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ABSTRACT 

Knowledge of how groups of people interact is important in 
many disciplines, e.g. organizational behavior, social 
network analysis, knowledge management and ubiquitous 
computing. Existing studies of social network interactions 
have either been restricted to online communities, where 
unambiguous measurements about how people interact can 
be obtained, or have been forced to rely on questionnaires, 
or diaries to get data on face-to-face interactions. Survey-
based methods are error prone and impractical to scale up. 
This paper describes our work in developing a 
computational framework to model face-to-face interactions 
within a community. We have integrated methods from 
speech processing and machine learning to demonstrate that 
it is possible to extract information about people’s patterns 
of communication, without imposing any restriction on the 
user’s interactions or environment. Furthermore, we 
analyze some of the conversational dynamics and present 
results that demonstrate distinctive and consistent turn-
taking styles for individuals during conversations.  Finally, 
we present results that show strong correlation between a 
person’s turn-taking style during one-on-one conversations 
and the person’s role within the network.  
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INTRODUCTION 
Our decision-making is influenced by the actions of others 
around us. How people are organized also has an effect on 
information diffusion [7]. Who are the people we talk to? 
How actively do we participate in the conversations? Can 
we identify the individuals who talk to a large fraction of 
the group or community members? Although people 

heavily rely on email, telephone and other virtual means of 
communication, high complexity information is primarily 
exchanged through face-to-face interaction[1]. Knowledge 
of people’s communication networks can also be used in 
improving context-aware computing environments and in 
coordinating collaboration between group members. We 
believe that wearable sensor data combined with pattern 
recognition techniques can play an important role in sensing 
and modeling physical interactions.  

SENSING & MODELING HUMAN NETWORKS 
Prior work has focused on proximity-based models of face-
to-face network [3, 9], a weak approximation of the actual 
communication network. Our focus is to model the network 
based on conversations that take place within a community.  
To model real-world interactions, we need to collect data 
from real-world scenarios. We have conducted an 
experiment at the MIT Media Lab, where 23 people agreed 
to wear the sociometer. The sociometer is an adaptation of 
the hoarder board, a wearable data acquisition board, 
designed by the electronic publishing and the wearable 
computing groups at the Media lab [6]. The sociometer 
stores the following information - (i) identity of people 
wearing the sociometer (IR sensor - 17Hz) and (ii) speech 
information (microphone-8KHz). During the experiment 
the users had the device on them for six hours a day for 11 
days, and wore the device both indoors and outdoors. The 
participants were a mix of students, faculty and 
administrative support staff. Subjects were distributed 
across different floors of the building and across different 
research groups. 
The comfort, aesthetics, and placement of sensors, are 
important issues to consider in wearable design when it 
comes to greater user acceptance and reliable sensor 
measurements. In designing the 
sociometer, we followed the 
wearability criteria specified in 
[5], which explores the 
interaction between the human 
body and a wearable, and 
provides a guideline on the 
shape and placement of 
wearables that are not obtrusive 
and do not interfere with the 
natural movement of the 
human body.  

 

Figure 1: The Sociometer
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Table 1: Exit survey of the users. The number in parenthesis 
indicates how many users chose that response 

We are aware that subject’s privacy is a concern for any 
study of human interactions. To protect the user’s privacy 
we only extract speech features (spectral peaks, energy etc.) 
and never process the content of the speech. This is 
sufficient for our purposes, as we are interested in who 
people talk to and how, and not necessarily what they talk 
about. At the end of the data collection phase we conducted 
a survey to gauge the acceptance of the sociometer among 
the users: Table 1 summarizes the results and shows users 
were generally accepting of the sociometer. 

Detecting Conversations  
To detect conversations, we need to reliably segment 
speech regions from the raw audio. As the first step, we 
extract spectral features proposed in [2] that discriminate 
well between speech and non-speech regions. An HMM is 
trained to detect voiced/unvoiced regions using the features. 
This method works very reliable even in noisy environment 
with less than 2% error at 10dB SNR. However, the 
downside of this is that all speech and not just the user’s 
speech are detected. However, we can use the energy of the 
speech signal to segment the user’s speech from the rest. 
When two people are nearby and are talking, although it is 
highly likely that they are talking to each other, we cannot 
say this with certainty. Results presented in [2] demonstrate 
that we can detect whether two people are in a conversation 
by relying on the fact that the speech of two people in a 
conversation is tightly synchronized. We can reliably detect 
when two people are talking to each other by calculating the 
mutual information of the two voicing streams, which peaks 
sharply when they are in a conversation as opposed to 
talking to someone else. This measures works very well for 
conversations that are at least one minute in duration. 

During the data collection stage we asked the participants to 
fill out a daily survey providing a list of their interactions 
with others. Our algorithms detected 82% of the pairs that 
interacted based on the survey data. However, the survey 
data had only 54% agreement between subjects (where both 
subjects acknowledged having the conversation) and only 

29% agreement in the number of conversations. 
Consequently, we did not feel confident in comparing our 
algorithms against survey data alone. We also obtained 
hand-labeled ground truth from a subset of the users.  Four 
participants labeled two days of their data in five-minute 
chunks (12 hours each).  For the hand-labeled dataset, our 
performance accuracy in detecting conversations was 
63.5% overall and 87.5% for conversations greater or equal 
to one minute.  The conversations missed by our method 
were often in high-noise, multiple-speaker situations. 

LEARNING THE SOCIAL NETWORK 
Once we detect the pair-wise conversations we can measure 
all the communication that occurs within the community 
and map the links between individuals. The link structure is 
calculated from the total number interactions each person 
has with others (interaction with another person that 
account for less than 5% of the person’s total interactions 
are ignored). To get an intuitive picture of the interaction 
pattern within the group of people who were equipped with 
sociometer, we visualize the network diagram by 
performing multi-dimensional scaling (MDS) on the 
geodesic distances between the people (Figure 2). This type 
of visualization is commonly used in social network 
analysis [10]. The nodes are colored according to physical 
closeness of office location. From this we see that, people 
whose offices are in the same general space seem to be 
close in the communication space as well.  

Effects of Distance on Face-to-Face Interaction 
Structural layout is known to affect communication within 
an organization or community [1, 8].  

 

Figure 3: Probability of communication as a function of 
distance. 
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Figure 2: (a) Network structure based on MDS of geodesic 

distances. (b) layout of the subject across the building 
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Figure 3 shows the probability of communication as a 
function of distance between offices. We grouped distances 
into six different categories – (i) office mates (x-axis 0) (ii) 
1-2 offices away (x-axis 1) (iii) 3-5 offices away (x-axis 2) 
(iv) office on the same floor (x-axis 3) (v) offices separated 
by a floor (x-axis 4) (vi) office separated by two floors (x-
axis 5). 

Changes Speech Activity throughout the day 

We have also calculated the average talking pattern 
throughout the day based on the fraction of time that speech 
was detected from a wearer’s device (for every one-minute 
unit of time) as shown in Figure 4. This result is quite 
intuitive, as talking peaks during lunch time and also in the 
late afternoon when students often take breaks and when 
the weekly Media Lab student tea is held. These types of 
measurements of network behavior are much harder to do 
using surveys or self-report, but can easily be extracted 
from the analysis of the sensor data.  

Centrality Measure 

Centrality measures are extensively used in social network 
analysis to understand an individual’s involvement within 
the community. There are various centrality measures based 
on the number of links, as well as the importance of the 
links in maintaining the connectedness of the network. One 
particular measure is the ‘betweenness centrality’, which 
measures how much control an individual has over the 
interaction of other individuals who are not directly 
connected. People with high betweenness are frequently 
viewed as leaders [4]. The betweenness centrality of our 
network is shown in Figure 5. Participants were assigned ID 
numbers 2-11 and 13-25. ID#15’s device had technical 
failure and ID#23 did not participate regularly, so their data 
are ignored in further analysis. Some notable aspects of the 
betweenness measure are: (i) ID 8 was assigned to the 
author, who communicated with the subjects to coordinate 
data collection and hence the high betweenness measure 
may be biased (ii) ID 7 was an undergraduate student 
working with the author, note ID 7 mainly interacts with ID 
8 and has a betweenness of 0 (iii) ID 16 and 17 are our least 
communicative subjects, and have low betweenness (iv) ID 
4, although very tightly integrated within her group, she is 

mostly isolated from other groups and consequently has a 
low betweenness score.   

TURN-TAKING DYNAMICS 
Next we analyze some of the dynamics of the interactions. 
We primarily focus on the turn-taking patterns of 
individuals and how they differ from each other. We use 
these individual dynamics to later estimate how much an 
individual’s overall pattern changes during her interaction 
with specific individuals. We start by defining a “turn”. For 
each unit of time we estimate how much time each of the 
participants speaks, the participants who has the highest 
fraction of speaking time is considered to hold the “turn” 
for that time unit. For a given interaction, we can easily 
estimate how a pair participating in the conversation 
transitions between turns. We use the speaker segmentation 
output within conversations to estimate the turn-taking 
transition probability. Because most of the conversations in 
the dataset are between pairs, we transition between two 
states: speaker A’s turn and speaker B’s turn. We selected 
eighty conversations which were on average 5 minutes long 
to compute the individual turn-taking dynamics. In 
selecting the conversations we made sure that we had at 
least four different conversation partners for each individual 
and multiple conversation instances for the same 
conversational pair. 

Figure 6: Multidimensional scaling of the average turn-
taking transition tables. Each individual’s mean is given 

by the red circle and the ellipse around shows the 
variance in speaker’s style over different conversations. 

Figure 5: Betweenness centrality of the network 
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Figure 4: Speech activity over the course of the day 

averaged over all subjects across all days. 
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Once we have estimated the turn-taking transition 
probabilities for the individuals we can measure how 
similar or dissimilar they are from each other. Figure 6 
shows the output of multidimensional scaling of the 
transition probabilities using a Euclidean distance metric, 
which shows that individuals have distinctive turn-taking 
styles and that these turn-taking patterns are not just a noisy 
variation of the same average style. We show the turn-
taking styles of seventeen individuals, because these 
seventeen are the ones who were participants in the eighty 
conversations selected. Later we will use ten of these 
subjects to do further analysis, those who have had at least 
four different conversation partners, in order to estimate 
their mean behavior and how they change or are influenced 
by other people’s interaction behavior. 

Estimating Influences from Turn-taking Dynamics 
When two people are interacting it is plausible that average 
turn-taking dynamics will affect each other and the 
resulting turn-taking behavior for that interaction will be a 
blend of the two transition matrices. If someone affects our 
average pattern a lot we may adapt to the behavior of that 
person’s ‘average conversation partner’, if we are not 
affected at all we will probably maintain our average 
dynamics completely, or the resulting interaction behavior 
may be somewhere in between the two extremes. We model 
the transition probability of   specific interaction as a 
combination of the individuals’ turn taking styles, modeled 
by a two-dimensional “influence” parameter. Now by 
learning the influence parameters we can measure how 
much one person affects another’s turn-taking behavior. We 
discovered an interesting and statistically significant 
correlation between a person’s influence score and their 
centrality, the correlation value was 0.90 (p-value < 0.0004, 
rank correlation 0.92). It appears that a person’s interaction 
style is indicative of her role within the community based 
on centrality measure. 

CONCLUSION 
In this paper we demonstrated the feasibility of learning 
social interactions from raw sensor data.  We have 
presented a framework for automatic modeling of face-to-
face interactions, starting from the data collection up to 
modeling the structure and dynamics of social networks by 
analyzing whom we talk to and how we talk to them. We 
believe better models of social network and organizational 
dynamics will facilitate efficient means of collaboration and 
information propagation. We have integrated methods from 
speech processing and machine learning to demonstrate that 
it is possible to extract information about people’s patterns 
of communication without imposing any restriction on the 
user’s interactions or environment. We have presented 
results that demonstrate distinctive and consistent turn-
taking styles for individuals.  We have presented new 
results that show strong correlation between a person’s 
aggregate influence value and her centrality score. This 
indicates the possibility inferring a person’s leadership role 
within the network from their conversational styles.  
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Figure 7: Influence value and centrality measure for a 
subset of the participants. Note, a participant with 

high influence also has high centrality. 




