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Abstract— This paper presents the theory, design princi-
ples, implementation, and performance results of PicHunter,
a prototype content-based image retrieval (CBIR) system
that has been developed over the past three years. In addi-
tion, this document presents the rationale, design, and re-
sults of psychophysical experiments that were conducted to
address some key issues that arose during PicHunter’s devel-
opment. The PicHunter project makes four primary contri-
butions to research on content-based image retrieval. First,
PicHunter represents a simple instance of a general Bayesian
framework we describe for using relevance feedback to direct
a search. With an explicit model of what users would do,
given what target image they want, PicHunter uses Bayes’s
rule to predict what is the target they want, given their ac-
tions. This is done via a probability distribution over pos-
sible image targets, rather than by refining a query. Sec-
ond, an entropy-minimizing display algorithm is described
that attempts to maximize the information obtained from
a user at each iteration of the search. Third, PicHunter
makes use of hidden annotation rather than a possibly inac-
curate/inconsistent annotation structure that the user must
learn and make queries in. Finally, PicHunter introduces two
experimental paradigms to quantitatively evaluate the per-
formance of the system, and psychophysical experiments are
presented that support the theoretical claims.
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I. INTRODUCTION

Searching for digital information, especially images, mu-
sic, and video, is quickly gaining in importance for business
and entertainment. Content-based image retrieval (CBIR)
is receiving widespread research interest [1], [4], [2], [3],
(7], 8], [9], [10], [11], [12], [13], [14], [6], [15], [16], [17]
[18], [19], [20]. It is motivated by the fast growth of image
databases which, in turn, require efficient search schemes.
A search typically consists of a query followed by repeated
relevance feedback, where the user comments on the items
which were retrieved. The user’s query provides a descrip-
tion of the desired image or class of images. This descrip-
tion can take many forms: it can be a set of keywords in
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the case of annotated image databases, or a sketch of the
desired image [21], or an example image, or a set of values
that represent quantitative pictorial features such as over-
all brightness, percentages of pixels of specific colors, etc.
Unfortunately, users often have difficulty specifying such
descriptions, in addition to the difficulties that computer
programs have in understanding them. Moreover, even if
a user provides a good initial query, the problem still re-
mains of how to navigate through the database. After the
query is made, the user may provide additional informa-
tion, such as which retrieved images meet their goal, or
which retrieved images come closest to meeting their goal.
This “relevance feedback” stage differs from the query by
being more interactive and having simpler interactions.

To date, there has been a distinct research emphasis on
the query phase and therefore finding better representa-
tions of images. So much emphasis is placed on image
modeling that relevance feedback is crude or nonexistent,
essentially requiring the user to modify their query [7], [11],
[17]. Under this paradigm, retrieval ability is entirely based
on the quality of the features extracted from images and
the ability of the user to provide a good query. Relevance
feedback can be richer than this. In particular, the infor-
mation the user provides need not be expressible in the
query language, but may entail modifying feature weights
[22] or constructing new features on the fly [23].

PicHunter takes this idea further with a Bayesian ap-
proach, representing its uncertainty about the user’s goal
by a probability distribution over possible goals. This
Bayesian approach to the problem was pioneered by Cox et
al. [3]. With an explicit model of a user’s actions, assuming
a desired goal, PicHunter uses Bayes’s rule to predict the
goal image, given their actions. So the retrieval problem is
inverted into the problem of predicting users. Section IV
describes how to obtain this predictive model.

An impediment to research on CBIR is the lack of a
quantitative measure for comparing the performance of
search algorithms. Typically, statistics are provided on the
search length, e.g., the number of images that were visited
before an image was found that was satisfactorily “similar”
to a desired target image. The use of quotes around the
word “similar” is deliberate; it is obvious that the search
length depends on the content structure of the database
and on how strict the criteria are for accepting an image as
similar. In this context, searches can be classified in three
broad categories:
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Target-specific search or, simply, target search Users are re-
quired to find a specific target image in the database; search
termination is not possible with any other image, no matter
how similar it is to the singular image sought. This type of
search is valuable for testing purposes (see section V) and
occurs, for example, when checking if a particular logo has
been previously registered, or when searching for a specific
historical photograph to accompany a document, or when
looking for a specific painting whose artist and title escapes
the searcher’s memory.

Category search Users search for images that belong to
a prototypical category, e.g., “dogs”, “skyscrapers”,
“kitchens”, or “scenes of basketball games”; in some sense,
when a user is asked to find an image that is adequately
similar to a target image, the user embarks on a category
search.

Open-ended search (browsing) Users search through a spe-
cialized database with a rather broad, nonspecific goal in
mind. In a typical application, a user may start a search
for a wallpaper geometric pattern with pastel colors, but
the goal may change several times during the search, as
the user navigates through the database and is exposed to
various options.

The Bayesian approach described above can be adapted
to accommodate all three search strategies. We focused
on the target search paradigm for the reasons explained in
section V.

Another advantage of having a predictive model is that
we can simulate it in order to estimate how effective a par-
ticular kind of interaction will be, and thereby design an
optimal interaction scheme. In section VII, we describe a
novel display algorithm based on minimum entropy. This
approach is evaluated by both simulation and psychophys-
ical experiments.

Searching for images in large databases can be greatly
facilitated by the use of semantic information. However,
the current state of computer vision does not allow seman-
tic information to be easily and automatically extracted.!
Thus, in many applications, image databases also include
textual annotation. Annotated text can describe some of
the semantic content of each image. However, text-based
search of annotated image databases has proved problem-
atic for several reasons, including the user’s unfamiliarity
with specialized vocabulary and its restriction to a single
language. Section VI examines this problem in more detail.

This paper presents an overview of PicHunter, a proto-
type image retrieval system that uses an adaptive Bayesian
scheme, first introduced in 1996 [3], and continuously up-
dated with improved features up to the present [1], [2], [4],
[5], [6]. We present a conceptually coherent and highly ex-
pressive framework for the image retrieval problem, and re-
port on validation of this framework using a simple system
and careful experimental methods. Section II describes the
theoretical basis for PicHunter and derives the necessary
Bayesian update formulae. In order to implement the the-

IColor has proven to be an image feature with some capability of
retrieving images from common semantic categories [24], [25], [26],
(27], [28], [19]; [29].

oretical framework, it is necessary to decide upon a user
interface and a model of the user. These are described
in Sections IIT and IV. The user model is supported by
psychophysical experiments that are also reported in Sec-
tion IV. In order to evaluate the effectiveness of relevance
feedback and a variety of other implementation issues, we
introduce two experimental paradigms that are described
in Section V. We also provide experimental results that
evaluate the performance of PicHunter with and without
relevance feedback. Next, in Section VI we describe how
annotation can be hidden from the user yet still provide
valuable semantic information to expedite the search pro-
cess. Usually, the set of retrieved items that is displayed to
a user is the closest set of current matches. However, such
a scheme is not optimal from a search perspective. In Sec-
tion VII we describe a strategy for display which attempts
to maximize the information obtained from the user at each
iteration of the search. Theoretical and psychophysical
studies demonstrate the utility of the information maxi-
mization approach. Finally, Section VIII describes possi-
ble extensions to the PicHunter model, Section IX details
future avenues of research, and Section X concludes with a
discussion of the contributions PicHunter makes to CBIR
research together with a discussion of broader issues.

II. BAYESIAN FORMULATION

During each iteration ¢ = 1,2,... of a PicHunter ses-
sion, the program displays a set D; of Np images from
its database, and the user takes an action A; in response,
which the program observes. For convenience the history of
the session through iteration ¢ is denoted H; and consists
of {DI;A17D25A27" '5DtJAt}'

The database images are denoted Ti,...,T,, and
PicHunter takes a probabilistic approach regarding each of
them as a putative target.? After iteration ¢ PicHunter's
estimate of the probability that database image 75 is the
user’s target 7', given the session history, is then written
P(T = T;|H). The system’s estimate prior to starting
the session is denoted P(T = Tj). After iteration ¢ the
program must select the next set Dyyq of images to dis-
play. The canonical strategy for doing so selects the most
likely images, but other possibilities are explored later in
this paper. So long as it is deterministic, the particular
approach taken is not relevant to our immediate objective
of giving a Bayesian prescription for the computation of
P(T = T;|H;). From Bayes’ rule we have:

P(H{|T =T;)P(T =Ty)
P(Hy)
P(H{T =T;)P(T =Tj)
i P(HLT =T;)P(T = Tj)

P(T = T|H,)

That is, the a posteriori probability that image T; is the
target, given the observed history, may be computed by

2This amounts to the implicit assumption that the target is in the
database, and this is indeed the case in all of our experiments. For-
mulations without this assumption are possible but are beyond the
scope of this paper.
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evaluating P(H|T = T;), which is the history’s likelihood
given that the target is, in fact, T;. Here P(T = T;) rep-
resents the a priori probability. The canonical choice of
P(T =T;) assigns probability 1/n to each image, but one
might use other starting functions that digest the results
of earlier sessions.?

The PicHunter system performs the computation of
P(T = T;|H,) incrementally from P(T = T;|H;_1) accord-
ing to:

P(T = T;|H,) = P(T = T;|Dy, Ay, Hy_1)
_ P(Dy, AT =Ty, H,_)P(D,,T = T;|H;_,)
~ Y P(Dy, AT =Ty, Hy1)P(T = Tj| Hy—y)
_ P(AJT =T;,Dy, H, ) P(T = T;|H,_+)
~ Y P(AT =T;, Dy, Hy 1) P(T =Ty Hy—1)

where we may write P(A;|T = T;, Dy, H;—1) instead of
P(D;, A|T = T;, Hi_1) because Dy is a deterministic func-
tion of Ht,]_ .

The heart of our Bayesian approach is the term
P(A4|T =T;, Dy, Hy_1), which we refer to as the user model
because its goal is to predict what the user will do given
the entire history Dy, H; ; and the assumption that T; is
his/her target. The user model together with the prior give
rise inductively to a probability distribution on the entire
event space T x H!, where 7 denotes the database of im-
ages and H?! denotes the set of all possible history sequences
D1, Aq,..., D¢, A;. The particular user model used in our
experimental instantiation of the PicHunter paradigm is
described in section IV. Note that the user model’s pre-
diction is conditioned on image T; and on all images that
have been displayed thus far. This means that the model
is free to examine the image in raw form (i.e. as pixels), or
rely on any additional information that might be attached.
In practice the model does not examine pixels directly but
relies instead on an attached feature vector or other hidden
attributes as described later in this paper.

Letting Np denote the number of images in each itera-
tion, our implementation assumes a space of 2V + Np + 1
possible actions corresponding to the user’s selection of a
subset of the displayed images, or his/her indication that
one of the Np images is the target, or an “abort” signal
respectively. But much more expressive action sets are pos-
sible within our framework (section IX-C).

A contribution of our work is then the conceptual re-
duction of the image search problem to the three tasks: 1)
designing a space of user actions, 2) constructing a user
model, and 3) selecting an image display strategy.

Our implementation makes the additional simplifying
assumption that the user model has the form P(A4;|T =
T;,D,), i.e. that the user’s action is time-invariant. Note,
however, that as a consequence of our Bayesian formula-
tion, even this simple time-invariant model leads PicHunter

3The starting function must not assign probability zero to any im-
age; otherwise the system’s a posteriori estimate of its probability
will always remain zero.

to update its probability estimate in a way that embodies
all the user’s actions from the very beginning of the search.

Beyond the time-invariant user models of our experi-
ments are models that fully exploit our Bayesian formula-
tion and adapt their predictions based on the entire history.
To preserve the possibility of incremental computation we
introduce the notion of user models with state and write
the PicHunter update equation as:

P(A|T =T;, Dy, S$4-1)P(T = Tj|Hy—1)
E?:l P(A4|T;, Dy, S;—1)P(T;|Hy 1)

(1)
where the model starts in some initial state Sy and updates
its state S;_1 to produce S; after observing action A;. No-
tice that we have said nothing of the structure of the state
variable. But for efficiency’s sake it makes sense to design
it as a finite and succinct digest of the history H;.

Equation 1 is, however, a fully general way to express
PicHunter update since it spans the entire spectrum from
time-invariant models where the state is trivial and con-
stant, through models that carry forward a finite amount
of state, to the original form P(A;|T = T;, Dy, H; 1) where
the state S; is just Hy and grows without bound.

Finding effective models with state is an intriguing op-
portunity for future work within the PicHunter framework.
We imagine that state might be used to carry forward es-
timates of feature relevancy, user type (e.g. expert vs. be-
ginner), general model type (e.g. color vs. texture), and
others.

P(T =T;|Hy) =

ITII. USER INTERFACE

PicHunter uses a simple user interface designed to search
for target images with minimum training. The rationale is
that CBIR systems should ultimately be used as image-
search tools by the general user on the World Wide Web,
hence their usage should be effortless and self-explanatory.
The user provides relevance feedback on each iteration of
the search. The interface and user model (described in sec-
tion IV) are based on relative similarity judgments among
images, i.e. “these images are more similar to the target
than the others.” If all images seem dissimilar to the target,
the user can select none. Many systems instead use cate-
gorical feedback, where the user only selects the images that
are in the same category as the target [23], [16]. However,
this burdens the user to decide on a useful categorization
of images in a possibly unfamiliar database, and is more
suited to category search (section I) than target search.

The user interface is shown in Figure 1. It consists of
a small number Np of images; in this particular imple-
mentation Np = 9. The initial display is determined by
the display-update algorithm. The target is always present
in the display to avoid possible interference from memory
problems. Of course, the target could be in the form of
a traditional printed photograph, in which case the CBIR
system is unaware of what the target is. The user selects
zero or more images that are similar to the desired target
image by clicking on them with the mouse. If users wish to
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PicHunter’s user interface.

Fig. 1.

change their selection, they can unselect images by clicking
on them again; the mouse clicks function as toggles in se-
lecting/unselecting images. As mentioned above, users can
select no images if they think that all images are dissimilar
to the desired target image. After users are satisfied with
their selection, they hit the “GO” button to trigger the
next iteration. The program then interprets their selection
based on the user model, and subsequently the display-
update algorithm (Section VII) decides which Np images
will be shown in the next iteration. The process is repeated
until the desired image is found. When this is achieved, the
user clicks the mouse button on the image identifier that
is found directly above the image.

IV. USER MODEL: ASSESSING IMAGE SIMILARITY

As explained in the previous section, the key term in the
Bayesian approach is the term P(A;|T = T;, D;,U), where
U stands for the specific user conducting the search. As-
sume that Dy = {X;, Xs,..., XN, }. The task of the user
model is to compute P(A4¢|T = T;,D:,U) = P(AJT =
T;, X1, X2,...,XnNp,U), in order to update the probabil-
ity that each image T; in the database might be the target
image T'. The first approximation we make is that all users
respond in the same way, so that the dependence on U can
be dropped. This approximation is not entirely supported
by our human experiments, but we believe that more com-
plex models should be motivated by the failure of a simple
one. Kurita and Kato (1993) [30] reported work in taking
account of individual differences.

The second approximation is that the user’s judgment
of image similarity can be captured by a small number of
statistical pictorial features, in addition to some seman-
tic labels, chosen in advance. That is, it is a function
of some distance measure d(f(Y),f(Z)) between the fea-
ture values £f(Y) = {f1(Y), f2(Y),..., fr(Y)} and £(Z) =
{f1(2), f2(2),..., fr(Z)} of images Y and Z.

Psychophysical experiments helped us choose the dis-
tance measure as well as the form of the probability func-
tion. Different models are compared in terms of the prob-
ability they assign to the experimental outcomes; models
which assign higher probability are preferred.

When Np = 2 and the user must pick an image (A; is
either 1 or 2), the probability function that we found to

perform best was sigmoidal in distance (in what follows,
we drop the iteration subscript, ¢, for simplicity):

Psigmoz'd(A = 1|X17X2aT) =
1
1+ exp((d(X1,T) — d(X3,T))/0)

(2)

where ¢ is a parameter of the model chosen to maximize
the probability of the data using a one-dimensional search.

When Np > 2 and the user must pick A =1,...,Np, a
convenient generalization is the softmin:

exp(—d(X,,T)/0)

'so minA:aX7"'7X D7T =
Dsoftmin( | X1 np;T) Ef\;”l exp(—d(Xz',T)(/g)
3

Note that transitive ordering of the images is not required
by this model.

When the user can pick any number of images, including
zero, no complete model has been found. One approach is
to assume that the user selects each image independently
according to Pso ftmin. Another approach is to assume that
the user first decides the number k of images to select and
then chooses one of the (A;D) possible selections of k images,
according to a softmin. Both approaches achieved similar
probabilities for the data once their weights were tuned.
This paper reports on the latter approach. Unfortunately,
both give a constant probability to selecting zero images,
independent of the target and the choices, which is at odds
with our experimental results and limits the accuracy of
our simulations.

Two possible schemes for combining multiple distance
measures were considered. The first scheme multiplied
the softmin probabilities for each distance measure. The
second scheme simply added the distance measures before
computing the softmin. In both cases, each distance mea-
sure was multiplied by an adaptive scaling factor w;, since
distance measures are generally not on the same scale.
These scaling factors were set to maximizing the proba-
bility of the training data, using gradient ascent. The sec-
ond model achieved a higher maximum probability, so it
was chosen for the PicHunter experiments. The resulting
formula is:

F
d((Y),£(2)) = > widi(f:(Y), fi(Z)) (4)
i=1

The individual distance d; was the simple L1 distance be-
tween feature f;(Y) and f;(2).

A. Pictorial Features

This subsection deals with the pictorial features that the
model uses for predicting human judgment of image sim-
ilarity. It must be emphasized that we used rudimentary
pictorial features, because our objective was not to test
features as such, but only to use them as a tool to test
the Bayesian approach and the entropy display-updating
scheme. Hidden semantic features are covered in sec-
tion VI.
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The original pictorial version of PicHunter [3] worked
with 18 global image features that are derived for each pic-
ture in the database. These features are: the percentages
of pixels that are of one of eleven colors (red, green, blue,
black, grey, white, orange, yellow, purple, brown pink),
mean color saturation of entire image, the median inten-
sity of the image, image width, image height, a measure
of global contrast, and two measures of the number of
“edgels”, computed at two different thresholds. Thus the
dominant influence is that of chromatic content, in the form
of the 11-bin color histogram. These features are admit-
tedly not as sophisticated as those used in other CBIR
systems, but they merely provided a starting point for ex-
perimenting with the initial system.

The current version of PicHunter incorporates some
rudimentary information on the spatial distribution of col-
ors, in addition to a conventional color histogram. The
current version’s pictorial features have the following three
components: 1) HSV-HIST, a 64-element-long histogram
of the HSV (Hue, Saturation, Value) values of the image’s
pixels. These values are obtained after conversion to HSV
color space and quantization into 4 x 4 x 4 = 64 color bins.
2) HSV-CORR, a 256-element long HSV color autocorrelo-
gram at distances 1, 3, 5 and 7 pixels [24]. The pixel values
are subjected to the same preprocessing as HSV-HIST. The
first 64 bins are the number of times each pixel of a given
color had neighbors of the same color at distance 1. The
next 64 bins are for distance 3, etc. 3) RGB-CCV, a 128-
element long color-coherence vector of the RGB image after
quantization into 4 x 4 x 4 = 64 color bins. This vector is
the concatenation of two 64-bin histograms: one for coher-
ent pixels and one for incoherent pixels. A coherent pixel is
defined as one belonging to a large connected region with
pixels of the same color [25].

B. Relative — Versus Absolute-Distance Criteria

Relative-distance criterion: In this scheme, the set Q) =
{Xq,Xq2,...,Xqc} of selected images in the display Dy,
as well as the set N = {X,1, Xp2, ..., Xnr} of non-selected
images, play a role in approximating the user-model term
P(A¢|T;, Dy) by a function S [3], [4]. The distance differ-
ence d(T;, X,) — d(Ti, Xpnm) is computed for every pair
{X gk, Xnm} of one selected and one non-selected image.
This difference determines, of course, whether T; is closer to
Xgi or to Xp,p; the difference is first transformed through
a sigmoid function (Equation 2 or 3), and is then ap-
plied toward computing the function S. Thus, each pair
{X gk, Xnm} increases the probabilities of images, T, that
are closer to X, and decreases the probabilities of images
that are closer to X,,,,, in feature space.

Absolute-distance criterion: In this scheme, only one im-
age X, in the display D; can be selected by the user in
each iteration. The selection of X, either increases or
decreases the probability of an image T;, depending on
whether d(T;, X,) is small or large, respectively. In our
implementation of the absolute-distance criterion, this up-
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Fig. 2. The three types of displays used in the experiments. (a)
The “2AFC” configuration, (b) The “relative-similarity” config-
uration. (c) The “absolute-similarity” configuration.

dating of the probability P(T' = T;) takes the form
P(T =T,) + P(T =T;)G(d(T;, X))

where G() is a monotonically decreasing function of its ar-
gument. One way to think about the updating of proba-
bilities is to visualize the selected image X, as defining an
“enhancement region” in the F-dimensional feature space,
centered at f(X,;). The probability of each image T; in
this region is enhanced, and the magnitude of the enhance-
ment decreases as the distance from f(X,) increases. After
obtaining a new value P(T = T;) for each image by multi-
plying it by G(), each value is divided by the grand total
i, P(T =T;), such that the ultimate values at the end
of each iteration sum up to 1. This post-normalization has
the effect of enhancing or depressing the probabilities of
images whose feature vectors are near or far, respectively,
from the selected image f(X,) in feature space, indepen-
dently of the magnitude of G(); the only requirement is
that G() be monotonically decreasing. The series of itera-
tions can be visualized as a series of enhancement regions
that progress toward the target from one iteration to the
next, getting progressively narrower as they converge to a
small region that contains the target. In this scheme, the
(Np — 1) non-selected images do not influence at all the
distribution of probabilities in the database. Thus, this
scheme can also be referred to as a “query-by-example”
search, because only one image can be selected in each it-
eration, providing an example for converging to the target.

C. Experiments: Judgment of Image Similarity by Humans

This subsection deals with experiments that were de-
signed to collect data on how humans judge image similar-
ity, for use in developing a user model with some knowledge
of human performance. In this experiment we used the
three display configurations shown schematically in Fig-
ure 2. The task of the user was always the same for a given
configuration, but differed across configurations.

Figure 2a shows the two-alternative forced-choice con-
figuration, which we shall refer to simply as the “2AFC”
configuration. Three images are presented on the screen:
the target image on top, and two test images on the bot-
tom. We will refer to the target, left test, and right test
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images in this and similar triplet configurations as T, L,
and R, respectively; collectively, the set will be referred to
as the LTR triplet. The user must select the test image
that he/she thinks is more similar to the target image.

4

The second type of display, referred to as the “relative-
similarity” configuration, is shown in Figure 2b. There are
now five buttons between the bottom two images. The user
clicks on one of the five buttons, depending on how he/she
judges the relative similarities of the two test images are
with respect to the target image, using the 5-point scale.
If he/she thinks that one of them is clearly more similar
to the target image, he/she clicks on the corresponding
extreme button (left-most or right-most). If the two test
images seem to be equally similar or equally dissimilar to
the target image, then the user clicks on the middle button.
If one of the test images is somewhat more similar to the
target image, then he/she clicks on the button immediately
to the left or to the right of the center, as appropriate.

The third type of display, referred to as the “absolute-
similarity” configuration, involves two images, one on top
of the other, and five buttons at the bottom of the screen,
as shown in Figure 2c. These buttons are used by the
user to denote the degree of similarity of the two images,
on a 5-point scale. The extreme left button indicates the
least degree of similarity (0), and the extreme right one
is used to show the maximum degree of similarity (4). If
the two images have intermediate degrees of similarity, the
user clicks on one of the intermediate three buttons, as
appropriate.

The stimuli for this experiment consisted of a set of 150
LTR triplets, in all of which the L, T, and R images were
randomly selected from a database of 4522 images. The
user was presented with a sequence of trials, i.e., a sequence
of randomly selected LTR triplets, and was asked to indi-
cate his/her choices based on image similarity. Each triplet
was shown in all three configurations of Figure 2, and these
three displays were randomly scattered among the 600 tri-
als (150 of type 2a, 150 of type 2b, and 300 of type 2c, i.e.,
150 for LT and 150 for RT pairings). Five users took part
in this experiment. They were exposed to LTR triplets
for about 20 minutes before the beginning of a session, so
as to accustom themselves to the variety of images in the
database and the range of similarities and dissimilarities.
They were told that the images they were exposed to rep-
resented a good sample of all the images in the database.
This exposure would allow them to calibrate their scales of
similarity [31] to produce choices that are well distributed
across the entire range, and this was indeed the case with
most of the users. The results from these experiments indi-
cated that 2AFC choices correlated very well with both the
relative-similarity and the differences between the absolute-
similarity judgments of the same LTR triplets. The data
supported the idea of using some form of distance metric,
and were used for adjusting the weights of the distance
function for the pictorial features of the user model (see
Eq. 4).

V. EXPERIMENTAL PARADIGM — TARGET TESTING

The paradigm of target testing requires the user to find a
specific target image in the database. When a user signifies
that he/she has found the target, there are two possibili-
ties: 1) If this is indeed the target, the search is termi-
nated. 2) If the user mistakenly thinks that she/he found
the target, then an appropriate message informs them of
their mistake and instructs them to continue the search
(the “ABORT” button is there for frustrated users who
lose interest in finding the target after a lengthy search).
This section presents more details on the implementation
of the target testing paradigm that was used in the vast
majority of our experiments. General remarks are made in
subsection V-A, and specific details on the databases are
presented in subsection V-B. Subsection V-C discusses two
major memory schemes, and experimental results are given
in the last two subsections.

A. Rationale

The main problem with evaluating the performance of
CBIR systems that terminate a search when the user finds
an image which is “adequately similar” to a target image is
that the similarity criteria can vary from user to user. This
is reflected in the data we obtained in two different search-
termination strategies: one in which users terminate the
search when a “similar” image is encountered, and another
employing target testing. The standard deviation across
users is much higher in the former case (section V-D), un-
derlying the wide variability in judging image similarity.
Thus it is very difficult to evaluate a CBIR system’s perfor-
mance under a category search, or a very-similar-to-target
search termination scheme.

The main reason for deciding to employ target testing in
PicHunter was precisely our belief that the use of more ob-
jective criteria of performance than category search results
in more reliable statistical measures. The performance
measure that has been used throughout our experiments
is the average number V of images required to converge to
the desired specific target. Typically, we obtained this aver-
age across 6-8 users, with each user’s score averaged across
searches of 10-17 randomly selected target images. This
performance measure is extremely useful in two ways: 1)
It provides a yardstick for comparing different PicHunter
versions and evaluating new algorithmic ideas; 2) it is also
a first step in the direction of establishing a benchmark for
useful comparisons between CBIR systems, when coupled
with a baseline search scheme, as explained in section V-E.

B. The Databases

The pictorial database was assembled using images from
44 Corel compact disks (CD), each containing 100 images
with a common theme such as horses, flower gardens, ea-
gles, pictures of Eskimo everyday life, scenes from ancient
Egyptian monuments, etc. [32]. To these 4400 images we
added 122 images from a non-thematic Corel CD for a to-
tal of 4522 images. This database was used in all versions
of PicHunter where the user model was based exclusively
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on pictorial features. In addition, we created a database
of 1500 annotated images, which was a proper subset of
the 4522-image set, from 15 thematic CDs. This semantic
database is described in more detail in section VI-A.

C. Schemes with and without Memory

PicHunter differs from most CBIR systems along another
dimension: how the user’s relevance feedback is treated
from the very beginning of a search. Whereas most systems
tend to concentrate on the user’s action only in the previ-
ous iteration, PicHunter’s Bayesian formulation empowers
it with “long-term” memory: all the user’s actions during
a target search are taken into consideration. Nevertheless,
the benefit of such memory has not been demonstrated ex-
perimentally. It is conceivable that performance gains from
the inclusion of memory may depend on other conditions.
Investigating such dependencies was the purpose of the ex-
periments presented in section V-D

D. Ezperiments on Features, Distance, and Memory

Schemes

All the experiments reported in this paper were con-
ducted with the color images displayed on 1280 x 1024-
pixel monitor screens, measuring 38 cm by 29 cm, viewed
from a distance of about 70 cm. The programs ran on Sili-
con Graphics Indigo2 workstations. Individual images were
either in “portrait” or in “landscape” format, and were re-
ferred to by their unique identification number. They were
padded with dark pixels either horizontally or vertically to
form square icons that measured 7.25 x 7.25 cm. All users
tested perfect for color vision, scoring 15/15 on standard
Ishihara test plates. All users were also tested for acuity,
and found to have normal or corrected-to-normal visual
acuity.

This set of experiments [5], [6] was designed to study
the role of the following components: 1) memory during
the search process; 2) relative-distance versus absolute-
distance judgment of image similarity (section IV-B); 3)
semantic information (section VI). Toward this goal, we
tested six versions of PicHunter, which we code with tri-
graphs XYZ for mnemonic reasons. The letters in the tri-
graphs XYZ refer to components 1-3 above, in that order.
Thus, the first letter X refers to memory: M or N denote
that the algorithm did or did not use memory, respectively,
in the search process. M refers to the standard Bayesian
system of section II. N refers to a system that bases its
actions on the user’s relevance feedback for only the last
display. The second letter Y, referring to distance, can be
either R or A to denote whether the model used relative or
absolute distances, respectively. Finally, the last letter Z
is devoted to semantic features, and it can have three pos-
sible values: P, or S, or B denote, respectively, that only
pictorial features, or only semantic features, or both, are
used in the user model for predicting judgments of image
similarity. The pictorial features in these experiments were
the 18 features described in section IV-A. All the exper-
iments of this section were run with algorithms that used
the most-probable display-updating scheme of section VII-

A. Our previous experience indicates that some XYZ com-
binations are of little practical value, thus we concentrated
on the following six versions:

1. MRB: uses memory, relative distance, both semantic
and pictorial features.

2. MAB: same as MRB, but with absolute distance.
NRB: same as MRB, but doesn’t use memory.
NAB: same as MAB, but doesn’t use memory.
MRS: same as MRB, but uses only semantic features.
. MRP: same as MRB, but uses only pictorial features.

SlX first-time PicHunter users, naive as to the experimen-

tal purposes, participated in this study. They ran the ex-
periment in a 6-usersx6-versions Latin-square design [33].
Each user went through 15 target searches, terminating the
search under the target testing paradigm; all searches ter-
minated successfully. The results of these experiments are
shown in Table I. The first row has the average number V
of 9-image displays visited before convergence to the tar-
get; smaller values of V denote better performances. The
second row displays the standard error SE, and the third
row shows the ratio SE/V, as a measure of the variability
of V across users. Two experienced users also ran the ex-
periments under the same conditions. Their averages are
shown below the data for the naive users.

, & s

Version MRB MAB NRB NAB MRS MRP

No. displays, V 25.4 35.8 45.5 33.2 15.6 35.1

Standard Error, SE 2.35 2.37 248 2.44 1.76 2.11

Variability, SE/V .093 .066 .055 .073 .113 .060

V, 2 exper. users 13.1 31.6 284 222 88 18.9
TABLE I

THE RESULTS OF THE EXPERIMENT WHICH WAS DESIGNED TO TEST
THE ROLES OF MEMORY, DISTANCE METRIC, AND SEMANTIC FEATURES
IN PicHunter. THE EXPECTED VALUE OF V UNDER RANDOM SEARCH
1s (1,500/2)/9 = 83.3. IN THIS, AS WELL AS IN TABLES II, IV, AND

V, SMALLER VALUES OF V SIGNIFY BETTER PERFORMANCES.

The following main trends can be observed in the
data: 1) When one compares the results of the MRB
and the MRS schemes, performance with the semantics-
only features (MRS) is substantially better than with the
semantics-plus-pictorial features (MRB). This is just the
opposite of the expected behavior; namely, if the picto-
rial features were well chosen, their inclusion should im-
prove, rather than worsen, performance (even if semantic
features dominate in judgments of similarity, the addition
of pictorial features should at worst keep performance the
same). One obvious conclusion is that the 18 features of
PicHunter’s original version need to be refined, and this
is precisely what was done in the most recent version (see
section IV-A). 2) The clear advantage of the MRS ver-
sion over all others underscores the role played by seman-
tic features in the search process. This fact is also cor-
roborated by the experimental data of sections VI-B and
VII-E. 3) Pair-wise comparison of versions MRB to NRB
and MAB to NAB show that the effect of memory depends
on the distance criterion. The former comparison indicates
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that memory improves the relative-distance version, while
the latter comparison shows that memory slightly worsens
the absolute-distance version. This apparent paradox can
be explained if one visualizes the search in the absolute-
distance version as an enhancement region that moves to-
ward the target across the iterations. Since probabilities
are updated by multiplying factors cumulatively in long-
memory versions, this memory adds a delay by introduc-
ing ”inertia”, due to the effect of all the previous iterations.
By contrast, this accumulation is helpful in the the relative-
distance versions, in which the target is approached as the
feature space is successively partitioned in each iteration
[5]. 4) Other than the optimal scheme MRS, the next best
one is the MRB scheme, which incorporates memory, a
relative-distance measure, and both kinds of features; all
other schemes perform somewhat worse than the two best
schemes. 5) As expected, the experienced users were sub-
stantially more efficient than the inexperienced ones.

E. Target and Baseline Testing as a Benchmark for Com-
paring CBIR Systems

As argued earlier, there is a great need for a benchmark
for comparing CBIR systems. Such a benchmark can also
be used for assessing the value of incorporating a new ap-
proach for a specific system, by comparing the new ver-
sion’s performance against that of the original version. Ide-
ally, one hopes for an automated comparison, but this is not
feasible at the present. Hence, our efforts must be focused
on producing a benchmark, based on efficient experiments
with as few human users as possible. The benchmark must
yield a robust estimate of performance that is representa-
tive of performances of the population as a whole. In this
section we describe such a scheme based on the target test-
ing paradigm. Our experimental results tend to confirm
our intuition, and in this sense are not surprising. But
such confirmation is valuable in guiding the development
of complex systems that interact with humans.

To be able to compare performances with systems that
search for a similar-category image, rather than a unique
image target, we need to establish a performance baseline
against which to compare other versions. Such a baseline
is provided by a similar-target search, with a random dis-
play update, since it is reasonable to determine what the
performance would be in the complete absence of any rele-
vance feedback from the user. This motivated the present
set of experiments, that were conducted with six first-time
PicHunter users, who were naive as to the purposes of the
experiment [6]. These users were the same as those who
participated in the experiments of section V-D. We have
just introduced a new option, namely whether searches are
terminated under target testing (T), or under “category”
search (C), in which an image similar to the target is found.
Thus MRB/T and MRS/T denote the same target-specific
versions of PicHunter that were referred to as MRB and
MRS, respectively, in section V-D. Similarly, MRB/C is
the MRB version that terminates searches when a simi-
lar image is found. In addition to MRB/T, MRS/T and
MRB/C, the fourth scheme that we experimented with was

RAND/C. RAND indicates that displays are updated at
random, independently of the user’s feedback, with the only
restriction of not displaying images repeatedly, if they were
already displayed in previous iterations.

The first three rows in Table II below are the results with
searches by these four schemes for the six naive users, each
searching for the same 15 target images. In the XYZ/C
searches, users were instructed to terminate the search
when they encountered an image which looked similar to
the target image. The entries of the Table follow the same
convention as that of Table I. Namely, the first row shows
the mean number V of 9-image displays required to con-
verge to the target, averaged across the means of 6 users,
where each user’s performance was averaged across the 15
targets. The Table also includes the standard error SE, as
well as the ratio SE/V, which is a measure of the relative
variability of V across users. The last row has the averages
V of the same two experienced users who also ran the ex-
periments of section V-D. The entries for columns MRB/T
and MRS/T are duplicated from Table I.

Version MRB/T MRS/T MRB/S RAND/C*

No. displays, V 25.4 15.6 12.2 19.7

Standard Error, SE 2.35 1.76 2.13 6.39

Variability, SE/V ~ 0.093 0.113 0.175 0.324

V, 2 exper. users  13.1 8.8 8.9 20.1
TABLE II

THE RESULTS OF THE EXPERIMENT WITH TARGET SEARCH AND
CATEGORY SEARCH. THE EXPECTED VALUE OF V UNDER RANDOM
SEARCH IS 83.3. THE ASTERISK ON RAND/C IS MEANT TO INDICATE
THAT THIS IS NOT A VERSION OF THE PicHunter CBIR SYSTEM.

The following observations can be drawn from the data
of Table II. 1) RAND/C converged rather fast to a picture
that the average user judged to be similar to the target,
establishing a high baseline standard. This makes it neces-
sary to revisit results given in other reports where similar
images are retrieved, but no baseline is established. 2) De-
spite this high standard, performance with the correspond-
ing PicHunter scheme MRB/C is substantially better. 3)
Variability in the baseline scheme RAND/C is markedly
higher by a factor of 1.85 than that in MRB/C, which in
turn is higher than that of the MRB/T scheme by a fac-
tor of 1.88. Since low variability allows efficient tests with
few users, target search offers a valuable testing paradigm
for getting representative performance data. 4) One must
remark on the solid performance of the semantics-only
target-search MRS/T version, which is comparable to the
category-search MRB/C version, and better than the base-
line. 5) Again, as expected, the performance of the experi-
enced users was considerably better that of the naive ones,
with the notable, but expected, exception of the random
category search.

VI. HIDDEN ANNOTATION

Systems that retrieve images based on their content must
in some way codify these images so that judgments and
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inferences may be made in a systematic fashion. The ulti-
mate encoding would somehow capture an image’s seman-
tic content in a way that corresponds well to human inter-
pretation. By contrast, the simplest encoding consists of
the image’s raw pixel values. Intermediate between these
two extremes is a spectrum of possibilities, with most work
in the area focusing on low-level features, i.e. straightfor-
ward functions of the raw pixel values (see [34], [21], [7],
[35], [11], [12], [36], [17] and many others [37], [38], [39],
[19]). Some such features, such as color, begin to capture
an image’s semantics, but at best they represent a dim re-
flection of the image’s true meaning. The ultimate success
of content-based image retrieval systems will likely depend
on the discovery of effective and practical approaches at a
much higher level. In this section we report conceptual and
experimental progress towards this objective.

Any attempt to codify image semantics inevitably leads
to design of a language with which to express them. If a
human operator is required to formulate a query using this
language, and interpret a database image’s description in
terms of the language, two serious problems arise. First,
the language must not only be effective in theory, but must
also serve as a natural tool with which a human can express
a query. Second, inaccurate or inconsistent expression of
each database image in terms of the language can lead to
confusion on the part of the user, and ultimately undermine
the effectiveness of, and confidence in, the system. The
need for accurate and consistent expression can also limit
the language’s design.

For these reasons we are led to study hidden languages
for semantic encoding, and in particular hidden boolean
attributes affixed to each database image.

A. Annotation Implementation

In an effort to characterize how CBIR performance is en-
hanced by the introduction of semantic cues, we created an
annotated database of 1,500 images from 15 thematic CDs
of 100 images each. A set of approximately 138 keywords
was identified by one of the authors who had extensive ex-
posure to our experimental database of 1,500 images taken
from the Corel database [32]. The objective was to ob-
tain a set of keywords that covered a broad spectrum of
semantic attributes. Each image was then visually exam-
ined and all relevant keywords identified. An additional
set of category keywords were then assigned automatically.
For example, the “lion” attribute causes the category at-
tribute “animal” to be present. Altogether there are 147
attributes. These supplement the pictorial features used
by the basic PicHunter version, and described in [2]. The
147 semantic attributes are regarded as a boolean vector,
and normalized Hamming distance combines their influence
to form, in effect, an additional PicHunter feature. Table
ITI shows representative semantic labels and suggests the
level of semantic resolution. It must be emphasized that
these semantic features are hidden: users are not required
to learn a vocabulary of linguistic terms before using the
system, or even use a particular language.

sky cloud ground
tree one subject aircraft
horse two subjects person
water many subjects | lion
snow sand animal
rodent arch church
bicycle field shoe
Japan Africa woods
art painting umbrella
city boat night
interior wall autumn
mountain | close up green grass
eagle child house
fish pillar texture
TABLE III

REPRESENTATIVE SEMANTIC LABELS IN THE ANNOTATED DATABASE

B. Ezxperiments: Hidden Annotation and Learning

These experiments were designed to compare perfor-
mances between the original pictorial-feature version of
PicHunter [3] with a version that incorporated semantic
features in addition to the image features. Furthermore, we
examined whether user performances improved after they
were explicitly taught which particular features were con-
sidered important by the algorithm’s user model in both
versions [1]. For notational purposes, we refer to the picto-
rial version as “P” and to the pictorial-plus-semantic ver-
sion as “B” (B stands for both). The experiments involved
eight first-time PicHunter users who were not aware of the
purposes of the study. All sessions involved searches of
a target image among the 1,500 images in the database.
There were a total of 17 target images that were selected
randomly. Users were required to locate all 17 targets in
one session for each PicHunter version. Both the P and the
B versions were implemented with displays of nine images.

The experiments consisted of two major phases, each us-
ing the same 17 target images. In the first phase, the pre-
explanation phase, users were told to use their own simi-
larity criteria. The order of exposure was balanced: four
users went through sequence (P,B), and the others through
(B,P). The eight users were then divided in two groups of
four, to balance within-group average performances and
standard deviations for the two groups. This grouping was
done on the basis of their performances in the first phase,
and it was constrained by requiring that each group have
two members that went through the (P,B) sequence, and
the other two through the (B,P) sequence. In the second
phase, users were first given explicit instructions for judg-
ing image similarity, according to the user model. For the
P model, we briefly explained to them the 18 features and
their relative weights, and instructed them to ignore the im-
ages’ semantic contents. For the B model, users were told
to base similarity not only on image characteristics, but
also on image semantics; they were shown the 42 words of
Table ITI, to get an idea of how the B version was designed.
This explanation was very brief, lasting at most 8 minutes
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for each of the two versions. Explanations were given sep-
arately for each version, and users started the 17-target
search with that particular version of PicHunter. This was
followed by explanations for the other version, and ended
with a 17-target search with that other version. The order
of versions, (P,B) or (B,P), was balanced in this second
phase, as well.

The results are given in Table IV, the entries of which are
the mean number V of 9-image displays that were required
for users to locate the target, averaged across the 8 users
and the 17 targets. It is obvious from the entries of Table
IV that both semantic features and training, in the form of
explanations, improve users’ performance. Specifically, the
data indicate that: 1) Without prior instruction, users took
on average about 1/3 fewer displays to converge to the tar-
get with the B version than with the P version, underlying
the importance of semantics. 2) After users were instructed
on the similarity criteria, performance improved for both
versions, as expected. Users took over 25% more displays
prior to instruction, when their performance is pooled over
both versions of PicHunter. 3) In the P version the ex-
planations reduced the search time to 77.8% of its original
level; in the B version the search time was reduced to 81.2%
of its original level. A 2 x 2 within-groups analysis of vari-
ance (ANOVA) was performed over both the version type
and the instruction presence to look for an interaction be-
tween the two effects listed above. No such interaction was
found (F = 1.770;df = 1,7; p = .225). This shows that the
instruction helped users equally with both versions.

Before After
explanations | explanations

Pictorial
features 171 13.2
only
Pictorial
AND 11.7 9.5
semantic

TABLE IV

THE EFFECT OF SEMANTICS AND EXPLANATIONS ON PERFORMANCE.
THE EXPECTED VALUE OF ENTRIES UNDER RANDOM SEARCH IS 83.3.

Also, the issue of feature relevancy must be addressed.
In observing the 8 users’ strategies, we observed that test
images were sometimes selected because of similarity with
the target in terms of, say, color (“it has as much blue
as the target”), and other times because of similarity in,
say, overall brightness. To the extent that a user relies
on a small number of features during a session, it may be
possible to learn which are being used, and in so doing
improve performance. This is in principle possible using
user models with state as described in section II.

Because the attributes are hidden in our approach, we
are free to consider attribute schemes in future work that
might not work well in a traditional non-hidden approach.
We might, for example, entertain a scheme that employs
10,000 attributes, far more than a human operator could

reasonably be expected to deal with. Moreover, some of
these attributes might correspond to complex semantic
concepts that are not easily explained, or to overlapping
concepts that do not fit well into the kind of hierarchies
that humans frequently prefer. They might even include
entirely artificial attributes that arise from a machine learn-
ing algorithm. Because the attributes are hidden, it may be
that the system performs well despite considerable error in
the assignment of attributes. For this reason we are free to
consider attributes even if their proper identification seems
very difficult.

We remark that there are errors and inconsistencies even
in attributes assigned by humans. Here, the fact that the
attribute values are hidden can result in more robust per-
formance in the presence of error. We also observe that in
some settings, such as the emerging area of Internet Web
publication, authors are implicitly annotating their images
by their choice of text to accompany them. Exploiting this
textual proximity represents an immediate and interesting
direction for future work and this general direction is ex-
plored in [27], [40]. Semantically annotated images are also
appearing in structured environments such as medical im-
age databases, news organization archives — and the trend
seems to extend to generic electronic collections. In addi-
tion to using these annotations in a hidden fashion, mature
image search systems may be hybrids that include an ex-
plicit query mechanism that corresponds to the space of
available annotations. Even in query-based systems, learn-
ing may play a role as illustrated by related work in the
field of textual information retrieval [41].

It is not clear how high in the semantic sense our ap-
proach of hidden attributes might reach. It is certainly
conceivable that a large portion of an image’s semantic
content might be captured by a sufficiently large and rich
collection of attributes — entirely obviating the need to pro-
duce a single succinct and coherent expression of an image’s
meaning.

VII. DispLAY UPDATING MODEL

Once the user-model module of PicHunter updates the
probability distribution across the entire database, the next
task is to select the Np images to be shown in the next dis-
play. We have experimented with several schemes in this
area, but we report on the two that produced the best re-
sults: the most-probable scheme, and the most-informative
scheme.

A. Most-Probable Display Updating Scheme

This is an obviously reasonable strategy: For the next
display, choose the Np images that possess the highest
probabilities of being the target; possible ties are broken
with random selections. This is the scheme that was used
in all but the most recent version of PicHunter. It per-
formed quite well, achieving search lengths that were about
ten times better than random target-testing searches for
purely picture-based features [2], [3]. Typically, this up-
dating scheme produces displays whose images belong to a
common theme, such as aircraft or horses, even with the
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purely pictorial feature user model, somehow exhibiting an
ability to extract semantic content. However, this greedy
strategy suffers from an over-learning disadvantage that
is closely related to its desired ability to group similarly
looking images. The problem is that, in a search of, say,
an image of a jungle scene, PicHunter occasionally “gets
stuck” by showing display after display of, say, lion pic-
tures as a result of the user having selected a lion picture
in an earlier display. This problem is addressed by the
information-based scheme, described below.

B. Most-Informative Display Updating Scheme

Another approach is to attempt to minimize the total
amount of iterations required in the search. The result is
a scheme which tries to elicit as much information from
the user as possible, while at the same time exploiting this
information to end the search quickly.

At any time during the search, all of the knowl-
edge PicHunter has about the target is concisely summa-
rized by the distribution P(T' = T;) over the database
{T1,T>,...,T,}. The idea is to estimate the number of
iterations left in the search, based on the distribution
P(T =T;). Call this estimate C[P(T")]. Then the display
scheme chooses the display which minimizes the expected
number of future iterations, which is

C(Xy,...,XNnp) =
P(target not found) ZC[P(T|A =a)]P(A =a|X1,..., XnNnp)

where

P(A=a|X1,...,Xn,) =

and
P(target not found) =1 —P(T =X;) — ... — P(T = Xn,,)

and p(T|A = a) is the distribution over targets after user
response a.

Information theory suggests entropy as an estimate of
the number of questions one needs to ask to resolve the
ambiguity specified by P(T = T;):

CIP(T)] ~ —a zn: P(T =T)log P(T =T)

=1

(5)

for some positive constant a which is irrelevant for the pur-
pose of minimization. This offers an alternative interpre-
tation of minimizing future cost: maximizing immediate
information gain.

To illustrate this scheme, consider an ideal case when
N, D = 2:

1 if d(X1,T) < d(Xs,T)
0.5 if d(X;,T) = d(Xo,T)
0 if d(Xl,T) > d(XQ,T)

Pideal(A = 1|X17X27T) =

If A =1, all elements farther from T than X; will get
zero probability. The remaining elements will have uni-
form probability (assuming no ties). The most-informative
display updating scheme will therefore choose X; and X,
so that the expected number of remaining elements is mini-
mum. This minimum is achieved when the decision bound-
ary d(X1,T) = d(X»,T) exactly divides the set of targets
in half. So in this idealized situation the most-informative
display updating scheme behaves like the vantage-point tree
algorithm of Yianilos [42], which is a kind of binary search
on an arbitrary metric space.
Now consider the generalization

Psigmoid(A = 1|X17X27T) =
1
1+ exp((d(X1,T) — d(X2,T))/0)

When o — 0, this is the same as Pjgeq;. When 0 < 0 < 00,
there is a smooth transition from probability 1 to proba-
bility 0 as T" varies. When ¢ — oo, outcomes are com-
pletely random. This formula can be interpreted as Pjgeq;
after corrupting the distance measurements with Gaussian
noise. The parameter o can therefore be interpreted as the
degree of precision in the distance measurements.

Unfortunately, finding X, ..., Xy, to minimize C'(X7,...

is a non-trivial task. An incremental approach in Np does
not seem possible, since an optimal display for Np — 1 can
be far from an optimal display for Np. The problem is at
least as hard as vector quantization, which we know can
only be solved approximately by local search algorithms.
Local search does not seem feasible here, since evaluating
C'is quite costly and there can be many local minima. One
needs an optimization scheme which can give decent results
with a small number of evaluations. Inspired by Yianilos’s
vantage-point tree algorithm, we chose a Monte Carlo ap-
proach: sample several random displays X, ..., Xy, from
the distribution P(T" = T;) and choose the one which mini-
mizes C. Though crude, it still achieves considerable gains
over the most-probable display update strategy.

C. Related Work

The general idea of maximizing the expected informa-
tion from a query has also been pursued in the machine
learning literature under the name “Active Learning” or
“Learning with Queries” [43]. Active learning techniques
have been shown to outperform simple probability ranking
for document classification [44]. We know of no application
of active learning techniques to database retrieval.

Comparison searching with errors has also been studied
in the theoretical computer science literature. The algo-
rithm of Rivest et al. [45] assumes that the number of
errors has a known bound. Nevertheless, their algorithm
is similar to the one presented here, in the sense that it
minimizes at each step an information-theoretic bound on
the number of future comparisons. The algorithm of Pelc
[46] allows errors to occur at random but requires them to
be independent of the comparison and the target and fur-
thermore does not guarantee that the target is found. So

7XND)
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while both of these algorithms run in provably logarithmic
time, they also operate under more restrictive conditions
than PicHunter.

D. Simulation Results

This section evaluates these two display update schemes
(most-probable and most-informative) by comparing them
to other plausible methods for choosing X, ..., Xn,:
Sampling Sample Xi,..., Xy, from the distribution
P(T = T;). This is a special case of the Most Informa-
tive scheme where only one Monte Carlo sample is drawn.
Query by Example Let X1,...,Xn, be the Np closest
items to the winner of the last comparison. This is a fa-
vorite approach in systems without relevance feedback [7].
It does not exploit memory or a stochastic user model.
The idea is to simulate a user’s responses by sampling
from the stochastic user model. The database is synthetic,
consisting of points uniformly-distributed inside the unit
square. This allows databases of varying sizes to be easily
drawn. The simulated users used the Euclidean distance
measure.

D.1 Deterministic case
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Fig. 3. The number of iterations needed to find a target, for varying
database sizes and search strategies. User actions were generated
according to Pjgeq;-
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Fig. 4. Same as Figure 3 but including the Query-by-Example
method.

Figure 3 plots the empirical average search time for find-
ing a randomly selected target as a function of database

size, using the Most Probable, Sampling, and Most Infor-
mative (entropy) schemes. The number of choices Np was
two. User actions were generated by the P;g.q; model. In
all experiments, the average is over 1000 searches, each
with a different target, and the database was resampled
10 times. Performance of these three schemes is compara-
ble, scaling like log, n. In particular, the Most Informative
scheme is virtually optimal, with deviations only due to a
limited number of Monte Carlo samples. The Query-by-
Example scheme is quite different, as shown in Figure 4;
note the change in vertical scale. The Query-by-Example
method is not exploiting comparison information very well;
its time scales as n%°. Increasing Np or the dimensionality
will reduce the difference between the four schemes.

D.2 Nondeterministic case
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Fig. 5. Here user actions were generated according t0 psigmoid With
o =0.1.
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Fig. 6. Same as Figure 5 but including the Query-by-Example
method. n square.

Figure 5 shows what happens when user actions are gen-
erated by the p,igmoiq model, with o = 0.1. Increasing the
database size causes the unit square to be sampled more
and more finely, while the distance uncertainty threshold
o remains the same. Thus it is much harder to isolate a
particular target in a large database than in a small one,
as would be true in a real situation. Again, the Sampling
and Most Informative schemes are similar in search time,
which scales like a square root. However, the fragility of the
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Most Probable scheme is evident here. Figure 6 also reveals
a large discrepancy in the Query-by-Example scheme. An
explanation for this is that the Most Probable and Query-
by-Example schemes tend to choose elements which are
close together in feature space—exactly when comparisons
are most unreliable. Entropy-minimization, by contrast,
automatically chooses displays for which comparisons are
reliable. The Most Probable scheme also does not properly
exploit broad and nonuniform distributions, or distribu-
tions which are multi-modal. Furthermore, a multi-modal
distribution causes this scheme to switch to different parts
of the database between iterations, which is disconcerting
to a real user.

E. Experiments on Updating Schemes

The most recent experiments on PicHunter, reported
here for the first time, addressed two issues: 1) Compare
performances with the two most promising display updat-
ing schemes. 2) A secondary issue was to evaluate the new
pictorial features introduced in section IV-A. Towards this
end, we tested seven versions of PicHunter, coded with a
digraph notation XY that is analogous to that used in sec-
tion V-D. Some of these versions were the same as those
tested previously (section V-D); in these cases we label
the scheme with the trigraph notation used in section V-
D next to the new digraph notation. The first letter X
of the digraph XY represents the display-updating mode:
E stands for the entropy-based “most-informative” updat-
ing. R stands for a relative-distance-based, most-probable
scheme that uses memory. A is similar to R, but uses
an absolute distance criterion without memory (“query-by-
example”). The second letter Y of the digraph XY denotes
the features used by the model for similarity judgments:
P for pictorial only, S for semantic only, and B for both,
with P’ denoting the new pictorial features, and B’=S+P’
denoting the combination of the semantic features and the
new pictorial features (the semantic features remained the
same). The 7 versions are the following: EB’, EP’, and ES,
which are entropy-based schemes with S+P’, P’, and S, re-
spectively; RB’ and AB’, which are the same as the versions
denoted by MRB’ and NAB’ in the trigraph notation, but
using the combination of the new pictorial features and the
semantic features; finally, RS and RP, which are identical
to versions MRS and MRP of section V-D. All 7 versions
were run with the same set of 15 target images, which was
different from the set of 15 images of the experiments of
section V-D. 7 users, who were naive as to the purposes
of the experiment and had never used PicHunter before,
participated in the 7 x 7 Latin-square design [33]. The re-
sults are shown in Table V, which uses the same notation
as that of Tables I and IT. The same two experienced users
who participated in all the previous experiments also ran
a subset of the experiments.

The user model in the new version of PicHunter (the
results of which are shown in the first 5 columns) differs
from the old one (last two columns) in two major ways,
besides the pictorial features: 1) The sigmoid slope sigma
and the feature weights w; are different, since they are

PicHunter EB’ EP’ ES RB’ AB’ RS RP
Version MRB’ NAB’ MRS MRP
No. displays, V 11.3 25.8 16.0 12.0 20.4 11.8 29.6
Standard Error, SE 1.16 3.40 1.74 1.17 2.52 .755 1.70
Variability, SE/V 103 132 109 .098 .124 .064 .057
V, 2 exper. users 6.80 10.2 8.30 8.65 11.5

TABLE V

THE RESULTS OF THE EXPERIMENTS THAT TESTED ENTROPY-BASED
DISPLAY UPDATING SCHEMES TO TRADITIONAL SCHEMES, AS WELL AS
THE EFFECTIVENESS OF THE NEW PICTORIAL FEATURES. THE
EXPECTED VALUE OF V UNDER RANDOM SEARCH IS 83.3.

based on more training data, and optimized in a better
way than before. This affects the performance of individual
metrics as well as combinations of metrics. 2) The user
model in the old version was an approximate softmin while
the new version uses an exact softmin.

One can make the following observations on the data of
Table V. 1) A comparison of the entropy-based schemes re-
veals that the combination of both semantic and pictorial
features (EB’) results in better performances than using
either semantic (ES) or pictorial (EP’) features alone, as
expected. This expected behavior is unlike the surprising
pattern of results of the experiments in section V-D. One
possibility for the difference is that the new set P’ of picto-
rial features is better than the original ones P, hence they
improve performance when they combine with the seman-
tic features. 2) The best entropy-based scheme (EB’) is at
least as good as the best most-probable scheme (MRB’),
and both are much better than the QBE search (NAB’).
The superiority of the entropy-based scheme is even more
evident in the results of the experienced users. It is in-
teresting to note that such a display strategy produces a
qualitatively different feel to the overall system. At the
beginning of the search, the displayed set of images shows
a large variety which is in contrast to traditional display
algorithms that attempt to display a set of very similar
images. 3) Conditions RS and RP were used in order to
compare the old version to the new one, where both were
tested with the common new set of 15 target images. The
data indicate that the combination of both S and P’ fea-
tures (RB’) does not seem to yield an improvement over the
semantics-only version (RS), which performs remarkably
well. Parenthetically, one piece of useful data that would
enable a complete comparison is performance of the most-
probable scheme with the new pictorial features alone, i.e.,
the RP’ scheme.

At this point, it is useful to reflect on the improvements
of the present schemes as compared with earlier versions.
In the original implementation, about half of the searches
by first-time users were labeled “unsuccessful” in that users
gave up after an excessive number of iterations. The av-
erage number of images visited in the successful searches
only was 300 [3] which was 13.3% of the expected number
under random search for the 4522-image database. This
number must be at least doubled if we want to include
the effect of the unsuccessful searches. By contrast, our
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users had only successful searches by definition, because
they were required to continue searching until the target
was found. This requirement necessitated some excessively
long searches, which may be statistical outliers, yet their
lengths inflate the mean value. Despite this, the improved
schemes converged after visiting, on average, 100.8 images,
which is still 13.4% of the expected number under random
search for the 1500-image database. Experienced users do
a lot better, averaging 8.2% of the expected length of ran-
dom searches. Consistent users in PicHunter evaluations,
in addition to the authors, report that present versions of
PicHunter perform remarkably better than earlier versions
in locating targets efficiently. It must be emphasized that
these figures are for target testing, which is the most de-
manding of the search types.

VIII. EXTENSIONS

All PicHunter versions to date have been using the
target search paradigm. However, when a user operates
PicHunter to search for images that are similar to a pro-
totype image, say, a North-Pole scene, the system quickly
produces displays with similar images; in a lax sense, under
these conditions, this type of search can be considered as
a category search. More formally, however, PicHunter can
become a category-search engine if the Bayesian scheme is
modified to treat sets of images rather than individual im-
ages. The challenge for the system would be to discern the
commonality of the features that specify a certain category
that the user has in mind.

The main characteristic of open-ended browsing is that
users change their goals during the search either gradually
or quite abruptly, as a result of having encountered some-
thing interesting that they had not even considered at the
beginning of the search. Accommodating these changes
necessitates a modification of the probability distribution
updating scheme. For the gradual changes one may as-
sign weights to the probability updating factors that are
strongest for the most recent iteration steps, and decay ex-
ponentially for distant past steps. For the abrupt changes,
one option is to enable the user to indicate such switches,
and then assign small weights to iterations prior to the
abrupt change.

Although PicHunter was developed specifically for
searching image databases, its underlying design and ar-
chitecture make it suitable for other types of databases
that contain digital data, such as audio passages or video-
sequence databases.

IX. IDEAS FOR IMPROVEMENT
A. More Representative Databases

The main problem of the initial database, described in
section V-B, is that its images are clustered into thematic
categories of 100 elements each. This results in a clustered
distribution in feature space, which may not be representa-
tive of distributions in larger databases. PicHunter’s prob-
lem of occasionally “getting stuck”, i.e. producing displays
of a certain category in step after step (section VII-A),

may in fact turn out to be an advantage in databases that
have a wider, non-clustered, distribution in feature space.
A representative image database is needed by the CBIR
community as a means towards establishing a benchmark
for algorithm assessment.

B. More Relevant Image Features

PicHunter’s performance improved when the new picto-
rial features were incorporated in the user model. The main
advantage of the new features of the color autocorrelogram
and the color-coherence vector is that they embody some
measure of the spatial extent of each color, rather than a
conventional color histogram’s mere first-order statistics.
Along the same lines, the user model can benefit by adding
more information on the spatial properties of images, such
as location, size, shape, and color of dominant objects in
the image. The inclusion of spatial and figural features is
especially important for the minority of color-blind people.
Another feature can be the first few low-frequency Fourier
components of the image’s spectrum, or other measures
of the distribution of spatial frequencies [17]. The need
is evident for more psychophysical studies that investigate
what criteria are used by humans in judging image sim-
ilarity [47], [48]. Ultimately, some shape information [9]
or object-based scene description [49] must be employed in
CBIR systems.

C. More Complex User Feedback

PicHunter was deliberately designed with a very simple
user interface, to concentrate on more fundamental issues
in CBIR research. The items below remove this simplicity
constraint by suggesting more complex ways of accepting
users’ feedback. Obviously, the user model needs to be
adjusted accordingly to accommodate the additional feed-
back. Naturally, the introduction of new feedback modes
has to be evaluated vis-a-vis the conflicting requirement for
a simple user interface; appropriate experiments can decide
whether there are any significant gains by the proposed idea
to make it worth pursuing.

Specify which feature(s) are relevant in a selected im-
age. Post-experimental interviews with the users reveal
that some of them followed a common strategy in selecting
similar images in a display. They selected one image be-
cause it looked similar to the target in terms of, say, overall
color, and another image for its similarity in, say, overall
contrast. This suggests the possibility of allowing users to
specify which feature(s) make a selected image desirable,
and can be extended to cover semantic features as well.

Strength of selected image. Independently of specifying
feature relevance, the user could also indicate the degree,
or strength, of similarity between a selected image and the
pursued target. This can be done by providing either a
slide bar or a series of buttons below each image in the
display.

Portions of selected image. Yet another independent
form of more complex user feedback is to indicate the por-
tion(s) of the image that is (are) similar to the target. The
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interface can still maintain simplicity by allowing the user
to circumscribe relevant portions using the mouse.

D. More Complex Displays

The first three items below discuss how best to start the
iteration process by using as informative an initial display
as possible (the first item deals with expanding the current
version by just providing more images in the initial dis-
play, the next two deal with initial queries). The last item
provides the user with information on why images were
selected to be included in the current display.

Initial display. It would be helpful to give the user a
head start by using a more complex initial display, keeping
displays in the rest of the iterations as simple as described
so far. For the particular database that we worked with,
one idea that we experimented with was to take advantage
of the fact that the database contained clusters in feature
space. Thus we included in the first display a large number
of images (50 or s0), each being at the center of a cluster.
This seemed to speed up search time but as yet we have no
comprehensive data from such informal experiments.

Initial query template. PicHunter can be modified to
add a feature that is common in many “query-by-example”
CBIR systems that use a “sketch” to specify a template in
order to start a search with a better-than-random initial
display. The user can be given the option to select desir-
able values for the pictorial features by using, say, “slide
bars”. These bars can be used to specify mean brightness,
luminance contrast, color content, etc. This will enable
the user to start the search with a good guess in the first
iteration.

Initial query. Just as textual search engines do with
words and phrases, CBIR systems may use Boolean expres-
sions on semantics. The analogy is the following: with a
database browser, one specifies logical expressions of words
when searching for a paper in the literature; by analogy,
one can use self-explanatory icons (such as for tree, house,
animal, town, aircraft, person, crowd, lake, etc.), and build
an interface for forming Boolean expressions that charac-
terize the target image. This will enable users to start with
an initial display that is very close to the desired target.

Which features caused an image to be displayed. The
previous subsection dealt with allowing users to provide
more complex feedback to the system. Reciprocally, users
can benefit by knowing PicHunter’s current “beliefs”, as
this will give them an idea of how their choices affect the
system. A simple way is to provide an indicator, next to
each displayed image, on the system’s relative strength of
belief. A more complex display could indicate which fea-
ture(s) caused each image to be selected in the current
display.

E. Improved User Model

One area in which the scheme can be improved is in
handling the special case in which the user does not select
any image in the current display before hitting the “GO”
button to continue the search. This is an essential spe-
cial case because users frequently find themselves forced

to proceed to the next iteration without selecting any im-
age. Currently, the program keeps the probability vector
unchanged and then enters the display-update routine, in
essence ignoring the user’s action. However, some, perhaps
most, users make this selection precisely to indicate that
they want to avoid the types of displayed images. Experi-
ments are needed to explore modifications to the algorithm
for dealing with this special case.

X. CONCLUSIONS — DISCUSSION

PicHunter’'s new approach is its formulation on a
Bayesian framework, which tries to predict the user’s ac-
tions for refining its answers to converge to a desired target
image. The central data structure is a wector of poste-
rior probability distribution across the entire database, i.e.,
each image has an entry in the vector that represents the
probability of its being the target. This distribution is up-
dated based on the user action after each iterative display.
This action is “interpreted” by the user model, which is
the second major component of the system, together with
the probability vector. This is an action-predictor model
that uses rudimentary knowledge of humans’ judgments
of image similarity, based on empirically derived picto-
rial and semantic features. The user model was refined
on the basis of data obtained from our similarity judg-
ment experiments (section IV-C). The third major compo-
nent, the display-updating scheme, is concerned with how
to select the images for the next iteration’s display. We
presented two major alternatives, a most-probable and a
most-informative scheme, which exhibited considerably im-
proved performances over alternative schemes. Overall, the
system performs quite well for a wide spectrum of users
tested on a wide variety of target images. The improve-
ment over earlier versions, as verified by the reported ex-
periments and attested by consistent users of the system,
is very promising.

In comparing algorithms based on their performances un-
der the target testing scheme, we make the implicit assump-
tion that systems which are optimized under this target
testing condition will also perform well in category searches
and open-ended browsing. We reported on experiments
that support this assumption when the target testing ver-
sion is used for a form of category searching (section V-E).
Performance under open-ended browsing is much more dif-
ficult to quantify because of the vague nature of the task
at hand. The main requirement in open-ended browsing
is that the system display images that are similar to those
selected by the user, and avoid displaying images that are
similar to the non-selected images, resulting in appropriate
changes to the display updating scheme. At the same time,
because the goal changes during the search, the user must
be allowed to reset the memory when he/she makes such
a goal change, so that earlier choices no longer affect the
display updating decisions.

It would be highly desirable to rank-order the various
criteria used by humans for judging image similarity ac-
cording to their importance. Weights can the be assigned
to such criteria according to the role they play in predicting



16 (TO APPEAR) IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, MONTH 2000

judgment of similarity by humans. Relevant research has
been carried out on the application of multi-dimensional
scaling (MDS) methods for finding principal attributes to
characterize texture perception [47]. Much image process-
ing research has also been conducted for utilizing texture
as a pictorial feature in CBIR, systems [50], [14], [51]. Ro-
gowitz et al. (1998) [48] applied MDS analysis to humans’
judgments of similarity using natural images; this task is
quite complex, mainly due to the presence of semantics. An
interesting experiment along these lines is to let humans
play the role of PicHunter, to see what criteria they use,
and to compare their performance with that of PicHunter.

The computation performed by PicHunter with each user
interaction, and its main memory space requirements scale
linearly with the number of images in the database assum-
ing the user model requires constant time. Execution time
is dominated by the user model*, and space by the stor-
age of feature vectors.® As such our approach might be
expected to handle perhaps millions of images in today’s
technological environment, but not hundreds of millions.
We remark that approximating its Bayesian update with a
sublinear number of user model executions and the feature
vectors in secondary storage, represents an interesting area
for future theoretical and systems work.

While we have demonstrated search times that are much
shorter than brute force, they are clearly not short enough
to satisfy many users. It is possible that our pure relevance
feedback approach might lead to a fully acceptable system,
but it is also possible that a hybrid approach will prove
best. That is, one that involves some explicit querying,
but uses relevance feedback to further shorten the search.

Our experiments indicate that humans attend to the
semantic content of images in judging similarity. Highly
specialized databases, such as medical image databases in
large medical centers, have started to get semantically an-
notated, and the trend appears to carry to images in generic
electronic libraries. Thus, it seems that searching for an
image will have much in common with searching for text
documents in library databases.

In all our experiments, experienced users performed at
a level that was considerably better than users with lit-
tle experience, as expected. For example, they completed
the average search by visiting only 65.4% and 53.2% , re-
spectively, of the images visited by first-time users for the
experiments reported in sections V-D and VII-E. It must
be noted, however, that even first-time users improve their
scores substantially, after we explained to them the algo-
rithm’s user model (section VI-B). This training was very
brief, lasting less than 8 minutes, after which their (already
good) pre-training performance improved by reducing the
search length by about 20%. This substantial improvement
after minimal training of non-expert users is a desirable
feature for a search engine, enabling the development of a

4 Any machine learning technique capable of producing a predictive
model may be used to implement the required user model, so it is
hard to say anything general about its computational burden.

5If an entropic display update is used, its computational burden is
significant as well.

short on-line training session for first-time users.

Most published papers provide data on the search length
in terms of how many iterations are needed before users find
an image that is similar to a desired target. This, how-
ever, may not be a reliable measure, because even a ran-
dom search can produce relatively short search lengths, as
shown in the experiments of section V-E (column RAND/C
in Table IT). In fact, this latter search length could be used
as a baseline against which to measure the performance of
an algorithm under test. Even better, we believe that data
under the target search paradigm offer an objective mea-
sure of performance. In addition, this measure exhibits
small standard deviations across users’ scores, when each
user’s score is averaged over an adequately large number of
searches with different targets, whereas the corresponding
random-search baseline measure exhibits much higher vari-
ability [6], [5]. Thus, target testing requires experiments
with fewer users to establish the same degree of confidence
in the statistics.

The experiments in this paper were designed with
PicHunter in mind. Nevertheless, their results and findings
are useful and potentially applicable to any CBIR system
and, more generally, to any system that involves judgment
of image similarity by humans.
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