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Abstract. We present a mechanism for constructing networks with a given set 
of parameters using genetic algorithms. The tunable parameters include number 
of nodes, number of links, clustering coefficient, entropy and average distance. 
It is shown that the effects of maximizing entropy while constraining the 
number of links reproduces an exponential degree distribution, as can be seen in 
many real networks. We also introduce the concept of the Optimal Network 
Manifold, a boundary in parameter space that constrains a network’s potential 
characteristics.  

1   Introduction 

Complex network topologies have received attention from a wide variety of fields in 
recent years (1–3). For example, the cell is now well described as a network of 
chemicals connected by chemical reactions; the Internet is a network of routers and 
computers linked by many physical or wireless links; culture and ideas spread on 
social networks, whose nodes are human beings and whose edges represent various 
social relationships; the World Wide Web is an enormous network of Web pages 
connected by hyperlinks.  

Many new concepts and measures have been recently proposed and investigated to 
characterize such systems. We define and briefly discuss three of the most important 
concepts: 

 
• Small Worlds. The small-world concept describes the fact that in most net-

works there is a relatively short path between any two nodes, even if the 
number of nodes is large. The distance between two nodes is defined as the 
number of edges along the shortest path connecting them. The best known 
example of small worlds is the “six degrees of separation” found by the social 
psychologist Stanley Milgram, who showed that there is an average number 
of six acquaintances between most pairs of people in the United States (4). 
The small-world property can be observed in most complex networks: the ac-
tors in Hollywood are on average within three co-stars from each other, or the 



chemicals in a cell are typically separated by three reactions. The small- 
world concept, however, is not an indication of any organizing principle. Er-
dos and Renyi demonstrated that the typical distance between any two nodes 
in a random graph scales as the logarithm of the number of nodes 

( )lnd N∝ . Thus, even random graphs are small worlds. 
 
• Clustering. A common property of social networks are cliques, circles of 

friends or acquaintances in which every member knows every other member. 
This inherent tendency to cluster is quantified by the clustering coefficient 
(5). Consider a selected node i in a network, having ik  edges connected to 

ik  other nodes. If the first neighbors of the original node were all connected, 
there would be ik  ( ik - 1)/2 edges between them. The ratio between the 
number of edges that actually exist between these ik  nodes, iE , and the 
maximum number, ik  ( ik - 1)/2, gives the value of the clustering coefficient 
of node i  
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A network’s clustering coefficient is the average clustering coefficient of its 
nodes. In a random graph, since the edges are distributed randomly, the 
clustering coefficient is C p= , where p  is the probability of a link 
existing between any pair of nodes. However, Watts and Strogatz pointed out 
that in most real networks the clustering coefficient is typically much larger 
than it is in a random network of equal number of nodes and edges (5). 
 

• Degree distribution. Nodes in a network typically do not all have the same 
number of links, or degree. This variation can be characterized by a 
distribution function ( )P k , which gives the probability that a randomly 
selected node has exactly k  links. Since in a random graph the links are 
placed randomly, the majority of nodes have approximately the same degree, 
close to the average degree k of the network. The degree distribution of a 

random graph is a Poisson distribution with a peak at ( )P k . However, 

recent empirical results show that the degree distributions of most large 
networks are quite different from a Poisson distribution. In particular, for a 
large number of networks, including the World-Wide Web (6), Internet (7) 
and metabolic networks (8), the degree distribution has a power-law tail.  

( )P k k γ−
∼  (1.2) 

Such networks are called scale-free. While some networks display an 
exponential tail, often the functional form of ( )P k  still deviates 
significantly from the Poisson distribution expected for a random graph.  



 
The discovery of the power-law degree distribution has led to the construction of 
various scale-free models that, by focusing on the network dynamics, aim to ex-plain 
the origin of the power-law tails and other non-Poisson degree distributions seen in 
real systems. The purpose of this work is to explain the observed distributions using 
the general principle of network evolution rather than a dynamical growth model. 

2   Genetically Modified Network Topologies 

Genetic algorithms have been used to solve problems in numerical optimization (9), 
network optimization (10), scheduling (11), circuit design (12) and numerous other 
disciplines.  To our knowledge, genetic algorithms have not been used to construct 
networks.  The present work explores the use of genetic algorithms as a flexible and 
tunable tool to construct networks with a wide array of characteristics. 
 
The initial population of our genetic algorithm consisted of randomly created adja-
cency matrices.  The random population was created by assigning each index of the 
adjacency matrix a link with a given probability.  Randomly created networks that 
were not fully connected were discarded and the process is repeated until a full popu-
lation is created.  Our simulations used populations ranging between 20 and 50 indi-
viduals.   
 
Mutational Schemes 
We explored several mutation schemes:   

1) constant -the mutation rate is equal for every member of the population 
2) fitness - the mutation rate is a function of each member’s fitness 
3) elite propagation – the population consists of mutations of only the elite 
population 
4) hybrid – a combination of 2 and 3 above, the elites contribute one child 
each (a mutation of themselves) which they compete with for survival in each 
round.  The non-elite population mutates as in scheme 2. 

 
We compared the performance of these mutation schemes across a suite of several 
fitness functions.  The simulations reported in this paper used they hybrid mutation 
scheme.  Recombination of the adjacency matrices did not yield promising results, 
however alternative network recombination methods will be explored in further 
research. 
 
Fitness Functions 
There were five components of our fitness function.  The average distance, the 
clustering coefficient, the number of links, the deviation of the number of links from 
an ideal number and entropy all contributed to the fitness of each network.   
 
Average Distance 



The average distance between nodes in a network can be calculated from the net-
work’s connectivity matrix A. The shortest distance, d, for every pair of nodes (i, j) 
can be calculated by incrementing d and noting the first instance ( ) 0d

ijA ≠ . The 

average value over all pairs of nodes, d , is the average distance of the network. 
 
Clustering Coefficient 
The clustering coefficient can be derived from the connectivity matrix A of the net-
work using the following simple expression: 

31 ( )
2

C tr A=  (2.1) 

Link Constraints 
 
Two formulations of link constraints were used, the number of links, M and 

idealM M− , the difference between the number of links and the ideal number of 
links. 
 
Normalization 
 
Each component of the fitness function was normalized by subtracting the mean across 
the population at each generation and dividing by the standard deviation of the com-
ponent.  This was done to eliminate bias of the fitness function toward metrics with 
higher magnitudes or variances. The contribution of each component to the total fit-
ness was varied for each optimization by multiplying each metric by a coefficient.   
 
Simple Examples 
 
There were several constraint regimes for which the results of our optimization were 
easily predicted and served as a test for our algorithm.  For example, minimizing the 
average distance should yield optimal networks with 1N −  links per node, where N is 
the number of nodes, while maximizing the average distance yields sparse graphs with 
highly separated clusters. Figure 1 presents the optimal networks found under these 
two sets of constraints.  The results presented are the optimal networks after 100 gen-
erations.   
  

 
 
 



 
 

Figure 1: Optimal network under constraint; maximize average distance (left) and minimize 
average distance (right).   

3   Maximizing Entropy 

There are several ways of defining the entropy of a network (13). We choose the 
Shannon interpretation of information entropy:  

0
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where traditionally n  is the total number of states of the system, and ip  is the prob-
ability of the system finding itself in state i . For networks, we can consider the ip to 
be the probability of finding a node to have degree i . Using this interpretation, the 
degree distribution ( )P k  of the network defines its entropy. We can then use the 
standard Lagrange multiplier method to apply constraints and maximize the entropy. 
To constrain the number of links we apply the condition 
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where maxk is the number of links of the most connected node, ik is the number of 
nodes with degree i and M  is the total number of links in the particular network. This 
can be rewritten as  
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with N being the number of nodes and k  being the average number of links per 
node. We then take the derivative with respect to kp and set it to 0 
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which gives 

expk
kp
k

∝ . (3.5) 

Using our genetic algorithm method, we can reproduce the above conditions by build-
ing a fitness function that penalizes any deviation from M  links and rewards an in-
crease in S. This fitness function has the form:  

F S M L= − −  (3.6) 

where L  is the number of links in the modified network. The resulting degree distri-
bution can be seen in Figure 2. 

 

 
Figure 2: The degree distribution obtained by maximizing entropy while constraining the total 
number of links in the network  

This type of exponential degree distribution can be observed in some social networks 
(14; 15), and deviates significantly from the Poisson distribution expected for a ran-
dom graph.  



4   Network Manifolds 

Despite the significant amount of research on networks, little is known about the inter-
dependencies of a network's characteristics. In Section 2, we have shown simple net-
works that occur by only optimizing one network parameter; however if we swept 
across all parameters and stored the very best network for each set of constraints, an 
interesting structure emerges. A boundary in parameter space is uncovered that pro-
vides a hard constraint for all networks topologies. Although many more iterations of 
the genetic algorithm are needed to fully determine how the boundary manifests itself 
in this potentially high dimensional space, our initial results give us the main portions 
of the surface, or Network Manifold, characterized by three network metrics: number 
of links, clustering coefficient, and average distance. 

The implications of Network Manifolds extend beyond the field of theoretical 
graph analysis. In the design of physical communication networks, both the average 
distance and the number of nodes are minimized in a tradeoff between cost and per-
formance. As a secondary constraint, clustering is maximized to provide network 
robustness in specific areas. The optimal configuration strategy has remained elusive 
and currently networks are designed by what amounts to trial and error. Until now 
there have been no rules that determine whether a set of network characteristics are 
even possible. Lastly, after a network has been designed it can be mapped to a unique 
point on the manifold. The gradient of the manifold at this point corresponds to how 
quickly one parameter can be improved by slightly varying the other parameters.  

 
Manifold Results 

Over the course of evolution within the genetic algorithm, tens of millions of net-
work topologies have been generated and parameterized with average distance, num-
ber of links, clustering coefficient and entropy. We have shown that all of these topo-
logical configurations lie on a continuous surface in a parameter space consisting of 
number of links, clustering coefficient and average distance. This implies that we have 
empirically uncovered the governing equation that constrains the dependencies of 
these parameters. The size of the network does not appear to play a role in the shape 
of the manifold. Although much of our research has been on graphs consisting of 20 
and 50 nodes, our initial results suggest that the manifold will scale with nodes, and 
thus our findings are applicable to much larger networks as well. 
 



 
Figure 3: The Network Manifold governing the relationship of three parameters collected by 
generating over two million network topologies given a variety of constraints.  

In Figure 3 we have plotted the manifold and highlighted several distinctive net-
works. The red dots are the latest networks generated by the genetic algorithm. The 
yellow squares are random networks with varying link probability. The green star 
represents a star network while the orange barbell is the barbell graph shown in Figure 
1.  
 
Towards the Optimal Network Manifold 
The Network Manifold we present should not be considered complete. As the algo-
rithm runs, some sections slowly continue to expand. These portions of the manifold 
represent the discovery of new network topologies that better meet the dynamic con-
straints imposed by the genetic algorithm. Although a solution generated by a genetic 
algorithm can never be considered ‘optimal’, it is reasonably sure that some areas of 
the manifold will remain static, allowing us to place our computational resources on 
areas that are more likely to grow. We do this by initializing the algorithm not as a 
population of random networks, but rather as networks located near the border we 
wish to expand. By ‘seeding’ these potential networks, while lowering the mutation 
rate and increasing number of iterations, our generic algorithm slowly is able to ex-
pand these boundaries and continue its exploration of the manifold. 



5   Future Research and Conclusion 

Using genetic algorithms, we have developed a method of generating network topolo-
gies with a set of desired characteristics. This methodology has enabled us to begin 
understanding which combinations of network characteristics are possible. However, 
the manifold continues to expand. Meanwhile, our own generic algorithm is evolving 
to more efficiently search this parameter space for a diminishing number of new topo-
logical solutions that better meet the constraints imposed by the fitness function.   

We have shown that using genetic algorithms to maximize the entropy of a network 
while keeping the number of links constant generates an exponential degree distribu-
tion, similar to many real networks. We have also introduced the concept of the Net-
work Manifold and shown how it characterizes optimal network topologies and con-
strains possible network characteristics. It is our hope that this work will inspire addi-
tional research on network design and optimization.  
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