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Abstract

This note covers maximum-likelihood and leave-one-out estimation of a Dirichlet distri-
bution from probability vectors and from counts. Estimation from counts is equivalent to
estimating a compound multinomial distribution. In each case, a fixed-point algorithm and
a Newton-Raphson algorithm is provided. Newton-Raphson is faster but more complex to
implement since it requires stepsize control.

1 Estimation from probability vectors

The Dirichlet density is
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If we observe a training set of probability vectors D = {p1,...,pn}, then the ML estimate of «
would maximize p(D|a) = [1; p(p:|a). The log-likelihood is

logp(Dla) = Nlog F(Z ag) — NZlog IM'lax) + NZ(ak — 1) log pr (4)
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where logp, = N Z log p; (5)

This objective is convex in « since Dirichlet is in the exponential family. A direct convexity
proof has also been given by Ronning (1989). The gradient of the log-likelihood is

dlog p(D|a _
Gk = % = NU(D ap) — NU(ag) + Nlog py, (6)
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where U is the digamma function. As always with the exponential family, the MLE will set the
expected sufficient statistics equal to the observed sufficient statistics. In this case, the expected
sufficient statistics are

E[logpk] = ‘I’(Oék) - ‘I’(Z ak) (7)



and the observed sufficient statistics are log pr. The MLE can be computed by iterating the
fixed-point equation

W(ap™) = W(} i) + log pr (8)

Each iteration provably increases likelihood, because it maximizes a lower bound; see ap-
pendix A. This algorithm requires inverting the ¥ function; see appendix C.

Another approach is Newton iteration. The Hessian of the log-likelihood is
d1og p(Dlo)
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where U’ is the trigamma function. The Hessian can be written in matrix form as

H = Q+11%2 (11)
gr = —NV'(ap)é(j — k) (12)
z = N\Il’(zk:ozk) (13)

One Newton step is therefore
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where b = Q8 = 2 9:/4:s (17)
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The same Newton algorithm was given by Ronning (1989) and Naryanan (1991). Naryanan also
derives a stopping rule for the iteration.

An approximate MLE, useful for initialization, is given by finding the density which matches
the moments of the data. The first two moments of the density are

A
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Multiplying (20) and (18) gives a formula for aj in terms of moments. Equation (20) uses p,
but any other py could also be used to estimate ", ax. Ronning (1989) suggests instead using
all of the p;’s via

Elpi](1 = Elpy])

var(py) = S (21)
B = [pe](1 — Elps])
logzk:ak = T3 E lo ( var(pe) 1) (22)

Another approximate MLE, specifically for the case K = 2, is given by Johnson & Kotz (1970):
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2 Estimation from counts

Sometimes we only observe a multinomial sample x;, of length n;, from each p;. The marginal
probability of a sample x is

p(xlo) = [ p(xlp)p(ple) (25)
I'(32x ax) Nk + Oék)
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The ML estimate of a given D = {x,...,Xxx} now maximizes

p(Dla) = TIp(xila) (28)

I3, ax) I'(n + ax)

This is useful for estimating a compound multinomial distribution (Mosimann) from data. It
also arises in “empirical Bayes” or “type Il maximum likelihood” (Good) inference, where we
wish to conclude something about the p; but don’t want to commit to any particular Dirichlet
prior. The gradient of the log-likelihood 1is

dlogp Dla)
dozk

Z U( Zak U(n, + Zk:ak) + U(nip + ax) — V() (30)



The maximum can be computed via the fixed-point iteration

new i V(g + ap) — W(ay)

= 1
G TS U+ T ar) — W(T, o) (31)
(see appendix B). Alternatively, the Hessian of the log-likelihood is
dlog p(D|a
% = 2V o) = W(n + 3 o) + Wi + o) — W) (32)
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The Hessian can be written in matrix form as

H = Q+11%: (34)
gr = 6(j—k) Z U (ng + ag) — W'(ag) (35)

o= DV ar) = Wlni )] ay) (36)
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from which a Newton step can be computed as before. The search can be initialized with the
moment matching estimate where p;;. is approximated by n;/n;.
Another approach is to reduce this problem to the previous one via EM; see appendix D.

A different method is to maximize the leave-one-out (LOO) likelihood instead of the true likeli-
hood. The LOO likelihood is the product of the probability of each sample given the remaining
data and the parameters. The LOO log-likelihood is

nip — 1+ ag )
n,— 14+,

fla) = Z n; log ( = E nik log(nig — 1+ ag) — E n;log(n;, — 1+ Z ag) (37)
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Note that it doesn’t involve any special functions. The derivatives are
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A convergent fixed-point iteration is

new EZ n‘kfik‘}'ak
0 = oy B (a1)
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Proof Use the bounds
log(n + z)

v

qlogz + (1 —q)logn — qlogq— (1 —q)log(l —q)
3
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to get
f(a) > Z nikq;k 10g Qp — Nn;a; Z o + (Const.)
i k

leading to (41).

The LOO likelihood can be interpreted as the approximation
I'(z +n)

R -1
(2] (x4+n-—1)
A better approximation would be
I'(z 4 n)
— —1)/2)"
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or better still . . . | |
($+n): (:E—I— ) (x—l_ +n— )%:C(:E—I—N/Q)n_l
I'(x) ['(z)l'(z+1)

3 Estimating variance from probability vectors

(47)

(48)

(49)

Since the mean and variance of the Dirichlet are roughly decoupled in the ML objective, we can

get simplifications and speedups by optimizing them alternately. Reparameterize the distribu-

tion with (s, m) where

o = Smyg
ka = 1
2
The likelihood is

p(D|s) o (F(S) eXII_)[(:FZ(:;nZk) log Pk))

whose derivatives are

dlog p(D
L8O () = N Y (s + N Y o
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A convergent fixed-point iteration is

/s =1/s —WU(s)+ kaql(smk) — ka log pr (55)

Proof Use the bound

Hkr((s) ) > exp(sb+log(s) + ¢) (56)
to get
log p(D]s) Z rlog pr. 4+ sb + log(s) + (const.) (58)

from which (55) follows.

This iteration is only first-order convergent because the bound only matches the first derivative
of the likelihood. We can derive a second-order method by matching the first two derivatives:

I'(s) N
m ~ exp(sb+ alog(s) + ¢) (59)
a = —§(V Emk\Il ($my)) (60)
h = Z k\Il ($my) —a/s (61)

which leads to the update

! :1+;(M)‘1 (M) (62)

Snew s s2 ds? ds

This update resembles Newton-Raphson, but converges faster. See Minka (2000).

For initialization, it is useful to derive a closed-form approximate MLE. Stirling’s approximation
to I' gives

_ (k=1)/2 p
I(s) exp(s S melogpe) (i) T exp(s 3" mylog 25 (63)

[T, I'(smy) 2r " - mp
(k—1)/2
— >k my log :Z_k

(64)
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4 Estimating variance from counts

The likelihood is

k smk)
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The derivatives are

dlog+§D|5) — Z U(s) — U(n; +s) + ka\p nik + smy) — mpW(smy) (66)

d?1 D

w Z v'( "(n; +s) + Z miW' (ni + smy) — mpW'(smy) (67)
S

A convergent fixed-point iteration is

new __ Elk mkql(nzk + Smk) — mk\I/(smk)
o > U(ng +5) — W(s) (68)

(the proof is similar to (31)). However, it is very slow. We can get a fast second-order method
as follows. When s is small, i.e. the gradient is positive, use the approximation

logp(D|s) =~ alog(s)+cs+k (69)
a = —s3f"(s0) (70)
c = ['(s0) —a/so (71)
to get the update

r(s)
) )

except when ¢ > 0, in which case the solution is s = co. When s is large, i.e. the gradient is
negative, use the approximation

new

S =—afe=s/(1+

logp(D|s) = QZ —I-g (73)
a = s(sf"(s)+2f(s)) (74)

c = —(s"f(s)+a/s) (75)

to get the update

['(s)
J"(s) +3['(s)/s
For large s, the value of a tends to be numerically unstable. If s f”(s) +2f'(s) is within machine
epsilon, then it is better to substitute the limiting value:

" = —afc=8—

(76)
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A even faster update for large s is possible by using a richer approximation:
log p(Dls) = clog () + = (78)
ogp(D|s) = clog S+ b o

c = 25(71219 > 0) — 25(712 > 0) (79)



e = 8 j b (s(s + B)f'(s) — cb) (80

b = RootOf(azb® + a;b+ ao) (81
a; = s°(sf"(s) +2f(s)) (82
ap = 25*(sf"(s)+ f'(s)) (83
ay = SQf”(S) +c (84

The approximation comes from setting ¢ equal to its asymptotic value and then choosing (b, e
to match the first two derivatives of f. The resulting update is

e et :<1_M)‘1 (85)

e—cb S ch?

Note that a, is equivalent to a above and should be corrected for stability via the same method.

4.1 Large dimensionality

If my is roughly uniform and the dimensionality is large, then a; << 1 and we can use the

approximations
I(og) ~ 1/og (87)
p(x|s) = % Hosmkf ng) (88)
- rr(f)js) (89)

where K is the number of unique observations in x. The approximation does not hold if s is
large, which can happen when m is a good match to the data. But if the dimensionality is large
enough, the data will be too sparse for this to happen. The derivatives become

dlog p(D
w ~ Z‘P U(n; +s) + Ki/s (90)
S

d*log p(D|s)
ds?

L

Z‘P "(ni +s) — K;/s* (91)

%

Newton iteration can be used as long as the maximum for s is not on the boundary of (0, c0).
These cases occur when K =1 and K = n.

When the gradient is zero, we have

A

K=s(U(n+s)—V(s)) = F[K|s,n] (92)
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A convergent fixed-point iteration is

Y K;
new — 93
S > Ulng + s7) — () (93)

Proof Use the bound
I'(s) < I'(8) exp((s — s)b)

I'(n+s) — I'(n 4+ 3) (94)
b = ¥(n+38)—U(s) (95)

to get
p(D]s) > —s Z b; + Z[& log s + (const.) (96)

leading to (93).

Let é([g’, n) be the resulting ML estimate. Since §(n/2,n) ~ 0.8(n/2 — 1), a reasonable initial
guess when N =1 is

0.8 n .
5§~ —~—0.55) (K —1 97
i 2—0.55(n_1( )( ) (57)
Instead of maximizing s, we can compute its posterior, which follows from (89). With a uniform
prior, posterior expectations can be approximated for large n by the following formulas when

N =1:

3K +1,n) it K/n<1/2
Els] { S(K +2,n) otherwise (98)
5 [ S ] ~ SA(]X +1,n) (99)
s+n S(K+1,n)+n
Applying the large K approximation to the LOO likelihood gives
= Z o(nig — 1) (number of singletons) (100)
f(s) = tlogs - an log(n; — 1+ s) (101)
df (s)
_ 102
ds Z — 1 + s (102)
For N = 1:
Hn —
s = o) (103)
n—t
s ttn—1)
= N — 104
s+ n n? —1i n (104)



5 Estimating mean from probability vectors

Now suppose we know the variance parameter s and we want to estimate the mean m. The

likelihood is

AN
exp(smy log pk))
p(Dlm) 105
p(Dhm) e (I 2L (105)
Reparameterize to get the gradient:
my = —=2 (106)
Dk 2k
dlog p(D|m Ns
w = <logpk — U(smy) — ka (log pr — \Il(smk))> (107)
dzy, 2ok %k &
The MLE can be computed by iterating the fixed-point equations
W(aw) = logpr — Y mi (log pr — W(smi'?)) (108)
&
ay,
mpeY = 109
; = o (109)

This update converges very quickly.

6 Estimating mean from counts

The likelihood is

I'(nix + smy)
D k) 110
p(Dlam) o [[ (110)
The maximum can be computed by iterating the fixed-point equation
mpe o my, Z (W(ni, + smy) — W(smy)) (111)
(the proof is similar to (31)).
For Newton-Raphson, reparameterize to get
K-1
mg = 1= my (112)
k=1
dlog p(D|m
gr = % = s Z U(ng 4+ smy) — W(smy) — U(nig + smp) + Y(smg)  (113)
k i
d*log p(D
w = 2 W(ng + smi) — V(smy) + V' (nix + smy) — W' (smg) (114)
my i
d*log p(D
ogp(Dlm) 4 S W (i + smr) — V(smg) (115)
dmkmj i
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For large s, the search should be initialized at my o Y, n;, since this is the exact optimum as
§ — 00.
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A Proof of (8)

Use the bound
Do) > T(@)esp((e - 2)U(2)) (116)

to get

%logp(lﬂa) > (E ak)\Il(Z azld) — Zlog I'ax) + E(ak — 1) log pxr + (const.) (117)

leading to (8).

B Proof of (31)

Use the bound

&3>

M) T(@)esp((E - o))
I'n+z) — I'(n+ 2)
b = Y(n+z)— Y

(118)
) (119)

&3>
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and the bound

e (120)
I'(z)
a = (UV(n+z)—U(2)) (121)
I'(n+2),
= g 122
o = Hii (122)
to get
log p(D|a) > — Zak—l Zb —I—Zazklogak—l— const.) (123)
leading to (31).
C Inverting the ¥ function
This section describes how to compute a high-accuracy solution to
(o) =y (124)

for = given y. Given a starting guess for z, Newton’s method can be used to find the root of
U(z) —y = 0. The Newton update is

new _ jold _ U(z) —y
" = 7@(1:) (125)

To start the iteration, use the following asymptotic formulas for W(z):

log(z —1/2) if x> 0.6
¥(z) { —91_7 — ifz <0.6 (126)
SR (127)
to get
1y Jexply)+1/2 ity > —2.22
UL R (125

With this initialization, five Newton iterations are sufficient to reach fourteen digits of precision.

D EM for estimation from counts

Any algorithm for estimation from probability vectors can be turned into an algorithm for
estimation from counts, by treating the p; as hidden variables in EM. The E-step computes a
posterior distribution over p;:

q(pi) ~ D(ni + ax) (129)
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and the M-step maximizes

E[Z log p(pila)] = Nlog F(Z ag) — NZlog I'ax) + NZ(ak — 1) log pr (130)
B & % k
where logpr, = %ZE[logpik] (131)
1
= v V(e af®) = U(n;+ Y ai) (132)
; k

This is the same optimization problem as in section 1, with a new definition for p. It is not
necessary or desirable to reach the exact maximum in the M-step; a single Newton step will do.
The Newton step will end up using the old Hessian (9) but the new gradient (30). Compared
to the exact Newton algorithm, this uses half as much computation per iteration.
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