; an example is a point gesture where the
important parameter is direction. A point gesture is then param-
terized by two values: the Cartesian coordinates that indicate
direction. Alternatively, direction can be specified by spherical
coordinates.

We refer the reader to [4] for a detailed motivation of the pa-
rameteric HMM approach as it relates to gesture recognition and
interpretation. We briefly mention here that without resorting
to manual tinkering with the feature space, a standard dynamic
time warping (DTW) or HMM approach to the recognition of
parametric gestures faces the difficulty that the gesture can only
be recognized once the value of the parameters that determine
the form of the gesture are recovered, and likewise the process
of recovering the parameters necessarily involves recognizing the
gesture.

Parametric HMMs extend the standard HMM model to include
a global parametric variation in the output of the HMM states. In
[4] a linear model was used to model the parametric variation at
each state of the HMM. Using the linear model, we formulated an
expectation-maximization (EM) method for training the paramet-
ric HMM. During testing, the parametric HMM simultaneously
recognizes the gesture and estimates the quantifying parameters,
also by an EM procedure.

In this paper the parametric HMM approach is extended to
handle situations in which the dependence of the state output dis-
tibutions on the parameters is not linear. Nonlinear parametric
HMMs accordingly model the dependence using a single 3-layer
logistic neural network at each state. Before presenting nonlinear
parametric HMMs in full we reiterate the mathematical develope-
ment of linear parameteric HMMs.

2 Linear parameteric hidden Markov
models

2.1 Model
Parametric HMMs model the dependence on the parameter of
interest explicitly. We begin with the usual HMM formulation
[3] and change the form of the output probability distribution
(usually a normal distribution or a mixture model) to depend on
the parameter �, a vector quantity.

In the standard continuous HMM model, a sequence is repre-
sented by movement through a set of hidden states. The Marko-
vian property is encoded in a set of transition probabilities, with
aij = P (qt = j j qt�1 = i) being the probability of moving to
state j at time t given the system was in state i at time t�1. Associ-
ated with each state j is an output distribution of the feature vector
x given the system is really in state j at time t: P (xt j qt = j). In
a simple Gaussian HMM, the parameters to be estimated are the
aij , �j , and Σj .1

To introduce the parameterization on � we modify the output
distributions. The simplest useful model is a linear dependenceof
the mean of the Gaussian on �. For each state j of the HMM we
have:

�̂j(�) = Wj� + �̄j (1)

P (xt j qt = j; �) = N (xt; �̂j(�);Σj) (2)

In the work presented here all values of � are considered equally
likely and so the prior P (� j qt = j) is ignored.

Note that � is constant for the entire observation sequence, but
is free to vary from sequence to sequence. When necessary, we
write the value of � associated with a particular sequencek as � k .

2.2 Training
Training consists of setting the HMM parameters to maximize
the probability of the training sequences. Each training sequence
is paired with a value of theta. The Baum-Welch form of the
expectation-maximization (EM) algorithm is used to update the

1Technically there are also the initial state parameters �j to be
estimated; in this work we use causal topologies with a unique
starting state.
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parameters of the output probability distributions. The expec-
tation step of the Baum-Welch algorithm (also known as the
“forward/backward” algorithm) computes the probability that the
HMM was in state j at time t given the entire sequence xt de-
noted as tj . It is convenient to consider the HMM’s parse of the
observation sequence as being represented by  tj .

In training, the parameters � of the HMM are updated in the
maximization step of the EM algorithm. In particular, the param-
eters � are updated by choosing a � 0 to maximize the auxiliary
functionQ(�0 j �). �0 may contain all the parameters in�, or only
a subset if several maximization steps are required to estimate all
the parameters. As explained in the appendix, Q is the expected
value of the log probability given the parse tj . In the appendix
we derive the derivative of Q for HMM’s:
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(3)

The parameters� of the parameterized Gaussian HMM include
Wj , �̄j , Σj and the Markov model transition probabilities. Updat-
ing Wj and �̄j separately has the drawback that when estimating
Wj only the old value of �̄j is available, and similarly if �̄j is
estimated first. Instead, we define new variables:
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�
(4)

such that �̂j = ZjΩk . We then need to only update Zj in the
maximization step for the means.

To derive an update equation for Zj we maximize Q by setting
equation 3 to zero (selecting Zj as the parameters in �0) and
solving for Zj . Note that because each observation sequencek in
the training set is associated with a particular �k , we can consider
all observation sequences in the training set before updating Z j .
Accordingly we denote tj associated with sequence k as ktj .
Substituting the Gaussian distribution and the definition of �̂j =
ZjΩk into equation 3:
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Setting this derivative to zero and solving for Zj , we get the update
equation for Zj :
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(8)

Once the means are estimated, the covariance matrices Σj are
updated in the usual way:

Σj =

X
k;t

ktjP
t
ktj
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T

(9)

as is the matrix of transition probabilities [3].

2.3 Testing
In testing we are given an HMM and an input sequence. We wish to
compute the value of � and the probability that the HMM produced
the sequence. As compared to the usual HMM formulation, the
parameterized HMM’s testing procedure is complicated by the
dependence of the parse on the unknown �. Here we present only
a technique to extract the value of �, since for a given value of
� the probability of the sequence xt is easily computed by the
Viterbi algorithm or by the forward/backward algorithm.

We desire the value of � which maximizes the probability of the
observation sequence. Again an EM algorithm is appropriate: the
expectation step is the same forward/backward algorithm used in
training. The forward/backward algorithm computes the optimal
parse given a value of �. In the corresponding maximization step
we update � to maximize Q, the log probability of the sequence
given the parse tj.

To derive an update equation for �, we start with the derivative
in equation 3 from the previous section and select � as� 0. As with
Zj , only the means �j depend upon � yielding:
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Setting this derivative to zero and solving for �, we have:
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The values of tj and � are iteratively updated until the change

in � is small. With the examples we have tried, less than ten
iterations are sufficient. Note that for efficiency, many of the inner
terms of the above expression may be pre-computed.

3 Non-linear parameteric hidden Markov
models

3.1 Model
Nonlinear parametric hidden Markov models omit the linear model
of section 2.1 in favor of a logistic neural network with one hidden
layer. As with linear parametric HMM’s, the output of each
network is perturbed by Gaussian noise:

P (xt j qt = j; �) = N (xt; �̂j(�);Σj) (12)

The output �̂j(�) of the network associated with state j can be
written as

�̂j(�) =W
(2;j)

g(W
(1;j)

� + b
(1;j)

) + b
(2;j)

(13)

whereW (1;j) denotes the matrix of weights from the input layer to
the layer of hidden logistic units, b(1;j) the biases at each input unit,
and g(x) the vector-valued function that computes the logistic
function of each component of its argument. Similarly, W (2;j)

and b(2;j) denote the weights and biases for the output layer.

3.2 Training
As with standard HMMs and linear parametric HMMs, the pa-
rameters of the nonlinear parameteric HMM are updated in the
maximization step of the training EM algorithm by choosing a �0

to maximize the auxiliary function Q(�0 j �).
In the nonlinear parametric HMM, the parameters � include

the parameters of each neural network as well as Σj and transition
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probabilities aij . Unlike the linear parametric HMM it is not pos-
sible to maximizeQwith respect to � analytically. Instead we rely
on the “generalized expectation-maximization” (GEM) algorithm
in which Q is (approximately) maximized in the maximization
step using optimization techniques. The expectation step is the
same as in the linear parametric and standard HMM formulations
(the forward/backward algorithm).

Gradient ascent may be used to update the network parameters
in each maximization step of the GEM algorithm. When applied to
multi-layer neural networks, gradient ascent (or gradient descent
when the goal is minimize “error”) is often referred to as the
backpropagation algorithm [1].

Rather than reiterate the gradient descent equations for logistic
neural networks here, we note that the backpropagation algorithm
is appropriate for optimizingQwith the modification that the error
to be “propagated” backwards into the network has the form

tjΣ�1
j (xkt � �̂j(�)) (14)

which is simply the usual error weighted by tj and Σ�1
j . Intu-

itively, this weighting steers eachnetwork to model the appropriate
part of the input, much as the gating function of a mixtures of ex-
perts model [2] selects its experts. Also, this weighting may be
derived from the form of @Q

@�
(equation 3).

In each maximization step of the GEM algorithm, it is not
necessary to completely maximize Q. As long as Q is increased
for every maximization step, the GEM algorithm is guaranteed
to converge to a local maximimum in the same manner as EM.
In fact, since the functional Q changes with every expectation
step, a complete maximization of Q in the maximization step is
probably computationally wasteful. Accordingly in our testing we
run the gradient ascent algorithm (backpropagation algorithm) a
fixed number of iterations for each GEM iteration.

3.3 Testing
In testing we desire the value of � which maximizes the probability
of the observation sequence. Again an EM algorithm to compute
� is appropriate.

As in the training phase, we can not maximize Q analytically,
and so a GEM algorithm is necessary. To optimize Q, we use a
gradient-ascent algorithm:
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where Λ(x) forms the diagonal matrix from the components of x,
and g0(x) denotes the derivative of the vector-valued function that
computes the logistic function of each component of its argument.

In the results presented in this paper, we use a gradient ascent
algorithm with adaptive step size. In addition it was found neces-
sary to constrain the gradient ascent step to prevent the alogirthm
from wandering outside the bounds of the training data, where
the output of the neural networks is essentially undefined. This
constraint is implemented by simply limiting any component of
the step that takes the value of � outside the bounds of the training
data, established by the minimum and maximum � training values.

As with the EM training algorithm of the linear parametric case,
with the examples we have tried less than ten GEM iterations are
required.

4 Discussion

In [4] we present an example of a pointing gesture parameterized
by projection of hand position onto the plane parallel and in front
of the user at the moment that the arm is fully extended. The linear
parametric HMM approach works well since the projection is a
linear operation.

The nonlinear variant of the parametric HMM introduced in the
previous section is appropriate in situations in which the depen-
dence of the state output distributions on the parameters � is not
linear, and can not be easily made linear with a known coordinate
transformation of the feature space.

In practice, a useful consequence of nonlinear modeling for
parametric HMMs is that the parameter space may be chosen more
freely in relation to the observation feature space. For example, in
a hand gesture recognition system, the natural feature space may
be the spatial position of the hand, while a natural parameterization
for a pointing gesture is the spherical coordinates of the pointing
direction.

Conversely, there is no guarantee that any observation feature
space will permit the parametric HMM to learn the parameter-
ization. Continuing with the pointing example, the nonlinear
parametric HMM approach will learn the smooth mapping from
spherical coordinates of the point to hand position at each state
unambiguously. Obviously, a feature space that does not include
the x coordinate (across the body) will not be enough to capture
the parameterization, while a feature space that neglects the depth
away from the body may work well enough.

One difficulty in assessingwhether an observationfeature space
and a parameter space are appropriate for one another is whether
the mapping from parameter to observation features is smooth
enough to be learned by neural networks with a reasonable num-
ber of hidden units. While in theory a 3-layer logistic neural
network with sufficiently many hidden units is capable of learn-
ing any mapping, we would like to use as few hidden units as
possible and so choose our parameterizaiton and observation fea-
ture space to give simple, learnable mappings. Cross-validation
is probably the only practical automatic procedure to evaluate
parameter/observation feature space pairings, as well as the num-
ber of hidden units in each neural network. The computational
complexity of such approaches is a drawback of the nonlinear
parameteric HMM approach.

In summary, with nonlinear parametric HMMs we are free to
choose intuitive parameterizations but we must be careful that it
is possible to learn the mapping from parameters to observation
features given a particular observation feature space.

5 Results

To test the performance of the nonlinear parametric HMM, we
conducted an experiment similar to the pointing experiment of [4]
but with a spherical coordinate parameterization rather than the
projection onto a plane in front of the user.

We used a Polhemus motion capture system to record the posi-
tion of the user’s wrist at a frame rate of 30Hz. Fifty such examples
were collected, each averaging 29 time samples (about 1 second)
in length. Thirty of the sequences were randomly selected as the
training set; the remaining 20 comprised the test set.

Before training, the value of the parameter �must be set for each
training example, as well as for each testing example to evaluate
the ability of the parametric HMM to recover the parameterization.
We directly measured the value of � by finding the point at which
the depth of the wrist away from the user was greatest. This point
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Figure 1: The distribution of � for the pointing data sets over the
tangent function.

was transformed to spherical coordinates (azimuth and elevation)
via the arctangent function.

Note that for pointing gestures that are confined to a small area
in front of the user (as in the experiment presented in [4]) the
linear parameteric HMM approach will work well enough, since
for small values the tangent function is approximately linear. The
pointing gestures used in the present experiment were more broad,
ranging from -36 to +81 degrees elevation and -77 to +80 degrees
azimuth. Figure 1 shows how the population of � associated with
the training set is distributed over more than the nearly linear
portion of the tangent function.

An eight state causal nonlinear parametric HMM was trained on
the forty training examples. To simplify training we constrained
the number of hidden units of each state to be equal; note that
this constraint is not present in the model but makes choosing the
number of hidden units via cross validation easier. We evaluated
performance on the testing set for various numbers of hidden units
and found that 10 hidden units gave the best testing performance.
We did not evaluate the performance under varying amounts of
training data or varying numbers of states in the HMM. The output
of the resulting eight neural networks is shown in Figure 3. The
output of the neural networks shows how the input’s dependence
on � is most dramatic in the middle of the sequence, or at the apex
of the pointing gesture.

The average error over the testing set was computed to be about
6.0 degrees elevation and 7.5 degrees azimuth. For comparison,
an eight state linear parametric HMM was trained on the same
training data and yielded an average error over the same testing
set of about 14.9 degrees elevation and 18.3 degrees azimuth.

Lastly, we demonstrate recognition performance of the non-
linear parameterized HMM on our pointing data. A one minute
sequence was collected that contained a variety of movements
including six points distributed throughout. To simultaneously
detect the gesture and recover �, we used a 30 sample (one sec)
window on the sequence. Figure 2 shows the log probability as
a function of time and the value of � recovered for a number of
recovered pointing gestures. All of the pointing gestures were
recovered.

6 Conclusion
The parametric hidden Markov model framework presented in [4]
has been generalized to handle nonlinear dependenciesof the state
output distributions on the parameterization �. We have shown
that where the linear parametric HMM employs the EM algorithm
in training and testing, the nonlinear variant similarly uses the
GEM algorithm.

The drawbacks of the of the generalized approach are two-
fold: the number of hidden units for the networks must be chosen
appropriately during training, and secondly, during testing the
GEM algorithm is more computationally intensive than the EM
algorithm of the linear approach.

The nonlinear parametric HMM is able to model a much larger
class of parametric gestures and movements than the linear para-
metric HMM. A practical benefit of the increased modeling ability
is that with some care, the parameter space may be chosen inde-
pendently of the observation feature space. Theoretically, this
should allow more intuitive parameterizations, including perhaps
those derived from more subjective qualities of the signal (e.g. the
“intensity” of a walk). Additionally, it should be easier to tailor
parameter spaces to specific gestures, with all gestures employing
the same observation feature space that is indiginous to the sen-
sors. We believe that these are signicant advantages in modeling
parameteric gesture and movement.
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Figure 2: Recognition results are shown by the log probability of the windowed sequence beginning at each frame number. The true
positive sequences are labeled by the value of � recovered by the EM testing algorithm and the value computed by direct measurement
(in parantheses).
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Figure 3: The output of each network is displayed (as a surface) for each of the observation feature coordinates (x, y, and z), for each of
the eight states of the trained parametric HMM.
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